
We sincerely thank the reviewers for their thoughtful and constructive feedback. We address specific questions below.1

[R1] (1) Assumption that workers learn states only when acting. This is the scenario today for health workers2

in Mumbai, India managing tuberculosis (TB) patients (this paper’s direct motivation). A single worker monitors3

adherence and delivers basic care to large cohorts of geographically distributed patients via person-to-person phone4

calls; offline monitoring is unavailable. (2) Determining arms to pull: The Whittle index policy, defined by Whittle5

[35], pulls the k arms with the largest Whittle indices. We will make this explicit. (3) Forward vs. reverse threshold6

policies in simulations: The majority of patients have forward threshold optimality, which we rely on in the simulations.7

We will add details to the appendix. (4) Comparison with Qian et al.: For the optimality guarantees of the Whittle8

index to hold for our algorithm, the process must satisfy the conditions of Thms. 1 and 2. However, the real world data9

has a small fraction of patients who violate the condition of Thm. 2, resulting in the small gap in performance.10

[R2] (1) Extending from 2 to M states: The 2-state model is well-established in literature (Gilbert-Elliot model,11

1960) and is popularly studied (e.g. seminal work of Liu and Zhao [19] that we extend) because of its wide range of12

applications such as, to healthcare, anti-poaching, sensor maintenance, etc. Despite the wide applicability of this model,13

generalizing to an M -state model will make for interesting future work. (2) Future work: We will add avenues of14

future work to the camera-ready version. (3) Link to combinatorial bandits: Since RMABs also admit
(
N
k

)
feasible15

actions per round, this connection seems natural. However, in an RMAB, rewards on each sub-arm are state-dependent.16

This would render existing combinatorial bandit algorithms – which maximize mean reward – sub-optimal in general.17

[R3] (1) Complexity: Our work improves on the computational complexity of Qian et al., which has complexity per18

round of O(Nlog( 1ε )(|S|T )
2+ 1

18 ). Our algorithm has a one-time cost of O(|S|2T ) to precompute the Whittle indices19

for all rounds, then has a per round cost of only O(Nmin{k, log(N)}) to retrieve the top k indices. We will make this20

more explicit. (2) Comparison with Qian et al. Please see R1.(4). (3) Indexability: The guarantee that holds under21

indexability is the asymptotic optimality of the Whittle index policy as proven by Weber and Weiss (1990) [33] referenced22

on lines 39–40 of our paper. We will make this more explicit. (4) Theorem conditions: Thms. 2 and 3 give conditions23

under which the structure required for Thm. 1 is theoretically guaranteed. Following are two examples of processes for24

which conditions of Thm. 2 and Thm. 3 hold respectively (fwd: P a11 = 0.95, P a01 = 0.9, P p11 = 0.9, P p01 = 0.4, β = 0.9;25

rev: P a11 = 0.95, P a01 = 0.4, P p11 = 0.4, P p01 = 0.35, β = 0.9). Since these are sufficient but not necessary conditions,26

nothing can be concluded when neither is satisfied. However, we find from brute force checks that most processes,27

even those that violate condition of Thm.2. are either forward or reverse threshold optimal. (5) Assuming P is known:28

This is realistic in many settings, as P can be estimated from historical data collected either before or in early stages of29

planning. E.g., in the TB domain mentioned in R1.(1), this data is gathered from health workers’ early round robin30

calling of patients. Further, since the offline planning portion of restless bandits is already PSPACE hard in general, it31

is often studied separately from the online version (Liu and Zhao [19]; Meshram et al. [21]). Additionally, since the32

optimal policy cannot be computed in general, regret bounds for general online restless bandit algorithms are typically33

defined with respect to an arbitrary reference policy with full information, rather than with respect to the optimal policy34

(e.g., Jung and Tewari [13]). This provides at least three reasons why developing strong algorithms for the version of35

the problem with known P is of significant interest. (6) Empirical methodology: We have updated our figures with36

confidence bounds (see Fig. 1 below). We have updated Fig. 5(d) of the main text to include 0% threshold optimal37

patients (Fig. 1(c) below); our algorithm shows strong performance. (7) Preprocessing: For the experiments derived38

from real-world data, preprocessing only involved imputing missing action information to align with natural constraint39

structure common in analogous domains (see lines 111–116). Further, sensitivity analysis in Appendix G confirms our40

conclusions for a wide range of imputations. We will clarify this in the final paper. (8) Intervention benefit Please see41

R4.(1). (9) Link to combinatorial bandits Please see R2.(3).42

[R4] (1) Intervention benefit (described in text on Line 259) is calculated as: I.B.(ALG) = R
ALG−RNo intervention

R
Oracle−RNo intervention where43

R is the average reward of the algorithm as defined on Line 70. (2) Error bars Updated Figs. with error bars are below.44
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Figure 1: Error bars show difference in performance between our algorithm and Qian et al. is not statistically significant.


