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A Technical lemmas with proofs

Lemma 1 (Shifted mirror descent lemma). Given a gradient estimator Gy, vectors z+, z−, y ∈ Rd,
fix the updating rule z+ = arg minx

{
〈Gy, x〉 + α/2‖x − z−‖2 + µ/2‖x − y‖2

}
. Suppose that we

have a shifted gradient estimatorHy satisfying the relationHy = Gy − µ(y − x?), it holds that〈
Hy, z− − x?

〉
=
α

2

(
‖z− − x?‖2 −

(
1 +

µ

α

)2

‖z+ − x?‖2
)

+
1

2α
‖Hy‖2.

Proof. Using the optimality condition,

Gy + α(z+ − z−) + µ(z+ − y) = 0,

Hy + α(z+ − z−) + µ(z+ − x?) = 0,

(α+ µ)(z+ − x?) = α(z− − x?)−Hy,
(α+ µ)2‖z+ − x?‖2 = α2‖z− − x?‖2 − 2α

〈
Hy, z− − x?

〉
+ ‖Hy‖2.

Re-arranging the last equality completes the proof.

Lemma 2 (Shifted firm non-expansiveness). Given relations z+ = proxαi (z−) and y+ = proxαi (y−),
it holds that

1

α2

(
1 +

2(α+ µ)

L− µ

)
‖∇hi(z+)−∇hi(y+)‖2 +

(
1 +

µ

α

)2

‖z+ − y+‖2 ≤ ‖z− − y−‖2.

Proof. Based on the first-order optimality condition and the definition of hi,

∇fi(z+) + α(z+ − z−) = 0, ∇fi(y+) + α(y+ − y−) = 0,

∇hi(z+) +∇fi(x?) + µ(z+ − x?) + α(z+ − z−) = 0,

∇hi(y+) +∇fi(x?) + µ(y+ − x?) + α(y+ − y−) = 0.

Subtract the last two equalities,

(α+ µ)(z+ − y+) = α(z− − y−)−
(
∇hi(z+)−∇hi(y+)

)
, (4)

which implies

(α+ µ)2‖z+ − y+‖2 = α2‖z− − y−‖2 − 2α
〈
∇hi(z+)−∇hi(y+), z− − y−

〉
+ ‖∇hi(z+)−∇hi(y+)‖2.

(5)

Based on the interpolation condition of hi, we have〈
∇hi(z+)−∇hi(y+), z+ − y+

〉
≥ 1

L− µ
‖∇hi(z+)−∇hi(y+)‖2.

Together with (4), it holds that〈
∇hi(z+)−∇hi(y+), z− − y−

〉
≥ 1

α

(
1 +

α+ µ

L− µ

)
‖∇hi(z+)−∇hi(y+)‖2.

It remains to use this bound in (5).
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Forming convex combination between vector sequences is a common technique in designing acceler-
ated methods (e.g., [4, 25, 16, 1]). From an analytical perspective, convex combination facilitates
building a contraction between function values and the coefficient directly controls the contraction
ratio, which is summarized in the following lemma. Unlike previous works, we allow a residual term
R in the convex combination.
Lemma 3 (Function-value contraction). Given a continuously differentiable and convex function f ,
vectors x+, x−, z,R ∈ Rd and scalar τ ∈]0, 1[, if x+ = τz + (1− τ)x− +R, it satisfies that

f(x+)− f(x?) ≤ (1− τ)
(
f(x−)− f(x?)

)
+
〈
∇f(x+),R

〉
+ τ

〈
∇f(x+), z − x?

〉
.

Proof. Using convexity twice,

f(x+)− f(x?) ≤
〈
∇f(x+), x+ − x?

〉
=
〈
∇f(x+), x+ − z

〉
+
〈
∇f(x+), z − x?

〉
=

1− τ
τ

〈
∇f(x+), x− − x+

〉
+

1

τ

〈
∇f(x+),R

〉
+
〈
∇f(x+), z − x?

〉
≤ 1− τ

τ

(
f(x−)− f(x+)

)
+

1

τ

〈
∇f(x+),R

〉
+
〈
∇f(x+), z − x?

〉
.

Re-arranging this inequality completes the proof.

This simple trick (with R = 0) appears frequently in the proofs of existing accelerated first-order
methods. Note that the convexity arguments in this lemma can be strengthened by the interpolation
condition or strong convexity if f satisfies additional assumptions.

B Proofs for Section 3

B.1 Generality of the framework of Algorithm 1

First, we show that TM is a parameterization of NAG (Algorithm 5 in Appendix F). Note that TM
has the following scheme (the notations follow the ones in [10]):

xk+1 = xk + β(xk − xk−1)− α∇f(yk),

yk+1 = xk+1 + γ(xk+1 − xk),

zk+1 = xk+1 + δ(xk+1 − xk).

By casting this scheme into the framework of Algorithm 5, we obtain

yk =
γ

δ
zk +

(
1− γ

δ

)
xk,

zk+1 =
β(1 + δ)− γ

δ − γ
zk +

δ − β(1 + δ)

δ − γ
yk − α(1 + δ)∇f(yk),

xk+1 =
1

1 + δ
zk+1 +

δ

1 + δ
xk.

Substituting the parameter choice of TM, we see that TM is equivalent to choosing α =
√
Lµ −

µ, τy = (
√
κ+ 1)−1, τx = 2

√
κ−1
κ in Algorithm 5. Interestingly, this choice and the choice of NAG

(given in Appendix F) only differ in τx.

Then, we show that Algorithm 5 is an instance of the framework of Algorithm 1. By expanding the
convex combinations of sequences {yk} and {xk} in Algorithm 5, we can conclude that

yk = τxzk + (1− τx)yk−1 + τy(1− τx)(zk − zk−1).

Based on the optimality condition at iteration k − 1, we have

α(zk − zk−1) = µ(yk−1 − zk)−∇f(yk−1).

Now, it is clear that Algorithm 5 is an instance of the framework of Algorithm 1 with the variable-
parameter choice (let y−1 = x0): at k = 0, τx0 = τy, τ

z
0 = 0; at k ≥ 1, τxk = τx, τ

z
k =

τy(1−τx)
α .

14



B.2 Proof of Theorem 1

First, we can introduce a contraction between h(yk) and h(yk−1) using Lemma 3. Applying Lemma 3
with f = h for the recursion yk = τxk zk + (1 − τxk )yk−1 + τzk

(
µ(yk−1 − zk) − ∇f(yk−1)

)
and

strengthening the convexity arguments by the interpolation condition, we obtain
h(yk) ≤ (1− τxk )h(yk−1) + τzk 〈∇h(yk), µ(yk−1 − zk)−∇f(yk−1)〉+ τxk 〈∇h(yk), zk − x?〉

− τxk
2(L− µ)

‖∇h(yk)‖2 − 1− τxk
2(L− µ)

‖∇h(yk−1)−∇h(yk)‖2.

Note that µ(yk−1 − zk)−∇f(yk−1) = µ(x? − zk)−∇h(yk−1) by definition, and thus
h(yk) ≤ (1− τxk )h(yk−1)− τzk 〈∇h(yk),∇h(yk−1)〉+ (τxk − µτzk ) 〈∇h(yk), zk − x?〉

− τxk
2(L− µ)

‖∇h(yk)‖2 − 1− τxk
2(L− µ)

‖∇h(yk−1)−∇h(yk)‖2.
(6)

Then, to build a contraction between ‖zk+1 − x?‖2 and ‖zk − x?‖2, we apply Lemma 1 with
Gy = ∇f(yk),Hy = ∇h(yk) and z+ = zk+1, which gives

〈∇h(yk), zk − x?〉 =
αk
2

(
‖zk − x?‖2 −

(
1 +

µ

αk

)2

‖zk+1 − x?‖2
)

+
1

2αk
‖∇h(yk)‖2.

Using this relation in (6), expanding and re-arranging the terms, we conclude that

h(yk)−
(
τxk − µτzk

2αk
− 1

2(L− µ)

)
‖∇h(yk)‖2 +

αk(τxk − µτzk )

2

(
1 +

µ

αk

)2

‖zk+1 − x?‖2

≤ (1− τxk )

(
h(yk−1)− 1

2(L− µ)
‖∇h(yk−1)‖2

)
+
αk(τxk − µτzk )

2
‖zk − x?‖2

+

(
1− τxk
L− µ

− τzk
)
〈∇h(yk),∇h(yk−1)〉 .

It remains to impose parameter constraints according to the Lyapunov function.

B.3 Proof of Proposition 1.1

First, we can write the kth-update of G-TM with constant parameter as
yk = (τx − τzµ)zk +

(
1− (τx − τzµ)

)
yk−1 − τz∇f(yk−1),

zk+1 =
α

α+ µ
zk +

µ

α+ µ
yk −

1

α+ µ
∇f(yk).

Substituting the constant parameter choice, we obtain

yk =
2√
κ+ 1

zk +

√
κ− 1√
κ+ 1

(
yk−1 −

1

L
∇f(yk−1)

)
,

zk+1 =

(
1− 1√

κ

)
zk +

1√
κ
yk −

1√
Lµ
∇f(yk).

For the objective function f(x) = 1
2

〈[
L 0
0 µ

]
x, x

〉
, the update can be further expanded as

yk =
2√
κ+ 1

zk +

[
0 0

0 (
√
κ−1)2

κ

]
yk−1,

zk+1 =

(
1− 1√

κ

)
zk +

[
−κ−1√

κ
0

0 0

]
yk.

Thus,

zk+1 =

(
1− 1√

κ

)[
−1 0
0 1

]
zk =⇒ ‖zk+1 − x?‖2 =

(
1− 1√

κ

)2

‖zk − x?‖2,

as desired.
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C Proofs for Section 4

C.1 Proof of Theorem 2

For simplicity of presentation, we omit the superscript s for iterates in the same epoch.

Using the trick in Lemma 3 for the recursion yk = τxzk + (1− τx) x̃s + τz (µ(x̃s − zk)−∇f(x̃s))
and strengthening the convexity arguments by interpolation condition, we obtain

h(yk) ≤ 1− τx
τx

〈∇h(yk), x̃s − yk〉+
τz
τx
〈∇h(yk), µ(x̃s − zk)−∇f(x̃s)〉+ 〈∇h(yk), zk − x?〉

− 1

2(L− µ)
‖∇h(yk)‖2.

Note that here the inner product 〈∇h(yk), x̃s − yk〉 is not upper bounded as before. This term is
preserved to deal with the variance.

By the definition of h, µ(x̃s − zk) −∇f(x̃s) = µ(x? − zk) −∇h(x̃s). Applying Lemma 1 with
Hy = HSVRG

yk
,Gy = GSVRG

yk
, z+ = zk+1 and taking the expectation, we can conclude that

h(yk) ≤ 1− τx
τx

〈∇h(yk), x̃s − yk〉 −
τz
τx
〈∇h(yk),∇h(x̃s)〉 −

1

2(L− µ)
‖∇h(yk)‖2

+

(
1− µτz

τx

)
α

2

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+

(
1

2α
− µτz

2ατx

)
Eik

[
‖HSVRG

yk
‖2
]
.

To bound the shifted moment, we apply the interpolation condition of hik , i.e.,

Eik
[
‖HSVRG

yk
‖2
]

= Eik
[
‖∇hik(yk)−∇hik(x̃s)‖2

]
+ 2 〈∇h(yk),∇h(x̃s)〉 − ‖∇h(x̃s)‖2

≤ 2(L− µ)
(
h(x̃s)− h(yk)− 〈∇h(yk), x̃s − yk〉

)
+ 2 〈∇h(yk),∇h(x̃s)〉

− ‖∇h(x̃s)‖2.

After re-arranging the terms, we obtain

h(yk) ≤
(

1− µτz
τx

)
L− µ
α

(
h(x̃s)− h(yk)

)
+

[
1− τx
τx

−
(

1− µτz
τx

)
L− µ
α

]
〈∇h(yk), x̃s − yk〉

+

(
1− µτz

τx

)
α

2

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+

(
1

α
− µτz
ατx
− τz
τx

)
〈∇h(yk),∇h(x̃s)〉 −

1

2(L− µ)
‖∇h(yk)‖2

−
(

1

2α
− µτz

2ατx

)
‖∇h(x̃s)‖2.

To cancel 〈∇h(yk), x̃s − yk〉, we choose τz such that 1−τx
τx

=
(

1− µτz
τx

)
L−µ
α , which gives

h(yk) ≤ (1− τx)h(x̃s) +
α2(1− τx)

2(L− µ)

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+
α+ µ− (α+ L)τx

(L− µ)µ
〈∇h(yk),∇h(x̃s)〉 −

τx
2(L− µ)

‖∇h(yk)‖2

− 1− τx
2(L− µ)

‖∇h(x̃s)‖2.

(7)

In view of the Lyapunov function Ts , h(x̃s)− c1‖∇h(x̃s)‖2 + λ
2 ‖z

s
0 − x?‖2, there are two ways

to deal with the inner product 〈∇h(yk),∇h(x̃s)〉:
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Case I (c1 = 0): Choosing τx such that α+ µ− (α+ L)τx = 0 =⇒ τx = α+µ
α+L and dropping the

negative gradient norms in (7), we arrive at (9) with c1 = 0.

Case II (c1 6= 0): Denoting γ = |α+µ−(α+L)τx|
(L−µ)µ and using Young’s inequality for 〈∇h(yk),∇h(x̃s)〉

with parameter β > 0, we can bound (7) as

h(yk) ≤ (1− τx)h(x̃s) +
α2(1− τx)

2(L− µ)

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+

(
βγ

2
− τx

2(L− µ)

)
‖∇h(yk)‖2 −

(
1− τx

2(L− µ)
− γ

2β

)
‖∇h(x̃s)‖2.

(8)

We require γ 6= 0 and choose β > 0 such that

βγ

2
− τx

2(L− µ)
=

1

1− τx

(
1− τx

2(L− µ)
− γ

2β

)
= c1 > 0.

It can be verified that this requirement and the existence of β are equivalent to the following
constraints:  τx 6= α+µ

α+L ,

(1 + τx)2(1− τx) ≥ 4
((

α
µ + 1

)
−
(
α
µ + κ

)
τx

)2

.

Under these constraints, denoting ∆ = (1+τx)2

(L−µ)2 −
4γ2

1−τx ≥ 0, we can choose β = 1+τx
2γ(L−µ) +

√
∆

2γ ,

which ensures c1 ∈
]
0, 1

2(L−µ)

[
.

Let c2 , α2(1−τx)
L−µ . These two cases result in the same inequality:

h(yk)− c1‖∇h(yk)‖2 ≤ (1− τx)
(
h(x̃s)− c1‖∇h(x̃s)‖2

)
+
c2
2

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
.

(9)

Finally, summing the above inequality from k = 0, . . . ,m− 1 with weight
(
1 + µ

α

)2k
, we conclude

that

E
[
h(x̃s+1)− c1‖∇h(x̃s+1)‖2

]
=

m−1∑
k=0

1

ω̃

(
1 +

µ

α

)2k

E
[
h(ysk)− c1‖∇h(ysk)‖2

]
≤ (1− τx)

(
h(x̃s)− c1‖∇h(x̃s)‖2

)
+
c2
2ω̃

(
‖zs0 − x?‖2 −

(
1 +

µ

α

)2m

E
[
‖zsm − x?‖2

])
.

(10)

Imposing the constraint
(
1 + µ

α

)2m
(1− τx) ≤ 1 completes the proof.

C.2 Proof of Proposition 2.1

The choice {
α =
√
cmµL− µ,

τx =
(
1− 1

cκ

)
α+µ
α+L =

(
1− 1

cκ

) √
cmκ√

cmκ+κ−1
,

and the constraints

(1 + τx)2(1− τx) ≥ 4

((
α

µ
+ 1

)
−
(
α

µ
+ κ

)
τx

)2

, (11)(
1 +

µ

α

)2m

(1− τx) ≤ 1, (12)

are put here for reference.
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Note that for m ∈
(
0, 3

4κ
]
, τx = cκ−1

cκ+
√

cκ
m (κ−1)

increases monotonically and 1+τx
m decreases

monotonically as m increases. Thus, for the constraint (11), letting

φ(m,κ) ,
(1 + τx)2(1− τx)((

α
µ + 1

)
−
(
α
µ + κ

)
τx

)2 =
1 + τx
m

(
1− τ2

x

)
cκ,

we have φ(m,κ) decreases monotonically as m increases.

When m = 3
4κ, τx = cκ−1(

c+
√

4c
3

)
κ−
√

4c
3

. For κ ≥ 1, if c+
√

4c
3 − c

√
4c
3 ≤ 0⇔ c ≥ (

√
3+
√

19)2

16 ≈

2.319, we have τx decreases monotonically as κ increases. In this case, letting κ→∞, we conclude
that τx > c

c+
√

4c
3

> 1
3 , which implies that (1+ τx)2(1− τx) increases monotonically as τx decreases.

Thus,

φ(m,κ) ≥ φ
(

3

4
κ, κ

)
≥ φ

(
3

4
, 1

)
=

4

3

(
1 +

c− 1

c

)(
1−

(
c− 1

c

)2
)
c.

To meet the constraint (11), we require c ≥ 2 +
√

3 ≈ 3.74.

For constraint (12), defining

ψ(m,κ) ,

(
α+ µ

α

)2m

(1− τx) =

(
1 +

1√
cmκ− 1

)2m √
cmκ+ cκ(κ− 1)

(
√
cmκ− 1 + κ)cκ

,

we have ∂ψ
∂m =(

1 +
1√

cmκ− 1

)2m
[(

2 ln

(
1 +

1√
cmκ− 1

)
− 1√

cmκ− 1

) √
cmκ+ cκ(κ− 1)

(
√
cmκ− 1 + κ)cκ

− (κ− 1)(cκ− 1)

2
√
cmκ

(√
cmκ− 1 + κ

)2
]
.

Denote q =
√
cmκ− 1 > 0. The roots of ∂ψ

∂m are identified by the following equation:

s(q) , 2 ln

(
1 +

1

q

)
− 1

q
− b0

(q + 1)(q + κ)(q + b1)
= 0,

where b0 = cκ
2 (κ − 1)(cκ − 1), b1 = 1 + cκ(κ − 1). Taking derivative, we see that when q → 0,

s′(q) ≥ 1
q2 −

2
q(1+q) → ∞. We can arrange the equation s′(q) = 0 as finding the real roots

of a polynomial. By Descartes’ rule of signs, this equation has exactly one positive root (with
c ≥ 2 +

√
3, we have κb1 − 1− b0 ≤ 0 for any κ ≥ 1 and then there is exactly one sign change in

the polynomial). Thus, as q increases, s(q) first increases monotonically to the unique root and then
decreases monotonically.

To see that s(q) has exactly one root, let q → 0, s(q) ≤ 2 ln
(

1 + 1
q

)
− 1

q → −∞; when q is
large enough (e.g., q > 2 and (q + κ)(q + b1) > 2b0), s(q) > 0; let q → ∞, s(q) → 0. These
facts suggest that s(q) has a unique root. Thus, we conclude that, as m increases, ψ(m,κ) first
decreases monotonically to the unique root and then increases monotonically, which means that for
m ∈ [2, 3

4κ], ψ(m,κ) ≤ max
{
ψ(2, κ), ψ

(
3
4κ, κ

)}
.

For ψ(2, κ), ψ′(2, κ) =
(

1 + 1√
2cκ−1

)4 (√
2cκ+ κ− 1

)−2 (√
2cκ− 1

)−1
`(κ), where `(κ) is a

polynomial:

`(κ) , (c− 2)κ− 5
√

2c

2
κ

1
2 + (c+ 1)−

(√
c

2
+

1√
2c

)
κ−

1
2 − 3κ−1 +

3√
2c
κ−

3
2 .

It can be verified that with c ≥ 2 +
√

3, for any κ ≥ 8
3 , `
′(κ) > 0, which suggests that ψ(2, κ) ≤

max
{
ψ
(
2, 8

3

)
, ψ(2,∞)

}
≤ 1 (with c ≥ 2 +

√
3, ψ

(
2, 8

3

)
≤ 0.953 and ψ (2,∞) = 1).
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For ψ
(

3
4κ, κ

)
, ψ′

(
3
4κ, κ

)
=
(

1 + 2√
3cκ−2

) 3
2κ
((
c+

√
4c
3

)
κ−

√
4c
3

)−1

ω1(κ), where

ω1(κ) ,

(
ln

(
1 +

2√
3cκ− 2

)
− 2√

3cκ− 2

)(√
3cκ−

√
3c+

3

2

)
+

√
4c
3 c− c−

√
4c
3(

c+
√

4c
3

)
κ−

√
4c
3

.

Let p =
√

3cκ− 2 > 0, the roots of ω1(κ) are determined by the equation

ω2(p) , ln

(
1 +

2

p

)
− 2

p
+

3
2+
√

3c

(√
4c
3 c− c−

√
4c
3

)
(
p+ 4

2+
√

3c

) (
p+ 7

2 −
√

3c
) = 0.

To ensure that ω2(p) increases monotonically as p increases, it suffices to set c ≤ 3.817 (which
ensures that ω′2(p) > 0). Thus, for any p > 0, ω2(p) ≤ limp→∞ ω2(p) = 0 ⇒ for any κ ≥ 1,
ω1(κ) ≤ 0. Finally, we conclude that with 3.817 ≥ c ≥ 2 +

√
3, ψ

(
3
4κ, κ

)
≤ ψ

(
2, 8

3

)
≤ 0.953,

which completes the proof.

C.3 Proof of Proposition 2.2

The choice
{
α = 3L

2 − µ,
τx =

(
1− 1

6m

)
α+µ
α+L =

(
1− 1

6m

)
3κ

5κ−2 ,
is put here for reference.

We examine the constraint (1 + τx)2(1− τx) ≥ 4
((

α
µ + 1

)
−
(
α
µ + κ

)
τx

)2

. Let

φ(m,κ) ,
(1 + τx)2(1− τx)

4
((

α
µ + 1

)
−
(
α
µ + κ

)
τx

)2 =
(1 + τx)2(1− τx)4m2

κ2
.

For m ≥ 3
4κ, we have τx and (1 − τx)m increases monotonically as m increases. Thus, φ(m,κ)

increases as m increases =⇒ φ(m,κ) ≥ φ( 3
4κ, κ).

φ( 3
4κ, κ) = 9

4 (1 + τx)2(1− τx) and τx = 9κ−2
15κ−6 in this case. Note that for κ ≥ 1, τx decreases as

κ increases and let κ → ∞, we conclude that τx > 3
5 >

1
3 =⇒ (1 + τx)2(1 − τx) increases as τx

decreases. Thus, φ( 3
4κ, κ) ≥ φ( 3

4 , 1) > 1, the constraint is satisfied.

Using this choice, we can write the per-epoch contraction (10) in Theorem 2 as

E
[
h(x̃s+1)− c1‖∇h(x̃s+1)‖2

]
+
α2(1− τx)

2ω̃(L− µ)

(
1 +

µ

α

)2m

E
[
‖zs+1

0 − x?‖2
]

≤ (1− τx)
(
h(x̃s)− c1‖∇h(x̃s)‖2

)
+
α2(1− τx)

2ω̃(L− µ)
‖zs0 − x?‖2.

Note that for mκ > 3
4 , τx > 1

2 and by Bernoulli’s inequality,
(
1 + µ

α

)2m ≥ 1 + 2mµ
α = 1 + 4m

3κ−2 > 2.

Let λ = 2α2(1−τx)
ω̃(L−µ) . The above contraction becomes

E
[
h(x̃s+1)− c1‖∇h(x̃s+1)‖2

]
+
λ

2
E
[
‖zs+1

0 − x?‖2
]

≤ 1

2
·
(
h(x̃s)− c1‖∇h(x̃s)‖2 +

λ

2
‖zs0 − x?‖2

)
.

Telescoping this inequality from S − 1 to 0, we obtain TS ≤ 1
2S
T0, and since m = 2n, these imply

an O(n log 1
ε ) iteration complexity.
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Algorithm 4 SAGA Boosted by Shifting objective (BS-SAGA)

Input: Parameters α > 0, τx ∈]0, 1[ and initial guess x0 ∈ Rd, iteration number K.
Initialize: z0 = x0, τz = τx

µ −
α(1−τx)
µ(L−µ) , a point table φ0 ∈ Rd×n with ∀i ∈ [n], φ0

i = x0, running
averages for the point table and its gradients.

1: for k = 0, . . . ,K − 1 do
2: Sample ik uniformly in [n], set φk+1

ik
=τxzk+(1−τx)φkik+τz

(
µ(φ̄k−zk)− 1

n

∑n
i=1∇fi(φki )

)
and keep other entries unchanged (i.e., for i 6= ik, φ

k+1
i = φki ).

3: zk+1 = arg minx

{〈
GSAGA
φk+1
ik

, x
〉

+ (α/2)‖x− zk‖2 + (µ/2)‖x− φk+1
ik
‖2
}

.

4: Update the running averages according to the change in φk+1.
5: end for

Output: zK .

C.4 BS-SAGA

To make the notations specific, we define

HSAGA
xk

, ∇hik(xk)−∇hik(φkik) +
1

n

n∑
i=1

∇hi(φki )

⇒ GSAGA
xk

,∇fik(xk)−∇fik(φkik) +
1

n

n∑
i=1

∇fi(φki )− µ
(
φ̄k − φkik

)
,

where φk ∈ Rd×n is a point table that stores n previously chosen random anchor points and
φ̄k , 1

n

∑n
i=1 φ

k
i denotes the average of point table.

The Lyapunov function (with c1 ∈
[
0, 1

2(L−µ)

]
, λ > 0) is put here for reference:

Tk =
1

n

n∑
i=1

hi(φ
k
i )− c1

∥∥∥∥∥ 1

n

n∑
i=1

∇hi(φki )

∥∥∥∥∥
2

+
λ

2
‖zk − x?‖2. (13)

We present the SAGA variant in Algorithm 4. In the following theorem, we only consider a simple
case with c1 = 0 in Tk. It is possible to analyze BS-SAGA with c1 6= 0 as is the case for BS-SVRG
(the analysis in Appendix C.1). However, it leads to highly complicated parameter constraints. We
provide a simple parameter choice similar to the one in Proposition 2.3.

Theorem C.1. In Algorithm 4, if we choose α, τx as{
α is solved from the equation

(
1 + µ

α

)2 (
1− α+µ

(α+L)n

)
= 1,

τx = α+µ
α+L ,

(14)

the following per-iteration contraction holds for the Lyapunov function defined at (13) (with c1 = 0).

With λ =
(1− τx) (α+ µ)

2

(L− µ)n
, Eik [Tk+1] ≤

(
1 +

µ

α

)−2

Tk, for k ≥ 0.

Regrading the rate, from (14), we can figure out that α is the unique positive root of the cubic
equation: (

α

µ

)3

− (2n− 3)

(
α

µ

)2

− (2nκ+ n− 3)

(
α

µ

)
− (nκ− 1) = 0.

Using a similar argument as in Theorem 3, we can show that αµ = O(n+
√
nκ), and thus conclude

an O
(
(n+

√
nκ) log 1

ε

)
expected complexity for BS-SAGA. Interestingly, this rate is always slightly

slower than that of BS-Point-SAGA.
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C.4.1 Proof of Theorem C.1

To simplify the notations in this proof, we let Φk , 1
n

∑n
i=1 hi(φ

k
i ) and∇Φk , 1

n

∑n
i=1∇hi(φki ).

Using the trick in Lemma 3 (with f = hik ) for φk+1
ik

, strengthening the convexity with the interpola-
tion condition and taking the expectation, we obtain

Eik
[
hik(φk+1

ik
)
]
≤ 1− τx

τx
Eik

[〈
∇hik(φk+1

ik
), φkik − φ

k+1
ik

〉]
+ Eik

[〈
∇hik(φk+1

ik
), zk − x?

〉]
+
τz
τx

Eik

[〈
∇hik(φk+1

ik
), µ(φ̄k − zk)− 1

n

n∑
i=1

∇fi(φki )

〉]

− 1

2(L− µ)
Eik

[∥∥∇hik(φk+1
ik

)
∥∥2
]
.

Note that by the definition of hi, µ(φ̄k − zk)− 1
n

∑n
i=1∇fi(φki ) = µ(x? − zk)−∇Φk, and thus

Eik
[
hik(φk+1

ik
)
]
≤ 1−τx

τx
Eik

[〈
∇hik(φk+1

ik
), φkik − φ

k+1
ik

〉]
− τz
τx

Eik
[〈
∇hik(φk+1

ik
),∇Φk

〉]
+

(
1− µτz

τx

)
Eik

[〈
∇hik(φk+1

ik
), zk − x?

〉]
− 1

2(L− µ)

∥∥Eik [∇hik(φk+1
ik

)
]∥∥2

,

(15)

which also uses Jensen’s inequality, i.e., Eik
[
‖∇hik(φk+1

ik
)‖2
]
≥ ‖Eik

[
∇hik(φk+1

ik
)
]
‖2.

Using Lemma 1 withHy = HSAGA
φk+1
ik

,Gy = GSAGA
φk+1
ik

, z+ = zk+1 and taking the expectation, we obtain

Eik
[〈
∇hik(φk+1

ik
), zk − x?

〉]
=
α

2

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+

1

2α
Eik

[∥∥∥∥HSAGA
φk+1
ik

∥∥∥∥2
]
.

(16)

Using the interpolation condition of hik to bound the stochastic moment,

Eik

[∥∥∥∥HSAGA
φk+1
ik

∥∥∥∥2
]

= Eik
[
‖∇hik(φk+1

ik
)−∇hik(φkik)‖2

]
+ 2Eik

[〈
∇hik(φk+1

ik
),∇Φk

〉]
− ‖∇Φk‖2

≤ 2(L−µ)
(
Φk − Eik

[
hik(φk+1

ik
)
]
− Eik

[〈
∇hik(φk+1

ik
), φkik − φ

k+1
ik

〉] )
(17)

+ 2Eik
[〈
∇hik(φk+1

ik
),∇Φk

〉]
− ‖∇Φk‖2.

Based on the updating rules of φk+1, the following relations hold

Eik
[
Φk+1

]
=

1

n
Eik

[
hik(φk+1

ik
)
]

+
n− 1

n
Φk, (18)

Eik
[
∇Φk+1

]
=

1

n
Eik

[
∇hik(φk+1

ik
)
]

+
n− 1

n
∇Φk, (19)

where (19) implies that∥∥Eik [∇hik(φk+1
ik

)
] ∥∥2

= n2‖Eik
[
∇Φk+1

]
‖2 − 2(n2 − n)

〈
Eik

[
∇Φk+1

]
,∇Φk

〉
+ (n− 1)2‖∇Φk‖2,

(20)

Eik
[〈
∇hik(φk+1

ik
),∇Φk

〉]
= n

〈
Eik

[
∇Φk+1

]
,∇Φk

〉
− (n− 1)‖∇Φk‖2. (21)
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Then, expanding (15) using (16), (17), (20) and (21), we obtain

1

n
Eik

[
hik(φk+1

ik
)
]
≤
[

1− τx
τxn

−
(

1− µτz
τx

)
L− µ
αn

]
Eik

[〈
∇hik(φk+1

ik
), φkik − φ

k+1
ik

〉]
+

(
1− µτz

τx

)
L− µ
αn

(
Φk − Eik

[
hik(φk+1

ik
)
] )

+

(
1− µτz

τx

)
α

2n

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+

[
1

α
− µτz
ατx
− τz
τx

+
n− 1

L− µ

] 〈
Eik

[
∇Φk+1

]
,∇Φk

〉
−
[

(n− 1)2

2(L− µ)n
+

(
1− µτz

τx

)
1

2αn
+

(
1

α
− µτz
ατx
− τz
τx

)
n− 1

n

]
‖∇Φk‖2

− n

2(L− µ)
‖Eik

[
∇Φk+1

]
‖2.

Choosing τz such that 1−τx
τx

=
(

1− µτz
τx

)
L−µ
α , multiplying both sides by τx and using (18), we can

simplify the above inequality as

Eik
[
Φk+1

]
≤
(

1− τx
n

)
Φk +

α2(1− τx)

2(L− µ)n

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+
α+ µ− τx(α+ L+ µ− µn)

(L− µ)µ

〈
Eik

[
∇Φk+1

]
,∇Φk

〉
−

(n− 2)τx + 1
n +

(
α
µ + 1−

(
α
µ + κ

)
τx

) (
2− 2

n

)
2(L− µ)

‖∇Φk‖2

− nτx
2(L− µ)

‖Eik
[
∇Φk+1

]
‖2.

Fixing τx = α+µ
α+L , we obtain

Eik
[
Φk+1

]
≤
(

1− τx
n

)
Φk +

α2(1− τx)

2(L− µ)n

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+

(n− 1)τx
L− µ

〈
Eik

[
∇Φk+1

]
,∇Φk

〉
− nτx

2(L− µ)
‖Eik

[
∇Φk+1

]
‖2

−
(n− 2)τx + 1

n

2(L− µ)
‖∇Φk‖2.

Using Young’s inequality with β > 0,

Eik
[
Φk+1

]
≤
(

1− τx
n

)
Φk +

α2(1− τx)

2(L− µ)n

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
+
β(n− 1)τx − nτx

2(L− µ)
‖Eik

[
∇Φk+1

]
‖2 +

(n−1)τx
β − (n− 2)τx − 1

n

2(L− µ)
‖∇Φk‖2.

Let β ∈
[

n−1
n−2+ 1

nτx

, n
n−1

]
. The last two terms become non-positive, and thus we have

Eik
[
Φk+1

]
≤
(

1− τx
n

)
· Φk +

α2(1− τx)

2(L− µ)n

(
‖zk − x?‖2 −

(
1 +

µ

α

)2

Eik
[
‖zk+1 − x?‖2

])
.

Letting
(
1− τx

n

) (
1 + µ

α

)2
= 1 completes the proof.
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D Proof for Section 5 (Theorem 3)

Using Lemma 2 with the relations

xk+1 = proxαik

(
xk +

1

α

(
∇fik(φkik)− 1

n

n∑
i=1

∇fi(φki ) + µ

(
1

n

n∑
i=1

φki − φkik

)))
,

x? = proxαik

(
x? +

1

α
∇fik(x?)

)
and φk+1

ik
= xk+1,

and based on that ∇hi(x) = ∇fi(x)−∇fi(x?)− µ(x− x?), we have(
1 +

2(α+ µ)

L− µ

)
‖∇hik(φk+1

ik
)‖2 + (α+ µ)2‖xk+1 − x?‖2

≤ α2

∥∥∥∥∥xk − x? +
1

α

(
∇hik(φkik)− 1

n

n∑
i=1

∇hi(φki )

)∥∥∥∥∥
2

.

Expanding the right side, taking the expectation and using E
[
‖X − EX‖2

]
≤ E

[
‖X‖2

]
, we obtain(

1 +
2(α+ µ)

L− µ

)
Eik

[
‖∇hik(φk+1

ik
)‖2
]

+ (α+ µ)2Eik
[
‖xk+1 − x?‖2

]
≤ α2‖xk − x?‖2 +

1

n

n∑
i=1

‖∇hi(φki )‖2.

Note that by construction,

Eik

[
n∑
i=1

‖∇hi(φk+1
i )‖2

]
=
n− 1

n

n∑
i=1

‖∇hi(φki )‖2 + Eik
[
‖∇hik(φk+1

ik
)‖2
]
.

We can thus arrange the terms as(
n

α2
+

2(α+ µ)n

α2(L− µ)

)
Eik

[
1

n

n∑
i=1

‖∇hi(φk+1
i )‖2

]
+
(

1 +
µ

α

)2

Eik
[
‖xk+1 − x?‖2

]
≤
(
n

α2
+

2(α+ µ)(n− 1)

α2(L− µ)

)
· 1

n

n∑
i=1

‖∇hi(φki )‖2 + ‖xk − x?‖2.

In view of the Lyapunov function, we choose α to be the positive root of the following equation:(
1 +

µ

α

)2
(

1− 2(α+ µ)

n(L− µ) + 2n(α+ µ)

)
= 1.

Let q = α
µ > 0, the above is a cubic equation:

s(q) , 2q3 − (4n− 6)q2 − (2nκ+ 4n− 6)q − (nκ+ n− 2) = 0,

which has a unique positive root (denoted as q?).

Note that s(−∞) < 0, s(− 1
2 ) = 1

4 and s(0) ≤ 0. These facts suggest that if for some u > 0,
s(u) > 0, we have q? < u. It can be verified that s(2n+

√
nκ) > 0, and thus q? = O(n+

√
nκ).

E Experimental setup

We ran experiments on an HP Z440 machine with a single Intel Xeon E5-1630v4 with 3.70GHz
cores, 16GB RAM, Ubuntu 18.04 LTS with GCC 4.8.0, MATLAB R2017b. We were optimizing the
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following binary problems with ai ∈ Rd, bi ∈ {−1,+1}, i ∈ [n]:

`2-Logistic Regression:
1

n

n∑
i=1

log
(
1 + exp (−bi 〈ai, x〉)

)
+
µ

2
‖x‖2,

Ridge Regression:
1

2n

n∑
i=1

(〈ai, x〉 − bi)2 +
µ

2
‖x‖2.

We used datasets from the LIBSVM website [9], including a9a (32,561 samples, 123 features),
covtype.binary (581,012 samples, 54 features), w8a (49,749 samples, 300 features), ijcnn1 (49,990
samples, 22 features). We added one dimension as bias to all the datasets.

We choose SAGA and Katyusha as the baselines in the finite-sum experiments due to the following
reasons: SAGA has low iteration cost and good empirical performance with support for non-smooth
regularizers, and is thus implemented in machine learning libraries such as scikit-learn [39]; Katyusha
achieves the state-of-the-art performance for ill-conditioned problems11.

F Analyzing NAG using Lyapunov function

Algorithm 5 Nesterov’s Accelerated Gradient (NAG)

Input: Parameters α > 0, τy, τx ∈]0, 1[ and initial guesses x0, z0 ∈ Rd, iteration number K.
1: for k = 0, . . . ,K − 1 do
2: yk = τyzk + (1− τy)xk.

3: zk+1 = arg minx

{
〈∇f(yk), x〉+ (α/2)‖x− zk‖2 + (µ/2)‖x− yk‖2

}
.

4: xk+1 = τxzk+1 + (1− τx)xk.
5: end for

Output: xK .

In this section, we review the convergence of NAG in the strongly convex setting for a better
comparison with the convergence guarantee and proof of G-TM. This Lyapunov analysis has been
similarly presented in many existing works, e.g., [54, 18, 5, 38]. We adopt a simplified version of
NAG in Algorithm 5 (1-memory accelerated methods, [52]) and only consider constant parameter
choices. It is known that NAG can be analyzed based on the following Lyapunov function (λ > 0):

Tk = f(xk)− f(x?) +
λ

2
‖zk − x?‖2, (22)

which is somehow suggested in the construction of the estimate sequence in [35]. This choice requires
neither f(xk)− f(x?) nor ‖zk − x?‖2 to be monotone decreasing over iterations, which is called the
non-relaxational property in [32]. By re-organizing the proof in [35] under the notion of Lyapunov
function, we obtain the per-iteration contraction of NAG in Theorem F.1.

Theorem F.1. In Algorithm 5, suppose we choose α, τx, τy under the constraints (23), the iterations
satisfy the contraction (24) for the Lyapunov function (22).

α ≥ L(1−τx)τy
1−τy , τx ≥ τy,

µ ≥ L(τx−τy)
1−τy ,(

1 + µ
α

)
(1− τx) ≤ 1.

(23)
With λ = (α+ µ)τx,

Tk+1 ≤
(

1 +
µ

α

)−1

Tk, for k ≥ 0.
(24)

When the inequalities in constraints (23) (except τx ≥ τy) hold as equality, we derive the standard
choice of NAG: α =

√
Lµ − µ, τy = (

√
κ + 1)−1, τx = (

√
κ)−1. By substituting this choice and

11Zhou et al. [58] shows that SSNM can be faster than Katyusha in some cases. In theory, SSNM and
Katyusha achieve the same rate if we set m = n for Katyusha (both require 2 oracle calls per-iteration). In
practice, if m = n, they have similar performance (SSNM is often faster). Considering the stability and memory
requirement, Katyusha still achieves the state-of-the-art performance both theoretically and empirically.
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eliminating sequence {zk}, we recover the widely-used scheme (Constant Step scheme III in [35]):

xk+1 = yk −
1

L
∇f(yk),

yk+1 = xk+1 +

√
κ− 1√
κ+ 1

(xk+1 − xk).

Telescoping (24), we obtain the original guarantee of NAG (cf. Theorem 2.2.3 in [35]),

f(xK)− f(x?) +
µ

2
‖zK − x?‖2 ≤

(
1− 1√

κ

)K (
f(x0)− f(x?) +

µ

2
‖z0 − x?‖2

)
.

If we regard the constraints (23) as an optimization problem with a target of minimizing the rate
factor (1 + µ

α )−1, the rate factor 1− 1/
√
κ is optimal. Combining α ≥ L(1−τx)τy

1−τy and µ ≥ L(τx−τy)
1−τy ,

we have α ≥ Lτx − µ. To minimize α, we fix α = Lτx − µ, and it can be easily verified that in this
case, the smallest rate factor is achieved when

(
1 + µ

α

)
(1− τx) = 1. Note that these arguments do

not consider variable-parameter choices and are limited to the current analysis framework only.

Denote the initial constant as CNAG
0 , f(x0) − f(x?) + µ

2 ‖z0 − x?‖2. This guarantee shows that
in terms of reducing ‖x − x?‖2 to ε, sequences {xk} and {zk} have the same iteration complex-
ity
√
κ log

2CNAG
0

µε . Since {yk} is a convex combination of them, it also converges with the same
complexity.

F.1 Proof of Theorem F.1

For the convex combination yk = τyzk + (1− τy)xk, we can use the trick in Lemma 3 to obtain

f(yk)− f(x?) ≤ 1− τy
τy

〈∇f(yk), xk − yk〉+ 〈∇f(yk), zk − x?〉 −
µ

2
‖yk − x?‖2

=
1− τy
τy

〈∇f(yk), xk − yk〉+ 〈∇f(yk), zk − zk+1〉︸ ︷︷ ︸
R1

(25)

+ 〈∇f(yk), zk+1 − x?〉︸ ︷︷ ︸
R2

−µ
2
‖yk − x?‖2.

For R1, based on the L-smoothness, we have

f(xk+1)− f(yk) + 〈∇f(yk), yk − xk+1〉 ≤
L

2
‖xk+1 − yk‖2.

Note that yk − xk+1 = τx(zk − zk+1) + (τy − τx)(zk − xk), we can arrange the above inequality as

f(xk+1)− f(yk) + 〈∇f(yk), τx(zk − zk+1) + (τy − τx)(zk − xk)〉 ≤ L

2
‖xk+1 − yk‖2,

R1 ≤
L

2τx
‖xk+1 − yk‖2 +

1

τx

(
f(yk)− f(xk+1)

)
− τy − τx

τx
〈∇f(yk), zk − xk〉 . (26)

For R2, based on the optimality condition of the 3rd step in Algorithm 5, which is for any u ∈ Rd,

〈∇f(yk) + α(zk+1 − zk) + µ(zk+1 − yk), u− zk+1〉 = 0,

we have (by choosing u = x?),

R2 = α 〈zk+1 − zk, x? − zk+1〉+ µ 〈zk+1 − yk, x? − zk+1〉

=
α

2
(‖zk − x?‖2 − ‖zk+1 − x?‖2 − ‖zk+1 − zk‖2) (27)

+
µ

2
(‖yk − x?‖2 − ‖zk+1 − x?‖2 − ‖zk+1 − yk‖2).

25



By upper bounding (25) using (26), (27), we can conclude that

f(yk)− f(x?) ≤ 1− τx
τx

〈∇f(yk), xk − yk〉+
1

τx

(
f(yk)− f(xk+1)

)
+
α

2

(
‖zk − x?‖2 −

(
1 +

µ

α

)
‖zk+1 − x?‖2

)
+

L

2τx
‖xk+1 − yk‖2 −

α

2
‖zk+1 − zk‖2 −

µ

2
‖zk+1 − yk‖2,

Re-arrange the terms,

f(xk+1)−f(x?)≤(1− τx)
(
f(xk)−f(x?)

)
+
ατx
2

(
‖zk−x?‖2−

(
1 +

µ

α

)
‖zk+1−x?‖2

)
+
L

2
‖xk+1 − yk‖2 −

ατx
2
‖zk+1 − zk‖2 −

µτx
2
‖zk+1 − yk‖2.

(28)

Note that the following relation holds:

xk+1 − yk = τx

(
(1− τx)τy
(1− τy)τx

(zk+1 − zk) +
τx − τy

(1− τy)τx
(zk+1 − yk)

)
,

and thus if τx ≥ τy , based on the convexity of ‖·‖2, we have

L

2
‖xk+1 − yk‖2 ≤

L(1− τx)τxτy
2(1− τy)

‖zk+1 − zk‖2 +
L(τx − τy)τx

2(1− τy)
‖zk+1 − yk‖2.

Finally, suppose that the following relations hold
τx ≥ τy,
α ≥ L(1−τx)τy

1−τy ,

µ ≥ L(τx−τy)
1−τy ,(

1 + µ
α

)
(1− τx) ≤ 1,

we can arrange (28) as

f(xk+1)− f(x?) +
ατx
2

(
1 +

µ

α

)
‖zk+1 − x?‖2

≤
(

1 +
µ

α

)−1 (
f(xk)− f(x?) +

ατx
2

(
1 +

µ

α

)
‖zk − x?‖2

)
,

which completes the proof.
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