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Abstract

This work studies the problem of sequential control in an unknown, nonlinear dy-
namical system, where we model the underlying system dynamics as an unknown
function in a known Reproducing Kernel Hilbert Space. This framework yields a
general setting that permits discrete and continuous control inputs as well as non-
smooth, non-differentiable dynamics. Our main result, the Lower Confidence-
based Continuous Control (LC3) algorithm, enjoys a near-optimal O(

√
T ) regret

bound against the optimal controller in episodic settings, where T is the number of
episodes. The bound has no explicit dependence on dimension of the system dy-
namics, which could be infinite, but instead only depends on information theoretic
quantities. We empirically show its application to a number of nonlinear control
tasks and demonstrate the benefit of exploration for learning model dynamics.

1 Introduction

The control of uncertain dynamical systems is one of the central challenges in Reinforcement Learn-
ing (RL) and continuous control, and recent years has seen a number of successes in demanding
sequential decision making tasks ranging from robotic hand manipulation [Todorov et al., 2012,
Al Borno et al., 2012, Kumar et al., 2016, Tobin et al., 2017, Lowrey et al., 2018, Akkaya et al.,
2019] to game playing [Silver et al., 2016, Bellemare et al., 2016, Pathak et al., 2017, Burda et al.,
2018]. The predominant approaches here are either based on reinforcement learning or continuous
control (or a mix of techniques from both domains).

With regards to provably correct methods which handle both the learning and approximation in
unknown, complex environments, and achieve optimality guarantees, the body of results in the rein-
forcement learning literature [Russo and Van Roy, 2013, Jiang et al., 2017, Sun et al., 2019, Agarwal
et al., 2019a] is more mature than in the continuous controls literature. In fact, only relatively re-
cently has there been provably correct methods (and sharp bounds) for the learning and control of
the Linear Quadratic Regulator (LQR) model [Mania et al., 2019, Simchowitz and Foster, 2020,
Abbasi-Yadkori and Szepesvári, 2011], arguably the most basic model due to having globally linear
dynamics.

While Markov Decision Processes provide a very general framework after incorporating continuous
states and actions into the model, there are a variety of reasons to directly consider learning in
continuous control settings: even the simple LQR model provides a powerful framework when used
for locally linear planning [Ahn et al., 2007, Todorov and Li, 2005, Tedrake, 2009, Perez et al.,
2012]. More generally, continuous control problems often have continuity properties with respect
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to the underlying “disturbance” (often modeled as statistical additive noise), which can be exploited
for fast path planning algorithms [Jacobson and Mayne, 1970, Williams et al., 2017]; analogous
continuity properties are often not leveraged in designing provably correct RL models (though there
are a few exceptions, e.g. [Kakade et al., 2003]). While LQRs are a natural model for continuous
control, they are prohibitive for a variety of reasons: LQRs rarely provide good global models of
the system dynamics, and, furthermore, naive random search suffices for sample efficient learning
of LQRs [Mania et al., 2019, Simchowitz and Foster, 2020] — a strategy which is unlikely to be
effective for the learning and control of more complex nonlinear dynamical systems where one
would expect strategic exploration to be required for sample efficient learning (just as in RL, e.g.
see Kearns and Singh [2002], Kakade [2003]).

This is the motivation for this line of work, where we focus directly on the sample efficient learn-
ing and control of an unknown, nonlinear dynamical system, under the assumption that the mean
dynamics live within some known Reproducing Kernel Hilbert Space.

The Online Nonlinear Control Problem. This work studies the following nonlinear control prob-
lem, where the nonlinear system dynamics are described, for h ∈ {0, 1, . . . H − 1}, by

xh+1 = f(xh, uh) + ε, where ε ∼ N (0, σ2I)

where the state xh ∈ RdX ; the control uh ∈ U where U may be an arbitrary set (not necessarily
even a vector space); f : X × U → X is assumed to live within some known Reproducing Kernel
Hilbert Space; the additive noise is assumed to be independent across timesteps.

Specifically, the model considered in this work was recently introduced in Mania et al. [2020], which
we refer to as the kernelized nonlinear regulator (KNR) for the infinite dimensional extension. The
KNR model assumes that f lives in the RKHS of a known kernelK. Equivalently, the primal version
of this assumption is that:

f(x, u) = W ?φ(x, u)

for some known function φ : X × U → H where H is a Hilbert space (either finite or countably
infinite dimensional) and where W ? is a linear mapping. Given an immediate cost function c :
X × U → R+ (where R+ is the non-negative real numbers), the KNR problem can be described by
the following optimization problem:

min
π∈Π

Jπ(x0; c) where Jπ(x0; c) = E

[
H−1∑
h=0

c(xh, uh)
∣∣∣π, x0

]
where x0 is a given starting state; Π is some set of feasible controllers; and where a controller (or a
policy) is a mapping π : X × {0, . . . H − 1} → U . We denote the best-in-class cumulative cost as
J?(x0; c) = minπ∈Π J

π(x0; c). Given any model parameterization W , we denote Jπ(x0; c,W ) as
the expected total cost of π under the dynamics Wφ(x, u) + ε.

It is worthwhile to note that this KNR model is rather general in the following sense: the space of
control inputs U may be either discrete or continuous; and the dynamics f need not be a smooth or
differentiable function in any of its inputs. A more general version of this problem, which we leave
for future work, would be where the systems dynamics are of the form xh+1 = fh(xh, uh, εh), in
contrast to our setting where the disturbance is due to additive Gaussian noise.

We consider an online version of this KNR problem: the objective is to sequentially optimize a
sequence of cost functions where the nonlinear dynamics f are not known in advance. We assume
that the learner knows the underlying Reproducing Kernel Hilbert Space. In each episode t, we
observe an instantaneous cost function ct; we choose a policy πt; we execute πt and observe a
sampled trajectory x0, u0, . . . , xH−1, uH−1; we incur the cumulative cost under ct. Our goal is to
minimize the sum of our costs over T episodes. In particular, we desire to execute a policy that is
nearly optimal for every episode.

A natural performance metric in this context is our cumulative regret, the increase in cost due to not
knowing the nonlinear dynamics beforehand, defined as:

REGRETT =

T−1∑
t=0

H−1∑
h=0

ct(xth, u
t
h)−

T−1∑
t=0

min
π∈Π

Jπ(x0; ct)
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where {xth} is the observed states and {uth} is the observed sequence of controls. A desirable
asymptotic property of an algorithm is to be no-regret, i.e. the time averaged version of the regret
goes to 0 as T tends to infinity.

Our Contributions. The first set of provable results in this setting, for the finite dimensional case
and for the problem of system identification, was provided by Mania et al. [2020]. Our work focuses
on regret, and we provide the Lower Confidence-based Continuous Control (LC3) algorithm, which
enjoys a O(

√
T ) regret bound. We provide an informal version of our main result, specialized to the

case where the dimension of the RKHS is finite and the costs are bounded.

Theorem 1.1 (Informal statement; finite dimensional case with bounded features). Consider the
special case where: ct(x, u) ∈ [0, 1]; dφ is finite (with dX + dφ ≥ H); and φ is uniformly bounded,
with ‖φ(x, u)‖2 ≤ B; The LC3 algorithm enjoys the following expected regret bound:

ELC3 [REGRETT ] ≤ Õ
(√

dφ
(
dX + dφ

)
H3T · log

(
1 +

B2‖W ?‖22
σ2

))
,

where Õ(·) notation drops logarithmic factors in T and H .

There are a number of notable further contributions with regards to our work:

• (Dimension and Horizon Dependencies) Our general regret bound has no explicit depen-
dence on dimension of the system dynamics (the RKHS dimension), which could be infi-
nite, but instead only depends on information theoretic quantities; our horizon dependence
is H3, which we conjecture is near optimal. It is also worthwhile noting that our regret
bound is only logarithmic in ‖W ?‖2 and σ2.

• (Localized rates) In online learning, it is desirable to obtain improved rates if the loss of the
“best expert” is small, e.g. in our case, if J?(x0; ct) is small. Under a bounded coefficient
of variation condition (which holds for LQRs and may hold more generally), we provide
an improved regret bound whose leading term regret depends linearly on J?.

• (Moment bounds and LQRs) Our regret bound does not require bounded costs, but instead
only depends on second moment bounds of the realized cumulative cost, thus making them
applicable to LQRs, as a special case.

• (Empirical evaluation:) Coupled with the right features (e.g., kernels), our method pro-
vides competitive results in common continuous control benchmarks, exploration tasks,
and complex control problems such as dexterous manipulation.

While our techniques utilize methods developed for the analysis of linear bandits [Dani et al., 2008,
Abbasi-Yadkori et al., 2011] and Gaussian process bandits [Srinivas et al., 2009], there are a number
of new technical challenges to be addressed with regards to the multi-step extension to Reinforce-
ment Learning. In particular, some nuances for the more interested reader: we develop a stopping
time martingale to handle the unbounded nature of the (realized) cumulative costs; we develop a
novel way to handle Gaussian smoothing through the chi-squared distance function between two
distributions; our main technical lemma is a “self-bounding” regret bound that relates the instanta-
neous regret on any given episode to the second moment of the stochastic process.

Notation. We let ‖x‖2, ‖M‖2, and ‖M‖F refer to the Euclidean norm, the spectral norm, and the
Frobenius norm, respectively, of a vector x and a matrix M .

2 Related Work

The first set of provable results with regards to this nonlinear control model was provided by Mania
et al. [2020], who studied the problem of system identification in a finite dimensional setting (we
discuss these results later). While not appearing with this name, a Gaussian process version of this
model was originally considered by Deisenroth and Rasmussen [2011], without sample-efficiency
guarantees. More generally, most model-based RL/controls algorithms do not explicitly address
the exploration challenge nor do they have guarantees on the performance of the learned policy
[Deisenroth and Rasmussen, 2011, Levine and Abbeel, 2014, Chua et al., 2018, Kurutach et al.,
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Algorithm 1 Lower Confidence-based Continuous Control (LC3)
Require: Policy class Π; regularizer λ; confidence parameter C1 (see Equation 3.3).

1: Initialize BALL0 to be any set containing W ?.
2: for t = 0 . . . T do
3: πt = arg minπ∈Π minW∈BALLt J

π(x0; ct,W )

4: Execute πt to sample a trajectory τ t := {xth, uth, cth, xth+1}
H−1
h=0

5: Update BALLt+1 (as specified in Equation 3.2).
6: end for

2018, Nagabandi et al., 2018, Luo et al., 2018, Ross and Bagnell, 2012]. Departing from these
works, we focus on provable sample efficient regret bounds and strategic exploration in model-based
learning in the kernelized nonlinear regulator.

Among provably efficient model-based algorithms, works from Sun et al. [2019], Osband and
Van Roy [2014], Ayoub et al. [2020], Lu and Van Roy [2019] are the most related to our work.
While these works are applicable to certain linear structures, their techniques do not lead to the re-
sults herein: even for the special case of LQRs, they do not address the unbounded nature of the
costs, where there is more specialized analysis [Mania et al., 2019, Cohen et al., 2019, Simchowitz
and Foster, 2020]; these results do not provide techniques for sharp leading order dependencies like
in our regret results (and the former three do not handle the infinite dimensional case); they also
do not provide techniques for localized regret bounds, like those herein which depend on J?. A
few more specific differences: the model complexity measure Witness Rank from Sun et al. [2019]
does contain the kernelized nonlinear regulator if the costs were bounded and the dimensions were
finite; Osband and Van Roy [2014] considers a setting where the model class has small Eluder
dimension, which does not apply to the infinite-dimensional settings that we consider here; Lu and
Van Roy [2019] presents a general information theoretic framework providing results for tabular and
factor MDPs. Chowdhury and Gopalan [2019] considers kernelized MDPs and directly assumes a
Lipschitz condition on the one step future value function. Concurrently, Curi et al. [2020] considers
Gaussian Process Model-based RL but explicitly assumes Lipschitz continuity in the learned models
and reward functions and the regret scales exponentially with respect to Lipschitz constants. There
are numerous technical challenges addressed in this work which may be helpful for further analysis
of models in continuous control problems.

Another family of related work provides regret analyses of online LQR problems. There are a host
of settings considered: unknown stochastic dynamics [Abbasi-Yadkori and Szepesvári, 2011, Dean
et al., 2018, Mania et al., 2019, Cohen et al., 2019, Simchowitz and Foster, 2020]; adversarial noise
(or adversarial noise with unknown mean dynamics) [Agarwal et al., 2019b, Hazan et al., 2019];
changing cost functions with known dynamics [Cohen et al., 2018, Agarwal et al., 2019c]. For the
case of unknown (stochastic) dynamics, our online KNR problem is more general than these works,
due to a more general underlying model; one distinction is that many of these prior works on LQRs
consider the regret on a single trajectory, under stronger stability and mixing assumptions of the
process. This is an interesting direction for future work (see Section 5).

On the system identification side, Mania et al. [2020] provides the first sample complexity analysis
for finite dimensional KNRs under assumptions of reachability and bounded features. The work
of Mania et al. [2020] is an important departure from the aforementioned model-based theoretical
results [Sun et al., 2019, Osband and Van Roy, 2014, Ayoub et al., 2020, Lu and Van Roy, 2019];
the potentially explosive nature of the system dynamics makes system ID challenging, and Mania
et al. [2020] directly addresses this through various continuity assumptions on the dynamics. One
notable aspect of our work is that it permits both an unbounded state and unbounded features. The
KNR also has been used in practice for system identification [Ng et al., 2006, Abbeel and Ng, 2005].

3 Main Results

3.1 The Lower Confidence-based Continuous Control algorithm

LC3 is based on “optimism in the face of uncertainty,” which is described in Algorithm 1. At
episode t, we use all previous experience to define an uncertainty region (an ellipse). The center of
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this region, W
t
, is the solution of the following regularized least squares problem:

W
t

= arg min
W

t−1∑
τ=0

H−1∑
h=0

‖Wφ(xτh, u
τ
h)− xτh+1‖22 + λ‖W‖2F , (3.1)

where λ is a parameter, and the shape of the region is defined through the feature covariance:

Σt = λI +

t−1∑
τ=0

H−1∑
h=0

φ(xτh, u
τ
h)(φ(xτh, u

τ
h))>, with Σ0 = λI.

The uncertainty region, or confidence ball, is defined as:

BALLt =

{
W
∣∣∣ ∥∥∥(W −W t

) (
Σt
)1/2∥∥∥2

2
≤ βt

}
, (3.2)

where recall that ‖M‖2 denotes the spectral norm of a matrix M and where

βt := C1

(
λσ2 + σ2

(
dX + log

(
tdet(Σt)/ det(Σ0)

) ))
, (3.3)

with C1 being a parameter of the algorithm.

At episode t, the LC3 algorithm will choose an optimistic policy in Line 3 of Algorithm 1. Solving
this optimistic planning problem in general is NP-hard [Dani et al., 2008]. Given this computa-
tional hardness, we focus on the statistical complexity and explicitly assume access to the following
computational oracle:
Assumption 1 (Black-box computation oracle). We assume access to an oracle that implements
Line 3 of Algorithm 1.

We leave to future work the question of finding reasonable approximation algorithms, though we ob-
serve that a number of effective heuristics may be available through gradient based methods such as
DDP [Jacobson and Mayne, 1970], iLQG [Todorov and Li, 2005] and CIO [Mordatch et al., 2012],
or sampling based methods, such as MPPI [Williams et al., 2017] and DMD-MPC [Wagener et al.,
2019]. In particular, these planning algorithms are natural to use in conjunction with Thompson
Sampling [Thompson, 1933, Osband and Van Roy, 2014], i.e. we sample W t fromN (W

t
, (Σt)−1)

and then compute and execute the corresponding optimal policy πt = arg minπ∈Π J
π(x0; ct,W t)

using a planning oracle. While we focus on the frequentist regret bounds, we conjecture that a
Bayesian regret bound for the Thompson sampling algorithm, should be achievable using the tech-
niques we develop herein, along with now standard techniques for analyzing the Bayesian regret of
Thompson sampling (e.g. see Russo and Van Roy [2014]).

3.2 Information Theoretic Regret Bounds

In this section, we analyze the regret of Algorithm 1. Following Srinivas et al. [2009], let us define
the (expected) Maximum Information Gain as:

γT (λ) := max
A

EA
[
log
(

det
(
ΣT
)
/det

(
Σ0)
) )]

= max
A

EA

[
log det

(
I +

1

λ

T−1∑
t=0

H−1∑
h=0

φ(xth, u
τ
h)(φ(xth, u

τ
h))>

)]
,

where the max is over algorithms A, where an algorithm is a mapping from the history before
episode t to the next policy πt ∈ Π.
Remark 3.1. (Finite dimensional RKHS and RBF Kernel) For φ ∈ Rdφ , with ‖φ(x, u)‖ ≤ B ∈ R+

for all (x, u), then γT (λ) will be O(dφ log(1 + THB2/λ) (see Lemma C.5). Another example is
when φ is infinite dimensional and corresponds to RBF kernel. In this case, assume u ∈ Rdu , we
have γT (λ) = O(

√
T ln(T )dx+du+1). Furthermore, it may be the case that γT (λ) � dφ if the

eigenspectrum of the covariance matrices of the policies tend to concentrate in a lower dimensional
subspace. See Srinivas et al. [2009] for details and for how γT (λ) scales for a number of popular
kernels.
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The General Case, with Bounded Moments

Assumption 2. (Bounded second moments at x0) Assume that ct is a non-negative function for
all t and that the realized cumulative cost, when starting from x0, has uniformly bounded second
moments, over all policies and cost functions ct. Precisely, suppose for every ct,

sup
π∈Π

E

(H−1∑
h=0

ct(xh, uh)

)2 ∣∣∣∣ x0, π

 ≤ Vmax.

This assumption is substantially weaker than the standard bounded cost assumption used in prior
model-based RL works (e.g., [Sun et al., 2019, Lu and Van Roy, 2019]), and Lipschitz assumption
in terms of value functions (e.g., [Osband and Van Roy, 2014, Chowdhury and Gopalan, 2019]),
furthermore, the assumption only depends on the starting x0 as opposed to a uniform bound over the
state space. For special case of LQR, this corresponds to restricting Π to be the class containing all
stable linear controllers.
Theorem 3.2 (LC3 regret bound). Suppose Assumptions 1 and 2 hold. Set λ = σ2

‖W?‖22
and define

d̃ 2
T := γT (λ) ·

(
γT (λ) + dX + log(T ) +H

)
.

There exist constants C1, C2 ≤ 20 such that if LC3 (Alg. 1) is run with input parameters λ and C1

(in Equation 3.3), then following regret bound holds for all T ,

ELC3 [REGRETT ] ≤ C2 d̃T
√
VmaxHT.

While the above regret bound is applicable to the infinite dimensional RKHS setting and does not
require uniformly bounded features φ, it is informative to specialize the regret bound to the finite
dimensional case with bounded features.
Corollary 3.3 (LC3 Regret for finite dimensional, bounded features). Suppose that Assumptions 1
and 2 hold; dφ is finite; and that φ is uniformly bounded, with ‖φ(x, u)‖2 ≤ B. Under the same
parameter choices as in Theorem 3.2, we have, for all T ,

ELC3 [REGRETT ] ≤ C2

√
dφ

(
dφ + dX + log(T ) +H

)
VmaxHT · log

(
1 +

B2‖W ?‖22
σ2

TH

d

)
.

The above immediately follows from a bound on the finite dimensional information gain (see
Lemma C.5).

A few remarks are in order:
Remark 3.4 (Logarithmic parameter dependencies). It is worthwhile noting that our regret bound
has only logarithmic dependencies ‖W ?‖2 and σ2. Furthermore, in the case of finite dimensional
and bounded features, the bound is also only logarithmic in the bound B.
Remark 3.5 (Dimension and horizon dependencies). For the special case with bounded ct(x, u) ∈
[0, 1], bounded φ ∈ Rdφ , and dφ + dX ≥ H , LC3 has a regret bound of Õ(

√
dφ(dφ + dX )H3T ).

Our dimension dependence matches the lower bounds in [Dani et al., 2008] for linear bandits (where
H = 1 and dX = 1). Furthermore, for fixed dimension, one might expect an Ω(

√
H2T ) lower

bound based on results for tabular MDPs (see Azar et al. [2017], Dann and Brunskill [2015]). Ob-
taining sharp lower bounds is an important direction for future work.
Remark 3.6 (Linear Quadratic Regulators (LQR) as a special case). Our model generalizes the
Linear Quadratic Regulator (LQR). Specifically, we can set φ(x, u) = [x>, u>]>, c(x, u) =
x>Qx + u>Ru with Q and R being some PSD matrix. We can consider a policy class to be a
(subset) of all linear controls, i.e., Π = {π : u = Kx,K ∈ K ⊂ Rdu×dX }.
Consider the case where dX = du = d (with d > H) and the policy class consists of controllable
policies (e.g. see Cohen et al. [2019]). Here, our regret scales as Õ

(√
H3d4T

)
( since Vmax =

O(Hd2), e.g. see Simchowitz and Foster [2020]). While our rate is a factor of
√
d larger than the

minimax regret bound for an LQR [Simchowitz and Foster, 2020], which is Ω(
√
d3T ), our results

also apply to non-linear settings, as opposed to the globally linear LQR setting.
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The Stabilizing Case, with Bounded Coefficient of Variation

In many cases of practical interest, the optimal cost J?(x0; c) may be substantially less than the
cost of other controllers, i.e. J?(x0; c) � maxπ∈Π J

π(x0; c) <
√
Vmax. In such cases, one might

hope for an improved regret bound for sufficiently large T . We show that this is the case provided
our policy class satisfies a certain bounded coefficient of variation condition, which holds for LQRs.
Recall the coefficient of variation of a random variable is defined as the ratio of the standard deviation
to mean.

Assumption 3 (Bounded coefficient of variation at x0). Assume that the realized cumulative cost,
when starting from x0, has a uniformly bounded coefficient of variation. Specifically, assume there
exists an α ∈ R+, such that for every ct and all π ∈ Π,

E

(H−1∑
h=0

ct(xh, uh)

)2 ∣∣∣∣ x0, π

 ≤ (α Jπ(x0; ct)
)2

.

Remark 3.7 (α for LQRs). It is straightforward to verify that Assumption 3 is satisfied in LQRs
(with linear controllers) with α2 = 3.

Under this assumption, we can get a regret bound with a leading order term dependent on J?. The
lower order term will depend on a higher moment version of the information gain, defined as follows:

γ2,T (λ) := max
A

EA
[(

log
(

det
(
ΣT−1

)
/det

(
Σ0
) ))2

]
.

Again, for a finite dimensional RKHS with features whose norm bounded is by B, then γ2,T will
also be O((dφ log(1 + THB2/λ))2) (see Remark 3.1 and Lemma C.5).

Theorem 3.8 (J? regret bound). Suppose that Assumptions 1, 2, and 3 hold and that for all t,
J?(x0; ct) ≤ J?. Again, set λ = σ2

‖W?‖22
and define d̃T as in Theorem 3.2. There exist absolute

constants C1, C2 such that if LC3 (Alg. 1) is run with input parameters C1 and λ, then the following
regret bound holds for all T ,

ELC3 [REGRETT ] ≤ C2

(
αJ?d̃T

√
HT + αH

√
Vmax

(
d̃ 2
T + γ2,T (λ)

))
.

See the Discussion (Section 5) for comments on improving the J? dependence to
√
J?.

3.3 Proof Techniques

A key technical, “self-bounding” lemma in our proof bounds the difference in cost under two differ-
ent models, i.e. Jπ(x; c,W ?)− Jπ(x; c,W ), in terms of the second moment of the cumulative cost
itself, i.e. in terms of V π(x; c,W ?), where

V π(x; c,W ?) := E

(H−1∑
h=0

c(xh, uh)

)2 ∣∣∣∣ x0 = x, π,W ?

 .
Lemma 3.9 (Self-Bounding, Simulation Lemma). For any state x, non-negative cost function c,
and model W , we have:

Jπ(x; c,W ?)−Jπ(x; c,W ) ≤
√
HV π(x; c,W ?)

√√√√E

[
H−1∑
h=0

min

{
‖(W ? −W )φ(xh, uh)‖22

σ2
, 1

}]

where the expectation is with respect to π in W ? starting at x0 = x.

The proof, provided in Appendix B, involves the construction of a certain stopping time martingale
to handle the unbounded nature of the (realized) cumulative costs, along with a novel way to han-
dle Gaussian smoothing through the chi-squared distance function between two distributions. This
lemma helps us in constructing a potential function for the analysis of the LC3 algorithm.
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Table 1: Final performances for six Gym environments. Algorithm are run under the same condi-
tions of Wang et al. [2019]. The performances of PETS-CEM and PILCO are copied for reference,
and the performance of ground-truth MPPI (GT-MPPI) that has access to true model are also shown.
The results are averaged over four random seeds and a window size of 5,000 timesteps.

InvertedPendulum Acrobot CartPole Mountain Car Reacher Hopper

LC3 −0.0± 0.0 95.4± 52.5 199.7± 0.4 27.3± 8.1 −4.1± 1.6 −1016.5± 607.4
(Ranking) 1/11 1/11 2/11 2/11 1/11 7/11

GT-MPPI −0.0± 0.0 177.8± 25.0 199.8± 0.1 24.9± 2.9 −2.4± 0.1 2995.7± 215.3
PETS-CEM −20.5± 28.9 12.5± 29.0 199.5± 3.0 −57.9± 3.6 −12.3± 5.2 1125.0± 679.6
PILCO −194.5± 0.8 −394.4± 1.4 −1.9± 155.9 −59.0± 4.6 −13.2± 5.9 −1729.9± 1611.1

4 Experiments

We evaluate LC3 on three domains: a set of continuous control tasks, a maze environment that
requires exploration, and a dexterous manipulation task. Throughout these experiments, we use
model predictive path integral control (MPPI) [Williams et al., 2017] for planning, and posterior
sampling [Chapelle and Li, 2011, Russo and Van Roy, 2014] for exploration– we don’t implement
the optimism version of LC3 as analyzed, but rather implement a Thompson sampling variation. A
Bayesian regret of TS is plausible using the framework developed from Russo and Van Roy [2014].
The algorithms are implemented in the Lyceum framework under the Julia programming language
[Summers et al., 2020, Bezanson et al., 2017]. Comparison algorithms provided by Wang and Ba
[2019], Wang et al. [2019]. Note that these experiments use reward (negative cost) for evaluations.
Further details of the experiments in this section can be found in Appendix D.

Benchmark Tasks with Random Features We use some common benchmark tasks, including
MuJoCo [Todorov et al., 2012] environments from OpenAI Gym [Brockman et al., 2016]. We use
Random Fourier Features (RFF) [Rahimi and Recht, 2008] to represent φ. Table 1 shows the final
performances (at 200k timesteps) of LC3 with RFFs for six environments, and includes its ranking
compared to the benchmarks results from Wang et al. [2019]. We find that LC3 consistently performs
well on simple continuous control tasks, and it works well even without posterior sampling. When
the dynamical complexity increases, such as with the contact-rich Hopper model, our method’s
performance suffers, suggesting that these scenarios require different feature representation.

Exploring the Maze We construct a maze environment to study the exploration capability of LC3

(see Fig. 1 (Left)). State and control take values in [−1, 1]2 ⊂ R2 and in [−1, 1] ⊂ R, respec-
tively. The task is to bring an agent to the goal state being guided by the negative cost (reward)
−c(xh, uh) = 8 − ‖xh − [1, 1]>‖22. We use a one-hot vector of states and actions as features.
We compare the performances of LC3 to random walk that takes actions uniformly sampled within
[−1, 1], and to PETS-CEM, which is a representative model-based RL which uses uncertainty of
dynamics but without exploration. Fig. 1 (Right) plots the number of state-action pairs visited over
episodes. The agent always reaches the goal within 50 episodes under the best setting of LC3 while
random walk and PETS-CEM never be successful within 50 episodes.

Practical Application As we might consider learning model dynamics for the real world in ap-
plications such as robotics, we need sufficiently complex features. One solution to this problem is
creating an ensemble of parametric models, such as found in Tobin et al. [2017], Mordatch et al.
[2015]. In this experiment, we simulate a 33 degree of freedom robotic arm and hand system (see
Fig. 2 (Left)) that is tasked with picking up an spherical object, and we test LC3 with features φ
created by six ensemble of MuJoCo models. Fig. 2 (Right) plots the learning curves of LC3 with
different features.

5 Discussion

This work considers Kernelized Nonlinear Regulators (KNRs) and provides O(
√
T ) regret bounds

for KNRs in finite horizon episodic setting, where we utilize a number of analysis concepts from re-
inforcement learning and machine learning for continuous problems. Our analysis works for infinite
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Figure 1: Left: An illustration of the maze environment. Start and End states are [−1,−1]> and
[1, 1]>, respectively. Dark lines are “walls”. Right: The means and standard deviations, across four
random seeds, of the number of state-action pairs already explored over episodes. Covariance scale
is the posterior reshaping constant of Thompson sampling.

Figure 2: Left: An illustration of Armhand environment. Right: Performance curves, across 12
random seeds, of 1) LC3 with ensemble features of six parametric models, 2) RFF features, and 3)
the top layers of a neural network trained on a data set of 30 optimized trajectories with the correct
model. Within 10 attempts at the task, LC3 with ensemble features is successful. For reference, we
include the average reward of MPPI using a random model from the ensemble.

dimensional feature space, unbounded state space, and unbounded cost function. The key assump-
tion we use in our analysis is the bounded second moment of total cost (Assumption 2), which is
related to the stability of the system under the policies in the policy class.
Besides, we list a number of important future directions below.

Lower bounds: Sharp lower bounds would be important to develop for this very natural model.
As discussed in Remark 3.5, our results are already minimax optimal for some parameter scalings.

Improved upper bounds & J? vs
√
J? dependencies: We conjecture with stronger assumptions

on higher order moments that an optimal O(
√
H2T ) regret is achievable. It is also plausible that

with further higher moment assumptions then, for the stabilizing case, the dependence on J? can
be improved to

√
J?. Here, our conjecture is that one would, instead, need to make a boundedness

assumption on the “index of dispersion,” i.e., that the ratio of the variance to the mean is bounded;
we currently assume the ratio of the standard deviation to the mean is bounded.

The single trajectory case: It would be interesting to use these techniques to develop regret
bounds for the single trajectory case, under stronger stability and mixing assumptions of the process
(see Cohen et al. [2019] for the LQR case).

Feature learning: As of now, we have assumed the RKHS is known. A practically relevant direc-
tion would be to learn a good feature space.

9



6 Broader Impact

In this work, we present the first provably efficient algorithm for learning to control for Kernelized
Nonlinear Regulator which is originally proposed in control literature as Gaussian Process model.
Though our work focuses on the theoretical foundations of learning in nonlinear control, we believe
our work has broader impact in the following aspects.

Our work connects two communities: Reinforcement Learning Theory and Control Theory. Existing
models considered in RL literature that have provable guarantees hardly capture any continuous
control problems while existing control theory does not focus on the sample complexity aspect of
controlling unknown dynamical systems. Our work, for the first time, demonstrates that the popular
KNR model from control literature, is learnable from a learning theoretical perspective. While it
seems that two communities are more separated than would be ideal, we believe our work paves a
new way for further communication between two communities.

From a practical application perspective, the sample efficiency of our algorithm enables control in
complex dynamical settings without onerous large scale data collection, hence demonstrates po-
tentials for model learning and control in real world applications such as dexterous manipulation,
medical robotics, human robot interaction, and self-driving cars where complicated nonlinear dy-
namics are involved and data is often extremely expensive to collect.

Also, this line of work may be helpful to provide new means for handling model uncertainty in
nonlinear planning, which may be relevant in the broader context of safety and reliability. A clear
caveat here is understanding the role of model misspecification.

Lastly, but probably most importantly, our proposed algorithm along with other reinforcement learn-
ing algorithms could be ethically or physically harmful if misused; one needs to be very careful about
if the assumptions we made in this paper are reasonable in the application domains of interest and if
the cost function design is technically/ethically validated.
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