Supplementary Material: Calibrating CNNs for Lifelong Learning

Pravendra Singh^{*1}, Vinay Kumar Verma^{*2}, Pratik Mazumder¹, Lawrence Carin², Piyush Rai¹ ¹CSE Department, IIT Kanpur, India ²Duke University, USA psingh@cse.iitk.ac.in, vinaykumar.verma@duke.edu, pratikm@cse.iitk.ac.in, lcarin@duke.edu, piyush@cse.iitk.ac.in

1 Additional Results on SVHN

Table 1 reports the experimental results on the SVHN dataset for ResNet-18 and ResNet-18(1/3) architectures. ResNet-18(1/3) is simply ResNet-18 [1], with the number of filters in each layer reduced by 3 times [2]. We use SGD optimizer in all our experiments. In all cases, we run experiments for 5 random task orders and report the average accuracy. From the results, we can see that even with ResNet-18(1/3), which has lesser parameters than ResNet-18, results are comparable for CCLL<1,1> model. CCLL<4,1> with ResNet-18(1/3) performs even better as compared to CCLL<1,1> with ResNet-18.

Methods	Architecture	1	2	3	4	Final (A_5)
CCLL<1,1>	ResNet-18	98.77	98.54	98.44	98.48	98.20
CCLL<1,1> CCLL<4,1>	ResNet-18(1/3) ResNet-18(1/3)	98.57 98.77	98.25 98.86	98.34 98.64	98.13 98.61	98.15 98.50

Table 1: Experimental results on SVHN dataset with ResNet-18 and ResNet-18(1/3) architectures. There are 5 tasks, and the reported accuracy for each task is the average of all accuracies up to that task.

2 Additional Results on CIFAR-100

Fig. 1 shows the experimental results for CIFAR-100 incremental learning tasks using 10, 20 and 50 classes at a time using ResNet-18(1/3) architecture. CCLL with larger values of α such as 2,4,8, performs better as shown in Fig. 1.

3 Additional Results on ImageNet-100/10

The results in Table 2 indicate that our method CCLL<4,1> performs better than CCLL<1,1> for ImageNet-100/10. However, CCLL<1,1> introduces 0.51% more parameters per task and CCLL<4,1> introduces 1.66% more parameters per task.

^{*}Equal contribution.

Figure 1: Experimental results on CIFAR-100 dataset with tasks containing 10, 20 and 50 classes with ResNet-18(1/3) architecture.

Methods	1	2	3	4	5	6	7	8	9	Final (A_{10})
CCLL<1,1>	99.8	99.0	99.2	98.6	98.4	98.5	98.2	97.7	97.8	97.9
CCLL<4,1>	99.2	99.2	98.9	98.9	99.0	98.9	98.6	98.5	98.6	98.7

Table 2: Large-scale lifelong learning experiments on ImageNet dataset using ResNet-18 architecture. There are 10 tasks, and the reported accuracy for each task is the average of all accuracies up to that task.

References

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [2] David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning. In Advances in Neural Information Processing Systems, pages 6467–6476, 2017. 1