
Appendix
This supplementary material is organized as follows: In Section A, we discuss additional priors that
were not presented in the main paper, but which are in principle compatible with our framework, and
we provide more details about potential games. In Section B, we provide implementation details that
are useful to reproduce the results of our paper (note that the code is also provided). In Section C,
we present additional quantitative results and additional results regarding inference speed of our
models that were not included in the main paper for space limitation reasons. Finally, in Section D,
we present additional qualitative results (which require zooming on a computer screen).

A Discussion on Models and Priors
A.1 Additional Priors
Our framework makes it possible to handle models of the form:

hj(Z) = hθ(Pjxj , zj) + λ

r∑
k=1

φk(Lk,j(Z)), (10)

where φk is a simple convex function that admits a proximal operator in closed form, and Lk,j is a
linear operator. In the main paper, several regularization functions have been considered, including
the total variation, variance reduction, or non-local group regularization penalties. Here, we would
like to mention a few additional ones, which are in principle compatible with our framework, but
which we did not investigate experimentally. In particular, two of them may be of particular interest,
and may be the topic of future work:
• the regularization λ‖H>zj‖1, where H is a matrix, may correspond to several settings. The matrix
H may be for instance a wavelet basis, or may by learned, corresponding then to the penalty
used in the analysis dictionary learning model from the paper “The cosparse analysis model and
algorithms” of Nam et al., 2013.

• the regularization λφ(H>zj) where φ is a smooth function is closely related to the model intro-
duced in [27], and to the Field of experts model of Roth and Black from the 2005 paper “Fields of
Experts: A Framework for Learning Image Priors”, even though the functions used in these other
works are not convex.

A.2 Potential Games
A potential game is a non-cooperative convex game whose Nash equilibria correspond to the solutions
of a convex optimization problem. We will now consider problems of the form (10), and show that
all penalties that admit some symmetry are in fact potential games. Assuming the functions φk to be
smooth for simplicity, optimality conditions for the convex problems (10) are, for all j = 1, . . . ,m:

∇zj
hθ(Pjxj , zj) + λ

r∑
k=1

∇zj
φ̃k,j(Z) = 0, with φ̃k,j(Z) = φk(Lk,j(Z)). (11)

Let us now assume the following symmetry condition such that if problem l involves a variable zj
through a function φ̃k,l(Z), then problem j also involves the same term. Based on this assumption,
we may define the potential function

V (Z) :=

m∑
j=1

(
hθ(Pjxj , zj) +

λ

2

r∑
k=1

φ̃k,j(Z)

)
.

The partial derivative of this potential function with respect to zj is then

∇zjhθ(Pjxj , zj) +
λ

2

m∑
l=1

r∑
k=1

∇zj φ̃k,l(Z) = ∇zjhθ(Pjxj , zj) +
λ

2

m∑
l=1

∑
k∈Nj,l

∇zj φ̃k,l(Z),

where Nj,l is the set of functions φ̃k,l involving variable zj . The previous gradient can then be
simplified into

∇zj
hθ(Pjxj , zj) +

λ

2

r∑
j=1

∇zj
φ̃k,l(Z) +

λ

2

∑
l 6=j

∑
k∈Nj,l

∇zj
φ̃k,l(Z).
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Since the symmetry condition can be expressed as
∑r
j=1 φ̃k,l(Z) =

∑
l 6=j
∑
k∈Nj,l

φ̃k,l(Z), the
condition ∇V (Z) = 0 is then equivalent to (11). Note that we have assumed the functions φk to be
smooth for simplicity, but a similar reasoning can be conducted for non-smooth functions, by using
the concept of subgradients.

Examples of potential games.
• the `1-norm: with r = 1 and φ̃1,j = ‖zj‖1, since problem j does not involve any variable zl for
l 6= j;

• Symmetric TV / Laplacian: problem j may involve a variable zl through a term aj,l‖zj − zl‖1.
Then, problem l involves the same term al,j‖zj − zl‖1 under the condition aj,l = al,j .
• Symmetric non local group with r = p and φ̃k,j = λk‖[

√
aj,1z1(k), . . . ,

√
aj,mzm(k)]>‖2. Under

the condition of symmetric weights aj,l = al,j , we obtain again a potential game.
Potential games are appealing as they provide guarantees about the existence of Nash equilibria
without requiring optimizing over a compact set. Yet, we have found that allowing non-symmetric
weights often performs better. This is illustrated in Table A1 for a simple denoising experiment.

Table A1: Symmetric vs assymmetric grayscale denoising on BSD68, training on BSD400 for all methods.
Performance is measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

TV symmetric 72 36.08 30.21 27.58 24.74
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32
Laplacian symmetric 72 34.88 28.14 25.90 23.45
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77
Non-local group - symmetric 68k 37.94 31.67 29.17 26.16
Non-local group - assymetric 68k 37.95 31.69 29.20 26.19

B Implementation Details and Reproducibility
B.1 Training Details
For the training of patch-based models for denoising, we randomly extract patches of size 56× 56
whose size equals the window size used for computing non-local self-similarities; whereas we train
pixel level models on the full size images. For fMRI experiments we also trained the models on the
full sized images. We apply a mild data augmentation (random rotation by 90◦ and horizontal flips).
We optimize the parameters of our models using ADAM [24].
The learning rate is set to 6× 10−4 at initialization and is sequentially lowered during training by
a factor of 0.35 every 80 training steps, in the same way for all experiments. Similar to [52], we
normalize the initial dictionary D0 by its largest singular value as explained in the main paper in
Section 3.4. We initialize the dictionary C,D and W with the same dictionary obtained with an
unsupervised dictionary learning algorithm (using SPAMS library).
We have implemented the backtracking strategy described in Section 3.4 of the main paper for all our
algorithms, which automatically decreases the learning rate by a factor 0.8 when the loss function
increases too much on the training set, and restore a previous snapshot of the model. Divergence
is monitored by computing the loss on the training set every 10 epochs. Training the non-local
models for denoising are the longer models to train and takes about 2 days on a Titan RTX GPU. We
summarize the chosen hyperparameters for the experiments in Table A2.

C Additional Quantitative Results
C.1 Inference speed
In Table A3 we provide a comparison of our TV models in terms of speed with BM3D for grayscale
denoising on the BSD68 dataset. For fair comparison, we reported computation time both on gpu and
cpu.

C.2 Image denoising
We provide additional results for grayscale denoising with different variations of the prior introduced
in the main paper, as well as combination of different priors. We reported performances for gray
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Table A2: Hyper-parameters chosen for every task.

Experiment Gray denoising (patch) Gray denoising (pixel) fMRI

Patch size 9 - 9
Dictionary size 256 - 256
Nr epochs 300 300 150
Batch size 32 32 1
K iterations 24 24 24
Middle averaging 3 3 -
Correlation update
frequency f 1/6 1/12 -

Table A3: Inference speed for image denoising.

Params Psnr Speed

BM3D [11] - 25.62 7.28s (cpu)
TV assymetric 240 24.93 0.014s (gpu) / 0.18s (cpu)
TV assymetric (extra) 480 25.32 0.021s (gpu) / 0.28s (cpu)

denoising in Table A4 for the pixel based models, and in Table A5 for the patch based models. In
Table A4 untied κ denotes when we used a different set of learned parameters κ at each stage of the
refinement step of the similarity matrix for the non-local models.

Table A4: Pixel level grayscale denoising on BSD68, training on BSD400 for all models. Performance is
measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

BM3D [11] - 37.57 31.07 28.57 25.62
Tiny CNN 326 35.17 29.42 26.90 24.06
Tiny CNN 1200 36.47 30.36 27.70 24.60

TV symmetric 288 36.08 30.21 27.58 24.74
TV symmetric - extra-grad 144 37.02 30.33 27.82 24.81
TV assymetric- 240 36.83 30.49 27.99 24.93
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32

Laplacian symmetric 288 34.88 28.14 25.90 23.45
Laplacian symmetric - extra-grad 144 33.87 28.14 25.91 23.45
Laplacian assymetric 240 35.20 28.48 26.17 23.78
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77

Non-local TV assymmetric 154 37.25 30.86 28.28 25.42
Non-local TV assymmetric (untied κ) 235 37.12 31.01 28.37 25.24
Non-local TV assymmetric - extra-grad 226 37.83 30.98 28.34 25.31
Non-local TV assymmetric - extra-grad (untied κ) 307 37.53 31.03 28.50 25.26

Non-local Laplacian assymmetric 154 37.31 30.75 28.33 25.15
Non-local Laplacian assymmetric (untied κ) 235 37.53 31.01 28.37 25.47
Non-local Laplacian assymmetric - extra-grad 226 37.51 30.99 28.34 25.13
Non-local Laplacian assymmetric - extra-grad (untied κ) 307 37.54 31.00 28.47 25.46

Bilateral 74 36.76 29.89 27.16 23.97
Bilateral TV 74 36.60 29.82 27.23 24.00
Bilateral - extra-grad 146 36.75 29.89 27.20 23.72
Bilateral TV - extra-grad 146 36.94 30.46 27.78 24.52

D Additional Qualitative Results
Finaly, we show qualitative results for grayscale denoising in Figures A3, A4.
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Table A5: Patch level grayscale denoising on BSD68, training on BSD400 for all methods. Performance is
measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

BM3D [11] - 37.57 31.07 28.57 25.62
LSCC [34] - 37.70 31.28 28.71 25.72
CSCnet [52] 62k 37.69 31.40 28.93 26.04
FFDNet [64] 486k N/A 31.63 29.19 26.29
DnCNN [63] 556k 37.68 31.73 29.22 26.23
NLRN [29] 330k 37.92 31.88 29.41 26.47
GroupSC [26] 68k 37.95 31.71 29.20 26.17

Sparse Coding + Barzilai-Borwein 68k 37.85 31.46 28.91 25.84
Sparse Coding + Variance 68k 37.83 31.49 29.00 26.08
Sparse Coding + TV 68k 37.84 31.50 29.02 26.10
Sparse Coding + TV + Variance 68k 37.84 31.51 29.03 26.09
Sparse Coding + TV + Variance + Barzilai-Borwein 68k 37.86 31.52 29.04 26.04

Non-local group - symmetric 68k 37.94 31.67 29.17 26.16
Non-local group - assymetric 68k 37.95 31.69 29.20 26.19
Non-local group - assymetric + TV 68k 37.96 31.71 29.22 26.26
Non-local group - assymetric + Variance 68k 37.96 31.70 29.23 26.28
Non-local group - assymetric + Variance + TV 68k 37.95 31.71 29.24 26.30
GroupSC + Variance 68k 37.96 31.75 29.24 26.34

16



ground truth noisy BM3D

TV (ours) NLTV (ours) NL-Lap (ours)

ground truth noisy BM3D

TV NLTV (ours) NL-Lap (ours)

ground truth noisy BM3D

TV (ours) NLTV (ours) NL-Lap (ours)

ground truth noisy BM3D

TV(ours) NLTV (ours) NL-Lap local (ours)

Figure A3: Grayscale denoising for 4 images from the BSD68 dataset. Best seen by zooming on a computer
screen.
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Figure A4: Results of our patch level models for grayscale denoising for 4 images from the BSD68 dataset. Best
seen by zooming on a computer screen.
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