
Appendix A Appendix

A.1 Detailed description of the SWAT algorithm

The SWAT algorithm is summarized in Algorithm 1. The shaded region represents the sparse
computation step which could be exploited on sparse machine learning accelerators. The SWAT
algorithm consists of three parts: Forward Computation, Backward Computation, and the Parameter
Update.

Algorithm 1 SWAT Algorithm
The data: Training iteration t and Top-K sampling period P . Network with L layers and previous

weight parameters wt. Sparsity distribution algorithm D. Mini-batch of inputs (a0) and
corresponding targets (a∗). Learning rate η. Gradient descent optimization algorithm
Optimizer.

The result: Updated weight parameters wt+1.

Stage 1. Forward Computation
1 for l = 1 to L do
2 if l is a convolutional or fully-connected layer then
3 if t mod P = 0 then
4 Sl ⇐ getLayerSparsity(l,D)
5 twl ⇐ getThreshold(wl,Sl,t)
6 tal ⇐ getThreshold(al−1,Sl,t)
7 end
8 Wt

l ⇐ fTOPK(wt
l , t

w
l)

9 atl ⇐ forward(Wt
l , atl−1)

10 atl−1 ⇐ fTOPK(at
l−1, t

a
l)

11 save for backwardl ⇐Wt
l , al−1

12 else
13 al ⇐ forward(wt

l , al−1)
14 save for backwardl ⇐ wt

l , al−1
15 end
16 end

Stage 2. Backward Computation
17 Compute the gradient of the output layer5aL = ∂loss(aL,a∗)

∂aL
18 for l = L to 1 do
19 Wt

l , al−1 ⇐ save for backwardl

20 if l is a convolutional or fully-connected layer then
21 5al−1

⇐ backward input(5al ,W
t
l)

22 5wl−1
⇐ backward weight(5al , a

t
l−1)

23 else
24 5al−1

⇐ backward input(5al ,W
t
l)

25 5wl−1
⇐ backward weight(5al , a

t
l−1)

26 end
27 end

Stage 3. Parameter Update
28 for l = 1 to L do
29 wt+1

l ⇐ Optimizer(wt
l ,5wl

, η)
30 end

The forward computation (Line 1 to 16) for each layer proceeds as follows: First, we check if the
current layer is a convolutional or fully-connected layer (Line 2). If neither, perform the regular
(non-SWAT) forward pass computation (Line 13) and save dense weights and activations (Line 14).
Otherwise, if the training iteration t is a multiple of the Top-K sampling period P then we obtain

1

the target sparsity Sl of layer l based upon distribution algorithm D (Line 4) where D is one of the
techniques described in Section 3.3.2. Then, we compute threshold tw for weight sparsity (Line 5)
used in the forward pass and threshold ta for use in sparsifying activations prior to saving to memory
for use in the the backward pass (Line 6). Prior to performing the forward computation (Line 9) we
compute the active weights Wt

l by applying the sparsifying function, fTOPK using threshold tw. For
input tensor xi For fine-grained sparsity fTOPK(x,t) maps input elements xi ∈ x to output elements
yi according to:

yi =

{
0, |xi| ≤ t
xi, otherwise

For coarse-grained sparsity (Section 3.3.1), which we apply only to weights, fTOPK(x,t) maps input
elements xi ∈ x to output elements yi where i is an element of channel C according to:

yi =

{
0,

∑
i∈C |xi| ≤ t

xi, otherwise

Next, we perform sparse forward computations, forward, corresponding to Equation 1 in the paper
to generate output activation (Line 9). Next, we apply fine-grained Top-K sparsification to the input
activations (Line 10). Save sparse active weight parameters Wt

l and input activations al−1 for the
backward pass (Line 11).

After the forward pass the loss function is applied and the back propagated error-gradient for the
output layer is computed (Line 17). Then, the backward pass computation (Line 18 to 27) proceeds
as follows: First, we load the saved parameters and input activations of the current layer (Line 19).
Next, we perform the backward pass to generate the input activation gradients and weight gradients
using backward input and backward weight functions, which correspond to Equations 2 and 3
in the paper, respectively. As sparse input activations and parameters are saved in the forward pass
the computation is sparse.

After the backward pass of the current mini-batch, the optimizer uses the computed weight gradients
to update the parameters (Line 28 to 30).

A.2 CIFAR-100

A.2.1 Unstructured SWAT

Table 1 compares SWAT-U, SWAT-ERK and SWAT-M with unstructured sparsity for VGG-16, WRN-
16-8 and DenseNet-121 architecture on CIFAR-100 dataset. The training procedure is the same as
outlined in Section 4.1 in the paper. Hyperparameters are listed in Appendix subsection A.10.

Table 1: Unstructured SWAT on CIFAR-100 dataset.

Network Methods
Training Sparsity Top-1

Weight (%) Activation (%) Accuracy
(%) Accuracy Change

VGG-16
SWAT-U 90.0 90.0 69.8 -2.3

SWAT-ERK 90.0 69.6 71.8 -0.3
SWAT-M 90.0 59.9 72.2 +0.1

WRN-16-8
SWAT-U 90.0 90.0 77.6 -1.7

SWAT-ERK 90.0 77.6 78.5 -0.8
SWAT-M 90.0 73.3 77.9 -1.4

DENSENET-121
SWAT-U 90.0 90.0 77.2 -0.4

SWAT-ERK 90.0 90.0 76.5 -1.1
SWAT-M 90.0 84.2 75.5 -2.1

A.2.2 Structured SWAT

Table 2 compares SWAT-U with unstructured sparsity for ResNet-18 and DenseNet-121 architecture
on CIFAR-100 dataset. The training procedure is the same as outlined in Section 4.1 in the paper.
Hyperparameters are listed in Appendix subsection A.10.

2

Table 2: Structured SWAT on CIFAR-100 dataset.

Network Methods
Training Sparsity Top-1

Weight (%) Activation (%) Channel
Pruned (%)

Accuracy
(%) Accuracy Change

RESNET-18 SWAT-U
50.0 50.0 50.0 76.4 -0.4
60.0 60.0 60.0 76.2 -0.6
70.0 70.0 70.0 75.6 -1.2

DENSENET-121 SWAT-U
50.0 50.0 50.0 78.7 +0.9
60.0 60.0 60.0 78.5 +0.4
70.0 70.0 70.0 78.1 +0.3

A.3 FLOP Calculation

Consider a convolution layer with input tensor X ∈ RN×C×X×Y and weight tensor W ∈
RF×C×R×S to produce output tensor O ∈ RN×F×H×W . Input tensor has N samples; each sample
has C input channels of dimensionX×Y . Weight tensor has F filters and each filters has C channels
of dimension R× S. Output tensor has N output samples and each sample has F output channels of
dimension H ×W .

During the forward pass, input tensor is convolved with weight tensor to produce output tensor. In
contrast, in the backward pass, the error-gradient of output tensor is deconvolved with input and
weight tensor to produce weight gradient and input gradient respectively. The forward pass FLOP
calculation assumes s1 sparsity in weight tensor. The effect of default sparsity in activation for
forward pass computation is ignored since the default activation sparsity is present for both sparse
learning and SWAT algorithms. However, for the backward pass FLOP calculation, since for SWAT
the activation is explicitly sparsified therefore the FLOP calculation for SWAT is done using s1
weight sparsity and s2 activation sparsity whereas for sparse learning algorithms, s1 weight sparsity
and default activation sparsity is assumed. The default activation sparsity generally vary between
30− 50%, for our calculation we assumed default activation sparsity of 50%.

All the sparse learning algorithms and SWAT require some extra FLOP for connectivity update and
regrowth connection such as dropping low magnitude component and thresholding. We omit the
FLOP needed for these operations in our training FLOP calculation. For dynamic sparse learning
algorithms such as SNFS [4], DSR [8] and DST [7], the weight sparsity varies during iterations and
therefore we computed the average weight sparsity for different layers during the entire training and
used it for computing the training FLOP.

A.3.1 Computation in Convolution Layer

Forward Pass
Filter from the weight tensor is convolved with some sub-volume of input tensor of dimension
Xsub ∈ RC×R×S to produce a single value in output tensor. Therefore, the total FLOP for any single
value in output tensor is C ×R× S floating-point multiplication + C ×R× S − 1 floating-point
addition. This is approximately equal to C × R × S floating-point MAC operations. Note, here 1
floating-point MAC operations = 1 floating-point multiplication + 1 floating-point addition. Thus, the
total computation in the forward pass is equal to (C ×R× S)×N × F ×H ×W MAC operations.

Now, lets assume weight tensor is sparse. The overall sparsity in the weight tensor is s1 and the
sparsity per filter in the weight tensor is s1, s2.....,sF , for F filters in the layer. Note, s1 =

∑F
x=1 sx

F .
Theoretically only the non-zero weight will contribute to the FLOP. Therefore, the total FLOP for a
single value in output tensor produce by the filter x is sx × C ×R× S MAC operations. Thus, the
total FLOP contribution for producing an output channel, of dimension H ×W , by the filter x is
sx × (C ×R× S)×H ×W . Therefore, the total FLOP for N input batches and F output channel is
equal to

∑F
x=1(s

x× (C ×R×S)×N ×H ×W) = (
∑F

x=1 s
x)× (C ×R×S)×N ×H ×W =

s1× F × (C ×R× S)×N ×H ×W. Hence, theoretically the FLOP reduction is proportional to
sparsity in weight tensor.

Forward Pass FLOP = s1× F × (C ×R× S)×N ×H ×W. (1)

3

Backward Pass
For the backward pass, we back-propagate the error signal for computing the gradient of parameters.
During the backward pass, each layer calculates 2 quantities: input gradient and weight gradient.

For the input gradient computation, the output gradient is deconvolved with filters to produce the
input gradient. It can be implemented by rotating the filter tensor from W ∈ RF×C×R×S to
W ∈ RC×F×R×S and convolving with output gradient. In this computation, the convolution data is
output gradient and convolution kernels are filters. Therefore, as described in the previous section,
the total MAC in the input gradient is approximately proportional to (F ×R×S)×N ×C×X×Y .
Hence, the FLOP reduction with sparsity s1 in weight tensor will be approximately proportional to
s1× C × (F ×R× S)×N ×X × Y .

Input Gradient FLOP = s1× C × (F ×R× S)×N ×X × Y. (2)
For the weight gradient computation, the input activation is deconvolved with the output gradient
to produce the weight gradient. It can be implemented by rotating the output gradient tensor
from 5O ∈ RN×F×H×W to 5O ∈ RF×N×H×W and input actvation from X ∈ RN×C×X×Y

X ∈ RC×N×X×Y . The rotated output gradient is convolved on input activation to produce weight
gradient. In this computation, the convolution data is input activation and convolution kernel is
output gradient. Therefore, the total MAC in the weight gradient is approximately proportional to
(N ×X × Y)× F × C ×R× S. Hence, as described in the previous section, the FLOP reduction
with sparsity s2 in input activation tensor will be approximately proportional to s2 × (N × X ×
Y)× F × C ×R× S.

Weight Gradient FLOP = s2× (N ×X × Y)× F × C ×R× S. (3)

Thus, the computational expense of the backward pass is approximately twice that of forward pass.

A.3.2 Computation in Linear Layer

Consider a linear layer with input tensor X ∈ RN×X and weight tensor W ∈ RX×Y to produce
output tensor O ∈ RN×Y . During the forward pass, input tensor is multiplied with weight tensor
to produce output tensor. In contrast, in the backward pass, the error-gradient of output tensor is
multiplied with input and weight tensor to produce error-gradient of weight and error-gradient input
tensor.

Forward Pass
The total FLOP for the forward pass is N × Y ×X floating-point multiplication + N × Y × (X − 1)
floating-point addition. This is approximately equal to N ×X × Y floating-point MAC operations.

Now, lets assume weight tensor is sparse. The overall sparsity in the weight tensor is s and the
sparsity per column in the weight tensor is s1, s2.....sY for Y columns in the weight tensor. Note,

s =
∑Y

y=1 sy

Y . Theoretically only the non-zero weight will contribute to the FLOP. Therefore, the
total FLOP for a single value in the y column of output tensor is sy ×X MAC operations. Thus, the
total FLOP for all the element in the y column of output tensor is sy ×X ×N . Therefore, the FLOP
in forward pass is equal to

∑Y
y=1 s

y ×N × Y = N ×X × (
∑F

x=1 s
x) = s×N ×X × Y. Thus,

theoretically the FLOP reduction will be proportional to sparsity in weight tensor.

Backward Pass
The computational expense of the backward pass is twice that of forward pass and is reduced
proportionally to the sparsity of weight and activation tensor.

A.4 Top-K Overhead

The Top-K operation can be efficiently implemented by finding the K-th largest element using an
introselect algorithm and performing thresholding operation over the tensor. To estimate the overhead
of finding the K-th largest element, we use numpy.partition function. The numpy.partition function
uses the introselect algorithm and rearranges the array such that the element in the K-th position is in
the position it would be in the sorted array. This overhead would be larger than the cost of finding the
K-th largest element due to the extra rearrangement operations and thus serves as an upper bound on
Top-K overhead.

4

We profile the numpy partition function using Vtune 2020.1.0.607630 on Intel(R) Core(TM) i9-
7920X CPU @ 2.90GHz. Table 3 shows the total number of retired instruction while executing
numpy.partition for different array size. We can observe that the overhead of the numpy.partition
increases linearly with array size.

Table 3: Overhead of computing the K-th largest element using introselect algorithm

Array Size Retired Instruction Retired Instruction/Size

1000 15215 15.2
10000 217863 21.8
100000 1381744 13.8

1000000 12454369 12.6

The Top-K function in Pytorch framework is not an optimized implementation for GPU. Therefore,
to estimate the Top-K overhead on GPU, we used the efficient Radix based Top-K implementation
by Shanbhag et al. [10]. Table 4 shows the overall overhead of performing the Top-K operation for
ResNet-50 on the ImageNet dataset with a batch-size of 32 on NVIDIA RTX-2080 Ti.

Table 4: Top-K Overhead

Top-K Weight Top-K Activation Forward + Backward Pass Total Top-K Overhead
18 ms 452 ms 147 ms 470 ms

SWAT-U reduces the training FLOP per iteration by 76.1% and 85.6% at 80% and 90% sparsity
respectively. Therefore, theoretical training speed up (assuming hardware can directly translate
FLOPs reduction into reduced execution time) for the SWAT-U algorithm with a Top-K period of
1000 iteration, at 80%, and 90% sparsity would be 4.13× and 6.79× respectively. These numbers
are found as follows:

Speed Up at 80% sparsity =
1000× 147

999× (1− 0.761)× 147 + 147× (1− 0.761) + 470
= 4.13 (4)

Speed Up at 90% sparsity =
1000× 147

999× (1− 0.856)× 147 + 147× (1− 0.856) + 470
= 6.79 (5)

The are additional optimizations that could potentially be applied to further reduce the Top-K overhead
which we have not yet evaluated: (1) The overhead reported in Table 4 is for a Top-K operation,
whereas we only need to find a threshold, not the top-K weights or activation values and then we
can use that threshold for many iterations as suggested by the data in Figure 4 in the paper. So a
more efficient implementation should be possible using the K-Selection Algorithm for which efficient
GPU implementations have been proposed [1]; (2) There are more efficient approximate Top-K
algorithms [2]; (3) Given a slow rate of change in threshold values per iteration, we could potentially
hide the latency of the Top-K or K-Selection operation during the longer Top-K sampling period
by starting the operation earlier. I.e., we can potentially exploit the stability in thresholds to move
obtaining computation of updates to thresholds (after the first iteration) from the critical path; (4) The
overhead of finding the Top-K operation on activations in Table 4 is higher due to large activation
size. We speculate this overhead could be reduced significantly by performing the Top-K operation
on activation for a single sample and using the resulting threshold for computing the approximate
Top-K operation for the entire batch.

A.5 Top-K Selection

Given CNNs operate on tensors with many dimensions, there are several options for how to select
which components are set to zero during sparsification. Our CNNs operate on fourth-order tensors,
T ∈ RN×C×H×W . Below we evaluate three variants of the Top-K operation illustrated in the right
side of Figure 1. We also compared against a null hypothesis in which randomly selected components
of a tensor are set to zero.

5

50 60 70 80
Sparsity

45

50

55

60

65

70

75

80

V
a
lid

a
ti
o
n
 A

cc
u
ra

cy
 (

%
)

Dataset: CIFAR100

HW
CHW
NCHW
RANDOM

TO
P-

50
%

TO
P-

50
%

TOPK-CHW

0.8 -0.7

0.2 0.5

0.9 0.8

-0.9 0.7

-0.6 0.3

-0.1 -0.8

0.1 -0.4

0.1 -0.2

TO
P-

50
%

TOPK-NCHW

H

W

C

N

0.8 -0.7

0.2 0.5

0.1 -0.4

0.1 -0.2

0.9 0.8

-0.9 0.7

-0.6 0.3

-0.1 -0.8

TO
P-

 5
0%

TOPK-HW

0.8 -0.7

0.2 0.5

0.9 0.8

-0.9 0.7

TO
P- 50%

TO
P- 50%

TO
P-

 5
0%

-0.6 0.3

-0.1 -0.8

0.1 -0.4

0.1 -0.2

Figure 1: Different ways of performing top-k operation. ‘N’ denotes the #samples in the mini-
batch or filters in the layer, ‘C’ denotes the #channels in the layer. ‘H’ and ‘W’ denote the height and
width of the filter/activation map in the layer. Color represent the selected activations/weights by the
Top-K operation.

The first variant, labeled TOPK-NCHW in Figure 1, selects activations and weights to set to zero
by considering the entire mini-batch. This variant performs Top-K operation over the entire tensor,
f
{N,C,H,W}
TOPK (T), where the superscript represents the dimension along which the Top-K operation is

performed. The second variant (TOPK-CHW) performs Top-K operation over the dimensions C,H
and W i.e., f{C,H,W}

TOPK (T) , i.e., selects K % of input activations from every mini-batch sample and
K% of weights from every filter in the layer. The third variant (TOPK-HW) is the strictest form of
Top-K operation. It select K% of activations or weights from all channels, and thereby performing
the Top-K operation over the dimension H and W , i.e., f{H,W}

TOPK (TH,W).

The left side of Figure 1 shows the accuracy achieved on ResNet-18 for CIFAR100 when using SAW
(see Appendix A.7) configured with each of these Top-K variants along with a variant where a random
subset of components is set to zero. The results show, first, that randomly selecting works only for
low sparsity. At high sparsity all variants of Top-K outperform random selection by a considerable
margin. Second, they show that the more constrainted the Top-K operation the less accuracy achieved.
Constraining Top-K results in selecting some activations or weights which are quite small. Similarly,
some essential activations and weights are discarded just to satisfy the constraint.

A.6 Periodic Top-K

We have shown there is a little variation in the ‘K-th’ largest element during training, and it remains
approximately constant as training proceed. Therefore, the Top-K does not need to be computed every
iteration and can be periodically computed after some iterations. We define the number of iterations
between computing the threshold for Top-K as the “Top-K period”. Since the periodic Top-K used
the same threshold during the entire period, therefore, it is crucial to confirm that periodic Top-K
implementation does not adversely affect the sparsity during training. We dumped the amount of
sparsity obtained in weights and activation using periodic Top-K with period 100 iteration with target
sparsity of 90%. Figure 2 shows the sparsity during training using periodic Top-K implementation
is concentrated around our targeted sparsity, and the fluctuation decreases as training proceeds
confirming our hypothesis that chosen Top-K parameter stabilizes i.e. the Top-K threshold converge
to a fixed value during the latter epochs.

A.7 Sparsification of Output Gradients During Back-Propagation

SWAT is different from meProp as it uses sparse weight and activation during back-propagation,
whereas meProp uses sparse output gradients. Our sensitivity analysis shows that convergence is
extremely sensitive to the sparsification of output gradients. We compare the performance of the
meProp and SWAT with deep networks and complex datasets. To compare SWAT’s approach to that
of meProp, we use a variant of SWAT-U that only sparsifies the backward pass; we shall refer to this
version of SWAT-U as SAW (Sparse Activation and Weight back-propagation). Figure 3 shows SAW
and meProp convergence of ResNet18 with the ImageNet dataset. It compares the performance of
meProp at 30% and 50% sparsity to SAW at 80% sparsity. As we can see, meProp converges to a
good solution at sparsity of 30%. However, at 50% sparsity, meProp suffers from overfitting and fails
to generalize (between epochs 5 to 30), and at the same time, it is unable to reach an accuracy level

6

0 20 40 60 80 100 120 140
Epoch

75

80

85

90

W
e
ig
h
t-
S
p
a
rs
it
y

Layer-1

0 20 40 60 80 100 120 140
Epoch

88

89

89

90

90

91

W
e
ig
h
t-
S
p
a
rs
it
y

Layer-7

0 20 40 60 80 100 120 140
Epoch

89

90

91

W
e
ig
h
t-
S
p
a
rs
it
y

Layer-15

0 20 40 60 80 100 120 140
Epoch

75

80

85

90

W
e
ig
h
t-
S
p
a
rs
it
y

Layer-20

0 20 40 60 80 100 120 140
Epoch

70

75

80

85

90

A
ct
iv
a
ti
o
n
-S
p
a
rs
it
y

Layer-1

0 20 40 60 80 100 120 140
Epoch

84

86

88

90

92

A
ct
iv
a
ti
o
n
-S
p
a
rs
it
y

Layer-7

0 20 40 60 80 100 120 140
Epoch

85

90

95

A
ct
iv
a
ti
o
n
-S
p
a
rs
it
y

Layer-15

0 20 40 60 80 100 120 140
Epoch

80

85

90

95

A
ct
iv
a
ti
o
n
-S
p
a
rs
it
y

Layer-20

Figure 2: Sparsity Variation using Periodic Top-K Implementation. Network: ResNet-18, Dataset:
CIFAR100, Top-K period: 100 iterations, Target Sparsity: 90%

above 45%. These results suggest that dropping output activation gradient (5al
) is generally harmful

during back-propagation. On the other hand, SAW succeeds to converge to a higher accuracy even at
a sparsity of 80%.

Moreover, SWAT uses sparse weights and activations in the backward pass allowing compression of
weights and activations in the forward pass. Effectively, reducing overall memory access overhead
of fetching weights in the backward pass and activations storage overhead because only Top-K%
activations are saved. This memory benefit is not present for meProp since dense weights and
activations are needed in the backward pass, whereas there is no storage benefit of sparsifying the
output gradients since they are temporary value s generated during back-propagation.

A.8 Sparsification of Batch-Normalization Layer:

The activations and weights of BN layers are not sparsified in SWAT. Empirically, we found that
sparsifying weights and activations are harmful to convergence. This is because the weight (gamma)
of BN layers is a scaling factor for an entire output channel, therefore, making even a single BN
weight (gamma) zero makes the entire output channel zero. Similarly, dropping activations affects the
mean and variance computed by BN. Empirically we found that the BN layer is extremely sensitive
to changes in the per channel mean and variance. For example, when ResNet18 is trained on CIFAR
100 using SWAT with 70% sparsity and we sparsify the BN layer activations, accuracy is degraded by
4.9% compared to training with SWAT without sparsifying the BN layers. Therefore, the activations
of batch-normalization layer are not sparsified.

The parameters in a BN layer constitute less than 1.01% to the total parameters in the network and
the total computation in the BN layer is less than 0.8% of the total computation in one forward and
backward pass. Therefore, not sparsifying batch-normalization layers only affects the activation
overhead in the backward pass.

7

0 5 10 15 20 25 30 35 40 45
Epoch

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

meProp(Sparsity 30%)
meProp(Sparsity 50%)

SAW(Sparsity 80%)
Baseline

Training Curve
Validation Curve

Figure 3: Convergence Analysis: Shows the training curve of ResNet18 on ImageNet for meProp
and SAW algorithm. Learning rate is reduced by 1

10

th at 30th and 40th epoch.

A.9 Workstation Description

WORKSTATION-DESCRIPTION

CPU
Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz

Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz

GPU NVIDIA 2080-Ti

UBUNTU Ubuntu 18.04.2 LTS

NVIDIA-DRIVER 440.33.01 , 418.43

CUDA, cuDNN CUDA==10.0.130, cuDNN==7.501

Pytorch pytorch==1.1.0, torchvision==0.3.0

A.10 Details of implementation

We implemented all models and algorithms on pytorch framework. Code can be found at https:
//github.com/AamirRaihan/SWAT. To ease the reproducibility of our experiments, we have also
created a docker image. We have also uploaded the model checkpoint on anonymous dropbox
folder for easily verifying the trained model https://www.dropbox.com/sh/vo4dxuogk40n6mg/
AACdCWWhkhsYdqpjuvsvIb5Oa?dl=0.

8

https://github.com/AamirRaihan/SWAT
https://github.com/AamirRaihan/SWAT
https://www.dropbox.com/sh/vo4dxuogk40n6mg/AACdCWWhkhsYdqpjuvsvIb5Oa?dl=0
https://www.dropbox.com/sh/vo4dxuogk40n6mg/AACdCWWhkhsYdqpjuvsvIb5Oa?dl=0

Table 5: Hyperparameters for ResNet, VGG and DenseNet experiments on CIFAR10/100
Experiment ResNet 18, 50, 101 VGG 16 DenseNet BC-121

Number of training epochs 150 150 150

Mini-batch size (#GPU) 128 (1) 128 (1) 64 (1)

Learning rate schedule
(epoch range: learning rate)

1 - 50:
51 - 100:

101- 150 :

0.100
0.010
0.001

1 - 50:
51 - 100:

101- 150 :

0.100
0.010
0.001

1 - 50:
51 - 100:

101- 150 :

0.100
0.010
0.001

Optimizer SGD with Momentum SGD with Momentum SGD with Momentum

Momentum 0.9 0.9 0.9

Nesterov Acceleration False False False

Weight Decay 5e-4 5e-4 5e-4

TopK Implementation TopK-NCHW TopK-NCHW TopK-NCHW

TopK Period Per Iteration Per Iteration Per Iteration

Table 6: Hyperparameters for WideResNet experiments on CIFAR10/100
Experiment WideResNet Depth=28 Widen Factor=10

Number of training epochs 200

Mini-batch size (#GPU) 128 (1)

Learning rate schedule
(epoch range: learning rate)

1 - 60:
61 - 120:

121- 160 :
161- 200 :

0.100
0.020
0.004

0.0008

Optimizer SGD with Momentum

Momentum 0.9

Nesterov Acceleration True

Weight Decay 5e-4

Dropout Rate 0.3

TopK Implementation TopK-NCHW

TopK Period Per Iteration

Remarks
First and Last layer are not sparsified since
the total parameters in these layers are less
than 0.17% of the total network parameters

9

Table 7: Hyperparameters for ResNet50/WRN-50-2 experiments on ImageNet
Experiment SWAT(UnStructured) SWAT(Structured)

Number of training epochs 90 90

Mini-batch size (#GPU) 256 (8) 256 (8)

Learning rate schedule
(epoch range: learning rate)

1 - 30:
31 - 60:
61- 80 :
81- 90 :

0.100
0.010
0.001

0.0001

1 - 30:
31 - 60:
61- 80 :
81- 90 :

0.100
0.010
0.001

0.0001

Learning Rate WarmUp Linear (5 Epochs) Linear (5 Epochs)

Optimizer SGD with Momentum SGD with Momentum

Momentum 0.9 0.9

Nesterov Acceleration True True

Weight Decay 1e-4 1e-4

Weight Decay on BN parameters No No

Label Smoothing 0.1 0.1

TopK Implementation TopK-NCHW TopK-Channel

TopK-Period 1000 iteration 1000 iteration

Remarks

First is not sparsified due to low parameters count.
To speed up training, we used efficient Top-K
implementation where the Top-K is computed
periodically after 1000 iteration

10

References
[1] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. Fast k-selection

algorithms for graphics processing units. Journal of Experimental Algorithmics (JEA), 17:4–1,
2012.

[2] Dongqu Chen, Guang-Zhong Sun, and Neil Zhenqiang Gong. Efficient approximate top-k query
algorithm using cube index. In Asia-Pacific Web Conference, pages 155–167. Springer, 2011.

[3] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos, Mostafa Mah-
moud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas Moshovos. Bit-tactical: A
software/hardware approach to exploiting value and bit sparsity in neural networks. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 749–763, 2019.

[4] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without
losing performance. arXiv preprint arXiv:1907.04840, 2019.

[5] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2016.

[6] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4013–4021, 2016.

[7] Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hayden KH So. Dynamic sparse
training: Find efficient sparse network from scratch with trainable masked layers. arXiv preprint
arXiv:2005.06870, 2020.

[8] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural
networks by dynamic sparse reparameterization. arXiv preprint arXiv:1902.05967, 2019.

[9] NVIDIA Corporation. NVIDIA A100 Tensor Core GPU Architecture.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-
architecture-whitepaper.pdf, May 2020.

[10] Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient top-k query processing on massively
parallel hardware. In Proceedings of the 2018 International Conference on Management of
Data, pages 1557–1570, 2018.

11

	Appendix
	Detailed description of the SWAT algorithm
	CIFAR-100
	Unstructured SWAT
	Structured SWAT

	FLOP Calculation
	Computation in Convolution Layer
	Computation in Linear Layer

	Top-K Overhead
	Top-K Selection
	Periodic Top-K
	Sparsification of Output Gradients During Back-Propagation
	Sparsification of Batch-Normalization Layer:
	Workstation Description
	Details of implementation

