
A Contour Stochastic Gradient Langevin Dynamics
Algorithm for Simulations of Multi-modal

Distributions

Wei Deng
Department of Mathematics

Purdue University
West Lafayette, IN, USA
weideng056@gmail.com

Guang Lin
Departments of Mathematics &

School of Mechanical Engineering
Purdue University

West Lafayette, IN, USA
guanglin@purdue.edu

Faming Liang ∗
Departments of Statistics

Purdue University
West Lafayette, IN, USA
fmliang@purdue.edu

Abstract

We propose an adaptively weighted stochastic gradient Langevin dynamics algo-
rithm (SGLD), so-called contour stochastic gradient Langevin dynamics (CSGLD),
for Bayesian learning in big data statistics. The proposed algorithm is essentially
a scalable dynamic importance sampler, which automatically flattens the target
distribution such that the simulation for a multi-modal distribution can be greatly fa-
cilitated. Theoretically, we prove a stability condition and establish the asymptotic
convergence of the self-adapting parameter to a unique fixed-point, regardless of
the non-convexity of the original energy function; we also present an error analysis
for the weighted averaging estimators. Empirically, the CSGLD algorithm is tested
on multiple benchmark datasets including CIFAR10 and CIFAR100. The numeri-
cal results indicate its superiority over the existing state-of-the-art algorithms in
training deep neural networks.

1 Introduction

AI safety has long been an important issue in the deep learning community. A promising solution to
the problem is Markov chain Monte Carlo (MCMC), which leads to asymptotically correct uncertainty
quantification for deep neural network (DNN) models. However, traditional MCMC algorithms
[Metropolis et al., 1953, Hastings, 1970] are not scalable to big datasets that deep learning models
rely on, although they have achieved significant successes in many scientific areas such as statistical
physics and bioinformatics. It was not until the study of stochastic gradient Langevin dynamics
(SGLD) [Welling and Teh, 2011] that resolves the scalability issue encountered in Monte Carlo
computing for big data problems. Ever since, a variety of scalable stochastic gradient Markov chain
Monte Carlo (SGMCMC) algorithms have been developed based on strategies such as Hamiltonian
dynamics [Chen et al., 2014, Ma et al., 2015, Ding et al., 2014], Hessian approximation [Ahn et al.,
2012, Li et al., 2016, Şimşekli et al., 2016], and higher-order numerical schemes [Chen et al., 2015,
Li et al., 2019]. Despite their theoretical guarantees in statistical inference [Chen et al., 2015, Teh
et al., 2016, Vollmer et al., 2016] and non-convex optimization [Zhang et al., 2017, Raginsky et al.,
2017, Xu et al., 2018], these algorithms often converge slowly, which makes them hard to be used for
efficient uncertainty quantification for many AI safety problems.

To develop more efficient SGMCMC algorithms, we seek inspirations from traditional MCMC
algorithms, such as simulated annealing [Kirkpatrick et al., 1983], parallel tempering [Swendsen and
Wang, 1986, Geyer, 1991], and flat histogram algorithms [Berg and Neuhaus, 1991, Wang and Landau,
∗To whom correspondence should be addressed: Faming Liang.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2001]. In particular, simulated annealing proposes to decay temperatures to increase the hitting
probability to the global optima [Mangoubi and Vishnoi, 2018], which, however, often gets stuck
into a local optimum with a fast cooling schedule. Parallel tempering proposes to swap positions of
neighboring Markov chains according to an acceptance-rejection rule. However, under the mini-batch
setting, it often requires a large correction which is known to deteriorate its performance [Deng
et al., 2020a]. The flat histogram algorithms, such as the multicanonical [Berg and Neuhaus, 1991]
and Wang-Landau [Wang and Landau, 2001] algorithms, were first proposed to sample discrete
states of Ising models by yielding a flat histogram in the energy space, and then extended as a
general dynamic importance sampling algorithm, the so-called stochastic approximation Monte Carlo
(SAMC) algorithm [Liang, 2005, Liang et al., 2007, Liang, 2009]. Theoretical studies [Lelièvre et al.,
2008, Liang, 2010, Fort et al., 2015] support the efficiency of the flat histogram algorithms in Monte
Carlo computing for small data problems. However, it is still unclear how to adapt the flat histogram
idea to accelerate the convergence of SGMCMC, ensuring efficient uncertainty quantification for AI
safety problems.

This paper proposes the so-called contour stochastic gradient Langevin dynamics (CSGLD) algorithm,
which successfully extends the flat histogram idea to SGMCMC. Like the SAMC algorithm [Liang,
2005, Liang et al., 2007, Liang, 2009], CSGLD works as a dynamic importance sampling algorithm,
which adaptively adjusts the target measure at each iteration and accounts for the bias introduced
thereby by importance weights. However, theoretical analysis for the two types of dynamic importance
sampling algorithms can be quite different due to the fundamental difference in their transition kernels.
We proceed by justifying the stability condition for CSGLD based on the perturbation theory, and
establishing ergodicity of CSGLD based on newly developed theory for the convergence of adaptive
SGLD. Empirically, we test the performance of CSGLD through a few experiments. It achieves
remarkable performance on some synthetic data, UCI datasets, and computer vision datasets such as
CIFAR10 and CIFAR100.

2 Contour stochastic gradient Langevin dynamics

Suppose we are interested in sampling from a probability measure π(x) with the density given by
π(x) ∝ exp(−U(x)/τ), x ∈ X , (1)

where X denotes the sample space, U(x) is the energy function, and τ is the temperature. It is
known that when U(x) is highly non-convex, SGLD can mix very slowly [Raginsky et al., 2017]. To
accelerate the convergence, we exploit the flat histogram idea in SGLD.

Suppose that we have partitioned the sample space X into m subregions based on the energy function
U(x): X1 = {x : U(x) ≤ u1}, X2 = {x : u1 < U(x) ≤ u2}, . . ., Xm−1 = {x : um−2 < U(x) ≤
um−1}, and Xm = {x : U(x) > um−1}, where −∞ < u1 < u2 < · · · < um−1 <∞ are specified
by the user. For convenience, we set u0 = −∞ and um =∞. Without loss of generality, we assume
ui+1 − ui = ∆u for i = 1, . . . ,m− 2. We propose to simulate from a flattened density

$Ψθ (x) ∝ π(x)

Ψζ
θ(U(x))

, (2)

where ζ > 0 is a hyperparameter controlling the geometric property of the flatted density (see Figure
1(a) for illustration), and θ = (θ(1), θ(2), . . . , θ(m)) is an unknown vector taking values in the space:

Θ =

{
(θ(1), θ(2), · · · , θ(m))

∣∣0 < θ(1), θ(2), · · · , θ(m) < 1 and
m∑
i=1

θ(i) = 1

}
. (3)

2.1 A naïve contour SGLD

It is known if we set †

(i) ζ = 1 and Ψθ(U(x)) =

m∑
i=1

θ(i)1ui−1<U(x)≤ui ,

(ii) θ(i) = θ?(i),where θ?(i) =

∫
χi

π(x)dx for i ∈ {1, 2, · · · ,m},
(4)

†1A is an indicator function that takes value 1 if event A occurs and 0 otherwise.

2

the algorithm will act like the SAMC algorithm [Liang et al., 2007], yielding a flat histogram in the
space of energy (see the pink curve in Fig.1(b)). Theoretically, such a density flattening strategy
enables a sharper logarithmic Sobolev inequality and accelerates the convergence of simulations
[Lelièvre et al., 2008, Fort et al., 2015]. However, such a density flattening setting only works under
the framework of the Metropolis algorithm [Metropolis et al., 1953]. A naïve application of the step
function in formula (4(i)) to SGLD results in ∂ log Ψθ(u)

∂u = 1
Ψθ(u)

∂Ψθ(u)
∂u = 0 almost everywhere,

which leads to the vanishing-gradient problem for SGLD. Calculating the gradient for the naïve
contour SGLD, we have

∇x log$Ψθ (x) = −
[
1 + ζτ

∂ log Ψθ(u)

∂u

]
∇xU(x)

τ
= −∇xU(x)

τ
.

As such, the naïve algorithm behaves like SGLD and fails to simulate from the flattened density (2).

2.2 How to resolve the vanishing gradient

To tackle this issue, we propose to set Ψθ(u) as a piecewise continuous function:

Ψθ(u) =

m∑
i=1

(
θ(i− 1)e(log θ(i)−log θ(i−1))

u−ui−1
∆u

)
1ui−1<u≤ui , (5)

where θ(0) is fixed to θ(1) for simplicity. A direct calculation shows that

∇x log$Ψθ (x) = −
[
1 + ζτ

∂ log Ψθ(u)

∂u

]
∇xU(x)

τ

= −
[
1 + ζτ

log θ(J(x))− log θ((J(x)− 1) ∨ 1)

∆u

]
∇xU(x)

τ
,

(6)

where J(x) ∈ {1, 2, · · · ,m} denotes the index that x belongs to, i.e., uJ(x)−1 < U(x) ≤ uJ(x). §

2.3 Estimation via stochastic approximation

Since θ? is unknown, we propose to estimate it on the fly under the framework of stochastic
approximation [Robbins and Monro, 1951]. Provided that a scalable transition kernel Πθk(xk, ·) is
available and the energy function U(x) on the full data can be efficiently evaluated, the weighted
density $Ψθ (x) can be simulated by iterating between the following steps:

(i) Simulate xk+1 from Πθk(xk, ·), which admits $θk(x) as the invariant distribution,

(ii) θk+1(i) = θk(i) + ωk+1θ
ζ
k(J(xk+1))

(
1i=J(xk+1) − θk(i)

)
for i ∈ {1, 2, · · · ,m}.

(7)

where θk denotes a working estimate of θ at the k-th iteration. We expect that in a long run, such
an algorithm can achieve an optimization-sampling equilibrium such that θk converges to the fixed
point θ? and the random vector xk converges weakly to the distribution $Ψθ?

(x).

To make the algorithm scalable to big data, we propose to adopt the Langevin transition kernel
for drawing samples at each iteration, for which a mini-batch of data can be used to accelerate
computation. In addition, we observe that evaluating U(x) on the full data can be quite expensive for
big data problems, while it is free to obtain the stochastic energy Ũ(x) in evaluating the stochastic
gradient ∇xŨ(x) due to the nature of auto-differentiation [Paszke et al., 2017]. For this reason,
we propose a biased index J̃(x), where uJ̃(x)−1 <

N
n Ũ(x) ≤ uJ̃(x), N is the sample size of the

full dataset and n is the mini-batch size. Let {εk}∞k=1 and {ωk}∞k=1 denote the learning rates and
step sizes for SGLD and stochastic approximation, respectively. Given the above notations, the
proposed algorithm can be presented in Algorithm 1, which can be viewed as a scalable Wang-Landau
algorithm for deep learning and big data problems.

2.4 Related work

Compared to the existing MCMC algorithms, the proposed algorithm has a few innovations:

§Formula (6) shows a practical numerical scheme. An alternative is presented in the supplementary material.

3

Algorithm 1 Contour SGLD Algorithm. One can conduct a resampling step from the pool of
importance samples according to the importance weights to obtain the original distribution.

[1.] (Data subsampling) Simulate a mini-batch of data of size n from the whole dataset of size
N ; Compute the stochastic gradient∇xŨ(xk) and stochastic energy Ũ(xk).
[2.] (Simulation step) Sample xk+1 using the SGLD algorithm based on xk and θk, i.e.,

xk+1 = xk − εk+1
N

n

[
1 + ζτ

log θk(J̃(xk))− log θk((J̃(xk)− 1) ∨ 1)

∆u

]
∇xŨ(xk) +

√
2τεk+1wk+1,

(8)

where wk+1 ∼ N(0, Id), d is the dimension, εk+1 is the learning rate, and τ is the temperature.
[3.] (Stochastic approximation) Update the estimate of θ(i)’s for i = 1, 2, . . . ,m by setting

θk+1(i) = θk(i) + ωk+1θ
ζ
k(J̃(xk+1))

(
1i=J̃(xk+1) − θk(i)

)
, (9)

where 1i=J̃(xk+1) is an indicator function which equals 1 if i = J̃(xk+1) and 0 otherwise.

First, CSGLD is an adaptive MCMC algorithm based on the Langevin transition kernel instead
of the Metropolis transition kernel [Liang et al., 2007, Fort et al., 2015]. As a result, the existing
convergence theory for the Wang-Landau algorithm does not apply. To resolve this issue, we first
prove a stability condition for CSGLD based on the perturbation theory, and then verify regularity
conditions for the solution of the Poisson equation so that the fluctuations of the mean-field system
induced by CSGLD get controlled, which eventually ensures convergence of CSGLD.

Second, the use of the stochastic index J̃(x) avoids the evaluation of U(x) on the full data and thus
significantly accelerates the computation of the algorithm, although it leads to a small bias, depending
on the mini-batch size n, in parameter estimation. Compared to other methods, such as using a
fixed sub-dataset to estimate U(x), the implementation is much simpler. Moreover, combining the
variance reduction of the noisy energy estimators [Deng et al., 2020b], the bias also decreases to zero
asymptotically as ε→ 0.

Third, unlike the existing SGMCMC algorithms [Welling and Teh, 2011, Chen et al., 2014, Ma
et al., 2015], CSGLD works as a dynamic importance sampler which flattens the target distribution
and reduces the energy barriers for the sampler to traverse between different regions of the energy
landscape (see Fig.1(a) for illustration). The sampling bias introduced thereby is accounted for by
the importance weight θζ(J̃(·)). Interestingly, CSGLD possesses a self-adjusting mechanism to ease
escapes from local traps, which is similar to the self-repulsive dynamics [Ye et al., 2020] and can be
explained as follows. Let’s assume that the sampler gets trapped into a local optimum at iteration k.
Then CSGLD will automatically increase the multiplier of the stochastic gradient (i.e., the bracket
term of (8)) at iteration k + 1 by increasing the value of θk(J̃(x)), while decreasing the components
of θk corresponding to other subregions. This adjustment will continue until the sampler moves away
from the current subregion. Then, in the followed several iterations, the multiplier might become
negative in neighboring subregions of the local optimum due to the increased value of θ(J̃(x)),
which continues to help to drive the sampler to higher energy regions and thus escape from the local
trap. That is, in order to escape from local traps, CSGLD is sometimes forced to move toward higher
energy regions by changing the sign of the stochastic gradient multiplier! This is a very attractive
feature for simulations of multi-modal distributions.

3 Theoretical study of the CSGLD algorithm

In this section, we study the convergence of CSGLD algorithm under the framework of stochastic
approximation and show the ergodicity property based on weighted averaging estimators.

3.1 Convergence analysis

Following the tradition of stochastic approximation analysis, we rewrite the updating rule (9) as

θk+1 = θk + ωk+1H̃(θk,xk+1), (10)

4

where H̃(θ,x) = (H̃1(θ,x), . . . , H̃m(θ,x)) is a random field function with

H̃i(θ,x) = θζ(J̃(x))
(

1i=J̃(x) − θ(i)
)
, i = 1, 2, . . . ,m. (11)

Notably, H̃(θ,x) works under an empirical measure $θ(x) which approximates the invariant
measure $Ψθ (x) ∝ π(x)

Ψζθ(U(x))
asymptotically as ε→ 0 and n→ N . As shown in Lemma 1, we have

the mean-field equation

h(θ) =

∫
X
H̃(θ,x)$θ(x)dx = Z−1

θ (θ? + εβ(θ)− θ) = 0, (12)

where θ? = (
∫
X1
π(x)dx,

∫
X2
π(x)dx, . . . ,

∫
Xm π(x)dx), Zθ is the normalizing constant, β(θ) is

a perturbation term, ε is a small error depending on ε, n and m. The mean-field equation implies that
for any ζ > 0, θk converges to a small neighbourhood of θ?. By applying perturbation theory and
setting the Lyapunov function V(θ) = 1

2‖θ? − θ‖
2, we can establish the stability condition:

Lemma 1 (Stability). Given a small enough ε (learning rate), a large enough n (batch size) and m
(partition number), there is a constant φ = infθ Z

−1
θ > 0 such that the mean-field h(θ) satisfies

∀θ ∈ Θ, 〈h(θ),θ − θ?〉 ≤ −φ‖θ − θ?‖2 +O
(
ε+

1

m
+ δn(θ)

)
,

where δn(·) is a bias term depending on the batch size n and decays to 0 as n→ N .

Together with the tool of Poisson equation [Benveniste et al., 1990, Andrieu et al., 2005], which
controls the fluctuation of H̃(θ,x)− h(θ), we can establish convergence of θk in Theorem 1, whose
proof is given in the supplementary material.

Theorem 1 (L2 convergence rate). Given Assumptions 1-5 (given in Appendix), a small enough
learning rate εk, a large partition number m and a large batch size n, θk converges to θ? such that

E
[
‖θk − θ?‖2

]
= O

(
ωk + sup

i≥k0

εi +
1

m
+ sup
i≥k0

δn(θi)

)
,

where k0 is some large enough integer, θ? = (
∫
X1
π(x)dx,

∫
X2
π(x)dx, . . . ,

∫
Xm π(x)dx), and

δn(·) is a bias term depending on the batch size n and decays to 0 as n→ N .

3.2 Ergodicity and dynamic importance sampler

CSGLD belongs to the class of adaptive MCMC algorithms, but its transition kernel is based on
SGLD instead of the Metropolis algorithm. As such, the ergodicity theory for traditional adaptive
MCMC algorithms [Roberts and Rosenthal, 2007, Andrieu and Éric Moulines, 2006, Fort et al., 2011,
Liang, 2010] is not directly applicable. To tackle this issue, we conduct the following theoretical
study. First, rewrite (8) as

xk − ε
(
∇xL̂(xk,θ?) + Υ(xk,θk,θ?)

)
+N (0, 2ετI), (13)

where ∇xL̂(xk,θ?) = N
n

[
1 + ζτ

∆u (log θ?(J(xk))− log θ?((J(xk)− 1) ∨ 1))
]
∇xŨ(xk),

the bias term Υ(xk,θk,θ?) = ∇xL̃(xk,θk) − ∇xL̂(xk,θ?), and ∇xL̃(xk,θk) =
N
n

[
1 + ζτ

∆u

(
log θk(J̃(xk))− log θk((J̃(xk)− 1) ∨ 1)

)]
∇xŨ(xk). The order of the bias is fig-

ured out in Lemma C1 in the supplementary material based on the results of Theorem 1.

Next, we show how the empirical mean 1
k

∑k
i=1 f(xi) deviates from the posterior mean∫

X f(x)$Ψθ?
(x)dx. Note that this is a direct application of Theorem 2 of Chen et al. [2015]

by treating∇xL̂(x,θ?) as the stochastic gradient of a target distribution and Υ(x,θ,θ?) as the bias
of the stochastic gradient. Moreover, considering that $Ψ̃θ?

(x) ∝ π(x)

θζ?(J(x))
→ $Ψθ?

as m → ∞
based on Lemma B4 in the supplementary material, we have the following

5

Lemma 2 (Convergence of the Averaging Estimators). Suppose Assumptions 1-6 (in the supplemen-
tary material) hold. For any bounded function f , we have∣∣∣∣∣E

[∑k
i=1 f(xi)

k

]
−
∫
χ

f(x)$Ψ̃θ?
(dx)

∣∣∣∣∣ = O

 1

kε
+
√
ε+

√∑k
i=1 ωk

k
+

1√
m

+ sup
i≥k0

√
δn(θi)

 ,

where $Ψ̃θ?
(x) = 1

Zθ?

π(x)

θζ?(J(x))
and Zθ? =

∑m
i=1

∫
Xi
π(x)dx

θ?(i)ζ
.

Finally, we consider the problem of estimating the quantity
∫
X f(x)π(x)dx. Recall that π(x)

is the target distribution that we would like to make inference for. To estimate this quantity, we

naturally consider the weighted averaging estimator
∑k
i=1 θ

ζ
i (J̃(xi))f(xi)∑k

i=1 θ
ζ
i (J̃(xi))

by treating θζ(J̃(xi)) as the

dynamic importance weight of the sample xi for i = 1, 2, . . . , k. The convergence of this estimator
is established in Theorem 2, which can be proved by repeated applying Theorem 1 and Lemma 2
with the details given in the supplementary material.

Theorem 2 (Convergence of the Weighted Averaging Estimators). Suppose Assumptions 1-6 hold.
For any bounded function f , we have∣∣∣∣∣E
[∑k

i=1 θ
ζ
i (J̃(xi))f(xi)∑k

i=1 θ
ζ
i (J̃(xi))

]
−
∫
χ

f(x)π(dx)

∣∣∣∣∣ = O

 1

kε
+
√
ε+

√∑k
i=1 ωk

k
+

1√
m

+ sup
i≥k0

√
δn(θi)

 .

The bias of the weighted averaging estimator decreases if one applies a larger batch size, a finer
sample space partition, a smaller learning rate ε, and smaller step sizes {ωk}k≥0. Admittedly, the
order of this bias is slightly larger than O

(
1
kε + ε

)
achieved by the standard SGLD. We note that

this is necessary as simulating from the flattened distribution $Ψθ?
often leads to a much faster

convergence, see e.g. the green curve v.s. the purple curve in Fig.1(c).

4 Numerical studies

4.1 Simulations of multi-modal distributions

A Gaussian mixture distribution The first numerical study is to test the performance of CSGLD
on a Gaussian mixture distribution π(x) = 0.4N(−6, 1) + 0.6N(4, 1). In each experiment, the
algorithm was run for 107 iterations. We fix the temperature τ = 1 and the learning rate ε = 0.1. The
step size for stochastic approximation follows ωk = 1

k0.6+100 . The sample space is partitioned into
50 subregions with ∆u = 1. The stochastic gradients are simulated by injecting additional random
noises following N(0, 0.01) to the exact gradients. For comparison, SGLD is chosen as the baseline
algorithm and implemented with the same setup as CSGLD. We repeat the experiments 10 times and
report the average and the associated standard deviation.

We first assume that θ? is known and plot the energy functions for both π(x) and $Ψθ?
with different

values of ζ. Fig.1(a) shows that the original energy function has a rather large energy barrier which
strongly affects the communication between two modes of the distribution. In contrast, CSGLD
samples from a modified energy function, which yields a flattened landscape and reduced energy
barriers. For example, with ζ = 0.75, the energy barrier for this example is greatly reduced from
12 to as small as 2. Consequently, the local trap problem can be greatly alleviated. Regarding the
bizarre peaks around x = 4, we leave the study in the supplementary material.

Fig. 1(b) summarizes the estimates of θ? with ζ = 0.75, which matches the ground truth value of θ?
very well. Notably, we see that θ?(i) decays exponentially fast as the partition index i increases, which
indicates the exponentially decreasing probability of visiting high energy regions and a severe local
trap problem. CSGLD tackles this issue by adaptively updating the transition kernel or, equivalently,
the invariant distribution such that the sampler moves like a “random walk” in the space of energy. In
particular, setting ζ = 1 leads to a flat histogram of energy (for the samples produced by CSGLD).

To explore the performance of CSGLD in quantity estimation with the weighed averaging estima-
tor, we compare CSGLD (ζ = 0.75) with SGLD and KSGLD in estimating the posterior mean∫
X xπ(x)dx, where KSGLD was implemented by assuming θ? is known and sampling from $Ψθ?

6

Large barrierSmall barrier

0

5

10

15

20

25

−13 −6 4 11
Sample space

E
ne

rg
y

Original energy

Modified energy (ζ=0.5)

Modified energy (ζ=0.75)

Modified energy (ζ=1)

(a) Original v.s. trial energies

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●
●

●
●

● ●
●

● ●

Higher energy

0.0

0.2

0.4

5 10
Partition index

F
re

qu
en

cy

●●

●●

●●

●●

●●

θ*

θ

CSGLD (ζ=0.5)

CSGLD (ζ=0.75)

CSGLD (ζ=1)

(b) θ’s estimates and histograms

0

2

4

4e5 2e6 1e7
Iterations

E
st

im
at

io
n

er
ro

r

SGLD

CSGLD

KSGLD

(c) Estimation errors

Figure 1: Comparison between SGLD and CSGLD: Fig.1(b) presents only the first 12 partitions for
an illustrative purpose; KSGLD in Fig.1(c) is implemented by assuming θ? is known.

directly. Each algorithm was run for 10 times, and we recorded the mean absolute estimation error
along with iterations. As shown in Fig.1(c), the estimation error of SGLD decays quite slow and rarely
converges due to the high energy barrier. On the contrary, KSGLD converges much faster, which
shows the advantage of sampling from a flattened distribution $Ψθ?

. Admittedly, θ? is unknown in
practice. CSGLD instead adaptively updates its invariant distribution while optimizing the parameter
θ until an optimization-sampling equilibrium is reached. In the early period of the run, CSGLD
converges slightly slower than KSGLD, but soon it becomes as efficient as KSGLD.

Finally, we compare the sample path and learning rate for CSGLD and SGLD. As shown in Fig.2(a),
SGLD tends to be trapped in a deep local optimum for an exponentially long time. CSGLD, in
contrast, possesses a self-adjusting mechanism for escaping from local traps. In the early period of a
run, CSGLD might suffer from a similar local-trap problem as SGLD (see Fig.2(b)). In this case, the
components of θ corresponding to the current subregion will increase very fast, eventually rendering
a smaller or even negative stochastic gradient multiplier which bounces the sampler back to high
energy regions. To illustrate the process, we plot a bouncy zone and an absorbing zone in Fig.2(c).
The bouncy zone enables the sampler to “jump” over large energy barriers to explore other modes.
As the run continues, θk converges to θ?. Fig.2(d) shows that larger bouncy “jumps” (in red lines)
can potentially be induced in the bouncy zone, which occurs in both local and global optima. Due to
the self-adjusting mechanism, CSGLD has the local trap problem much alleviated.

●●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

● ●

●

●
●●

● ●

●
●

●

●
●

●

●

●●

●● ●●

●

●

●●
●●

●

● ●

●

●

●
●
●●

●
●

●

●●●●●

●

●

●

●●●● ●

●●●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●●●●

●

●

●

●
●

●●●● ●
●

●
●●

●

●●●

●

●● ●●
●

●●●●

●

●

●

●

●
● ●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●
●

● ●

●
●●●

●
●
●

●
●●

●

●

●

●

●
●●
●●●

●

●

●●
●●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●
●

●●
●

●●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●●●

●

●

●
●●

●

●
●

●

●

●
● ●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●● ●●

●

● ●● ●
●

●

●

●
●

●●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●● ●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●● ●● ●

●

●

●

●

●

● ●
●

●
●

●
● ●●

●

●

●

●

●

●

●● ●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

● ●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●● ●

●●
●

●●
●●

●

●

●
●

●

●

●●

●

●
● ●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

●●●●●
●

●

●●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●
● ●

●

●

●●
●

●
●●

●

●
●

●

●

●

●●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

● ●●●
●

●●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●●●

●
●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●●● ●●
●

●
●●

●

●
●●

●

●
●

●● ●
●

●

●

●

●

●
● ●●

●

● ●
●

●

●

●

●

●●

●
●

●●●●
●

●

●

●

●

● ●●

●

●

●

●
●●

●

●
●

●

●●

●

●
●

●

●

●
●●

●●
●

●

●●●

●

●

●

●

●

●●

●
●

●

●
●

●
●●

●

●●
● ●

●
● ●●

●
●●●

●

●

●
●

●

●

●●

●

●●

●●

●

●

●
●

●
●

●●

●

●●
●

●

●●●

●

●

●

●
●

●

●

●

●● ●

●

●

● ●● ●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●● ●
●●●

●
●

●

●
●

●
●●

●●●●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●●

●●

●

●
●

●

●
●

●

● ●

●

●

●●●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

Energy barrier > 10

(a) SGLD paths

Absorbing zone

Bouncy zone

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

(b) CSGLD paths (early)

Absorbing zone

Bouncy zone

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●
●

●

(c) CSGLD paths (mid)

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

(d) CSGLD paths (late)

Figure 2: Sample trajectories of SGLD and CSGLD: plots (a) and (c) are implemented by 100,000
iterations with a thinning factor 100 and ζ = 0.75, while plot (b) utilizes a thinning factor 10.

A synthetic multi-modal distribution We next simulate from a distribution π(x) ∝ e−U(x),
where U(x) =

∑2
i=1

x(i)2−10 cos(1.2πx(i))
3 and x = (x(1), x(2)). We compare CSGLD with SGLD,

replica exchange SGLD (reSGLD) [Deng et al., 2020a], and SGLD with cyclic learning rates
(cycSGLD) [Zhang et al., 2020] and detail the setups in the supplementary material. Fig.3(a) shows
that the distribution contains nine important modes, where the center mode has the largest probability
mass and the four modes on the corners have the smallest mass. We see in Fig.3(b) that SGLD
spends too much time in local regions and only identifies three modes. cycSGLD has a better ability
to explore the distribution by leveraging large learning rates cyclically. However, as illustrated
in Fig.3(c), such a mechanism is still not efficient enough to resolve the local trap issue for this
problem. reSGLD proposes to include a high-temperature process to encourage exploration and
allows interactions between the two processes via appropriate swaps. We observe in Fig.3(d) that
reSGLD obtains both the exploration and exploitation abilities and yields a much better result.

7

However, the noisy energy estimator may hinder the swapping efficiency and it becomes difficult to
estimate a few modes on the corners. As to our algorithm, CSGLD first simulates the importance
samples and recovers the original distribution according to the importance weights. We notice that the
samples from CSGLD can traverse freely in the parameter space and eventually achieve a remarkable
performance, as shown in Fig.3(e).

(a) Ground truth (b) SGLD (c) cycSGLD (d) reSGLD (e) CSGLD

Figure 3: Simulations of a multi-modal distribution. A resampling scheme is used for CSGLD.

4.2 UCI data

We tested the performance of CSGLD on the UCI regression datasets. For each dataset, we normalized
all features and randomly selected 10% of the observations for testing. Following [Hernandez-Lobato
and Adams, 2015], we modeled the data using a Multi-Layer Perception (MLP) with a single hidden
layer of 50 hidden units. We set the mini-batch size n = 50 and trained the model for 5,000
epochs. The learning rate was set to 5e-6 and the default L2-regularization coefficient is 1e-4. For
all the datasets, we used the stochastic energy N

n Ũ(x) to evaluate the partition index. We set the
energy bandwidth ∆u = 100. We fine-tuned the temperature τ and the hyperparameter ζ. For a
fair comparison, each algorithm was run 10 times with fixed seeds for each dataset. In each run,
the performance of the algorithm was evaluated by averaging over 50 models, where the averaging
estimator was used for SGD and SGLD and the weighted averaging estimator was used for CSGLD.
As shown in Table 1, SGLD outperforms the stochastic gradient descent (SGD) algorithm for most
datasets due to the advantage of a sampling algorithm in obtaining more informative modes. Since all
these datasets are small, there is only very limited potential for improvement. Nevertheless, CSGLD
still consistently outperforms all the baselines including SGD and SGLD.

The contour strategy proposed in the paper can be naturally extended to SGHMC [Chen et al.,
2014, Ma et al., 2015] without affecting the theoretical results. In what follows, we adopted a
numerical method proposed by Saatci and Wilson [2017] to avoid extra hyperparameter tuning.
We set the momentum term to 0.9 and simply inherited all the other parameter settings used in
the above experiments. In such a case, we compare the contour SGHMC (CSGHMC) with the
baselines, including M-SGD (Momentum SGD) and SGHMC. The comparison indicates that some
improvements can be achieved by including the momentum.

Table 1: Algorithm evaluation using average root-mean-square error and its standard deviation.

Dataset Energy Concrete Yacht Wine
Hyperparameters (τ/ζ) 1/1 5/1 1/2.5 5/10

SGD 1.13±0.07 4.60±0.14 0.81±0.08 0.65±0.01
SGLD 1.08±0.07 4.12±0.10 0.72±0.07 0.63±0.01

CSGLD 1.02±0.06 3.98±0.11 0.69±0.06 0.62±0.01
M-SGD 0.95±0.07 4.32±0.27 0.73±0.08 0.71±0.02
SGHMC 0.77±0.06 4.25±0.19 0.66±0.07 0.67±0.02

CSGHMC 0.76±0.06 4.15±0.20 0.72±0.09 0.65±0.01

4.3 Computer vision data

This section compares only CSGHMC with M-SGD and SGHMC due to the popularity of momentum
in accelerating computation for computer vision datasets. We keep partitioning the sample space
according to the stochastic energy N

n Ũ(x), where a mini-batch data of size n is randomly chosen
from the full dataset of size N at each iteration. Notably, such a strategy significantly accelerates
the computation of CSGHMC. As a result, CSGHMC has almost the same computational cost as
SGHMC and SGD. To reduce the bias associated with the stochastic energy, we choose a large batch

8

size n = 1, 000. For more discussions on the hyperparameter settings, we refer readers to section D
in the supplementary material.

CIFAR10 is a standard computer vision dataset with 10 classes and 60,000 images, for which 50,000
images were used for training and the rest for testing. We modeled the data using a Resnet of 20
layers (Resnet20) [He et al., 2016]. In particular, for CSGHMC, we considered a partition of the
energy space in 200 subregions, where the energy bandwidth was set to ∆u = 1000. We trained the
model for a total of 1000 epochs and evaluated the model every ten epochs based on two criteria,
namely, best point estimate (BPE) and Bayesian model average (BMA). We repeated each experiment
10 times and reported in Table 2 the average prediction accuracy and the corresponding standard
deviation.

In the first set of experiments, all the algorithms utilized a fixed learning rate ε = 2e− 7 and a fixed
temperature τ = 0.01 under the Bayesian setting.SGHMC performs quite similarly to M-SGD, both
obtaining around 90% accuracy in BPE and 92% in BMA. Notably, in this case, simulated annealing
is not applied to any of the algorithms and achieving the state-of-the-art is quite difficult. However,
BMA still consistently outperforms BPE, implying the great potential of advanced MCMC techniques
in deep learning. Instead of simulating from π(x) directly, CSGHMC adaptively simulates from a
flattened distribution $θ? and adjusts the sampling bias by dynamic importance weights. As a result,
the weighted averaging estimators obtain an improvement by as large as 0.8% on BMA. In addition,
the flattened distribution facilitates optimization and the increase in BPE is quite significant.

In the second set of experiments, we employed a decaying schedule on both learning rates and
temperatures (if applicable) to obtain simulated annealing effects. For the learning rate, we fix it at 2×
10−6 in the first 400 epochs and then decayed it by a factor of 1.01 at each epoch. For the temperature,
we consistently decayed it by a factor of 1.01 at each epoch. We call the resulting algorithms by
saM-SGD, saSGHMC, and saCSGHMC, respectively. Table 2 shows that the performances of all
algorithms are increased quite significantly, where the fine-tuned baselines already obtained the
state-of-the-art results. Nevertheless, saCSGHMC further improves BPE by 0.25% and slightly
improve the highly optimized BMA by nearly 0.1%.

CIFAR100 dataset has 100 classes, each of which contains 500 training images and 100 testing
images. We follow a similar setup as CIFAR10, except that ∆u is set to 5000. For M-SGD, BMA
can be better than BPE by as large as 5.6%. CSGHMC has led to an improvement of 3.5% on BPE
and 2% on BMA, which further demonstrates the superiority of advanced MCMC techniques. Table
2 also shows that with the help of both simulated annealing and importance sampling, saCSGHMC
can outperform the highly optimized baselines by almost 1% accuracy on BPE and 0.7% on BMA.
The significant improvements show the advantage of the proposed method in training DNNs.

Table 2: Experiments on CIFAR10 & 100 using Resnet20, where BPE and BMA are short for best
point estimate and Bayesian model average, respectively.

Algorithms CIFAR10 CIFAR100
BPE BMA BPE BMA

M-SGD 90.02±0.06 92.03±0.08 61.41±0.15 67.04±0.12
SGHMC 90.01±0.07 91.98±0.05 61.46±0.14 66.43±0.11

CSGHMC 90.87±0.04 92.85±0.05 63.97±0.21 68.94±0.23
saM-SGD 93.83±0.07 94.25±0.04 69.18±0.13 71.83±0.12
saSGHMC 93.80±0.06 94.24±0.06 69.24±0.11 71.98±0.10

saCSGHMC 94.06±0.07 94.33±0.07 70.18±0.15 72.67±0.15

5 Conclusion

We have proposed CSGLD as a general scalable Monte Carlo algorithm for both simulation and
optimization tasks. CSGLD automatically adjusts the invariant distribution during simulations to
facilitate escaping from local traps and traversing over the entire energy landscape. The sampling bias
introduced thereby is accounted for by dynamic importance weights. We proved a stability condition
for the mean-field system induced by CSGLD together with the convergence of its self-adapting
parameter θ to a unique fixed point θ?. We established the convergence of a weighted averaging
estimator for CSGLD. The bias of the estimator decreases as we employ a finer partition, a larger
mini-batch size, and smaller learning rates and step sizes. We tested CSGLD and its variants on a few
examples, which show their great potential in deep learning and big data computing.

9

Broader Impact

Our algorithm ensures AI safety by providing more robust predictions and helps build a safer
environment. It is an extension of the flat histogram algorithms from the Metropolis kernel to the
Langevin kernel and paves the way for future research in various dynamic importance samplers
and adaptive biasing force (ABF) techniques for big data problems. The Bayesian community and
the researchers in the area of Monte Carlo methods will enjoy the benefit of our work. To our best
knowledge, the negative society consequences are not clear and no one will be put at disadvantage.

Acknowledgment

Liang’s research was supported in part by the grants DMS-2015498, R01-GM117597 and R01-
GM126089. Lin acknowledges the support from NSF (DMS-1555072, DMS-1736364), BNL
Subcontract 382247, W911NF-15-1-0562, and DE-SC0021142.

References
Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian Posterior Sampling via Stochastic

Gradient Fisher Scoring. In Proc. of the International Conference on Machine Learning (ICML),
2012.

Christophe Andrieu and Éric Moulines. On the Ergodicity Properties of Some Adaptive MCMC
Algorithms. Annals of Applied Probability, 16:1462–1505, 2006.

Christophe Andrieu, Éric Moulines, and Pierre Priouret. Stability of Stochastic Approximation under
Verifiable Conditions. SIAM J. Control Optim., 44(1):283–312, 2005.

Albert Benveniste, Michael Métivier, and Pierre Priouret. Adaptive Algorithms and Stochastic
Approximations. Berlin: Springer, 1990.

Bernd A. Berg and T. Neuhaus. Multicanonical Algorithms for First Order Phase Transitions. Physics
Letters B, 267(2):249–253, 1991.

Changyou Chen, Nan Ding, and Lawrence Carin. On the Convergence of Stochastic Gradient MCMC
Algorithms with High-order Integrators. In Advances in Neural Information Processing Systems
(NeurIPS), pages 2278–2286, 2015.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte Carlo. In
Proc. of the International Conference on Machine Learning (ICML), 2014.

Umut Şimşekli, Roland Badeau, A. Taylan Cemgil, and Gaë Richard. Stochastic Quasi-Newton
Langevin Monte Carlo. In Proc. of the International Conference on Machine Learning (ICML),
pages 642–651, 2016.

Wei Deng, Qi Feng, Liyao Gao, Faming Liang, and Guang Lin. Non-Convex Learning via Replica
Exchange Stochastic Gradient MCMC. In Proc. of the International Conference on Machine
Learning (ICML), 2020a.

Wei Deng, Qi Feng, Georgios Karagiannis, Guang Lin, and Faming Liang. Accelerating Convergence
of Replica Exchange Stochastic Gradient MCMC via Variance Reduction. arXiv:2010.01084,
2020b.

Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D. Skeel, and Hartmut Neven.
Bayesian Sampling using Stochastic Gradient Thermostats. In Advances in Neural Information
Processing Systems (NeurIPS), pages 3203–3211, 2014.

G. Fort, E. Moulines, and P. Priouret. Convergence of Adaptive and Interacting Markov Chain Monte
Carlo Algorithms. Annals of Statistics, 39:3262–3289, 2011.

G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, and G. Stoltz. Convergence of the Wang-Landau Algorithm.
Math. Comput., 84(295):2297–2327, 2015.

10

Charles J. Geyer. Markov Chain Monte Carlo Maximum Likelihood. Computing Science and
Statistics: Proceedings of the 23rd Symposium on the Interfac, pages 156–163, 1991.

W.K. Hastings. Monte Carlo Sampling Methods using Markov Chain and Their Applications.
Biometrika, 57:97–109, 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Jose Miguel Hernandez-Lobato and Ryan Adams. Probabilistic Backpropagation for Scalable
Learning of Bayesian Neural Networks. In Proc. of the International Conference on Machine
Learning (ICML), volume 37, pages 1861–1869, 2015.

Scott Kirkpatrick, D. Gelatt Jr, and Mario P. Vecchi. Optimization by Simulated Annealing. Science,
220(4598):671–680, 1983.

T. Lelièvre, M. Rousset, and G. Stoltz. Long-time Convergence of an Adaptive Biasing Force Method.
Nonlinearity, 21:1155–1181, 2008.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned Stochastic
Gradient Langevin Dynamics for Deep Neural Networks. In Proc. of the National Conference on
Artificial Intelligence (AAAI), pages 1788–1794, 2016.

Xuechen Li, Denny Wu, Lester Mackey, and Murat A. Erdogdu. Stochastic Runge-Kutta Accelerates
Langevin Monte Carlo and Beyond. In Advances in Neural Information Processing Systems
(NeurIPS), pages 7746–7758, 2019.

Faming Liang. A Generalized Wang–Landau Algorithm for Monte Carlo Computation. Journal of
the American Statistical Association, 100(472):1311–1327, 2005.

Faming Liang. On the Use of Stochastic Approximation Monte Carlo for Monte Carlo Integration.
Statistics and Probability Letters, 79:581–587, 2009.

Faming Liang. Trajectory Averaging for Stochastic Approximation MCMC Algorithms. The Annals
of Statistics, 38:2823–2856, 2010.

Faming Liang, Chuanhai Liu, and Raymond J. Carroll. Stochastic Approximation in Monte Carlo
Computation. Journal of the American Statistical Association, 102:305–320, 2007.

Yi-An Ma, Tianqi Chen, and Emily B. Fox. A Complete Recipe for Stochastic Gradient MCMC. In
Advances in Neural Information Processing Systems (NeurIPS), 2015.

Oren Mangoubi and Nisheeth K. Vishnoi. Convex Optimization with Unbounded Nonconvex Oracles
using Simulated Annealing. In Proc. of Conference on Learning Theory (COLT), 2018.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of State
Calculations by Fast Computing Machines. Journal of Chemical Physics, 21:1087–1091, 1953.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NeurIPS Autodiff Workshop, 2017.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex Learning via Stochastic
Gradient Langevin Dynamics: a Nonasymptotic Analysis. In Proc. of Conference on Learning
Theory (COLT), June 2017.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. Annals of Mathematical
Statistics, 22:400–407, 1951.

Gerneth O. Roberts and Jeff S. Rosenthal. Coupling and Ergodicity of Adaptive Markov Chain Monte
Carlo Algorithms. Journal of Applied Probability, 44:458–475, 2007.

Yunus Saatci and Andrew G Wilson. Bayesian GAN. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3622–3631, 2017.

11

Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo Simulation of Spin-Glasses. Phys.
Rev. Lett., 57:2607–2609, 1986.

Yee Whye Teh, Alexandre Thiéry, and Sebastian Vollmer. Consistency and Fluctuations for Stochastic
Gradient Langevin Dynamics. Journal of Machine Learning Research, 17:1–33, 2016.

Sebastian J. Vollmer, Konstantinos C. Zygalakis, and Yee Whye Teh. Exploration of the (Non-)
Asymptotic Bias and Variance of Stochastic Gradient Langevin Dynamics. Journal of Machine
Learning Research, 17(159):1–48, 2016.

Fugao Wang and D. P. Landau. Efficient, Multiple-range Random Walk Algorithm to Calculate the
Density of States. Physical Review Letters, 86(10):2050–2053, 2001.

Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
Proc. of the International Conference on Machine Learning (ICML), pages 681–688, 2011.

Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global Convergence of Langevin Dynamics
Based Algorithms for Nonconvex Optimization. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Mao Ye, Tongzheng Ren, and Qiang Liu. Stein Self-Repulsive Dynamics: Benefits From Past
Samples. arXiv:2002.09070v1, 2020.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical
Stochastic Gradient MCMC for Bayesian Deep Learning. In Proc. of the International Conference
on Learning Representation (ICLR), 2020.

Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic Gradient
Langevin Dynamics. In Proc. of Conference on Learning Theory (COLT), pages 1980–2022, 2017.

12

	Introduction
	Contour stochastic gradient Langevin dynamics
	A naïve contour SGLD
	How to resolve the vanishing gradient
	Estimation via stochastic approximation
	Related work

	Theoretical study of the CSGLD algorithm
	Convergence analysis
	Ergodicity and dynamic importance sampler

	Numerical studies
	Simulations of multi-modal distributions
	UCI data
	Computer vision data

	Conclusion

