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Abstract

Miscalibration — a mismatch between a model’s confidence and its correctness — of
Deep Neural Networks (DNNs) makes their predictions hard to rely on. Ideally,
we want networks to be accurate, calibrated and confident. We show that, as
opposed to the standard cross-entropy loss, focal loss [19] allows us to learn
models that are already very well calibrated. When combined with temperature
scaling, whilst preserving accuracy, it yields state-of-the-art calibrated models.
We provide a thorough analysis of the factors causing miscalibration, and use
the insights we glean from this to justify the empirically excellent performance
of focal loss. To facilitate the use of focal loss in practice, we also provide a
principled approach to automatically select the hyperparameter involved in the loss
function. We perform extensive experiments on a variety of computer vision and
NLP datasets, and with a wide variety of network architectures, and show that our
approach achieves state-of-the-art calibration without compromising on accuracy in
almost all cases. Code is available at https://github.com/torrvision/
focal calibration.

1 Introduction

Deep neural networks have dominated computer vision and machine learning in recent years, and
this has led to their widespread deployment in real-world systems [2, |3} [11} [12] 38]]. However, many
current multi-class classification networks in particular are poorly calibrated, in the sense that the
probability values that they associate with the class labels they predict overestimate the likelihoods
of those class labels being correct in the real world. This is a major problem, since if networks are
routinely overconfident, then downstream components cannot trust their predictions. The underlying
cause is hypothesised to be that these networks’ high capacity leaves them vulnerable to overfitting
on the negative log-likelihood (NLL) loss they conventionally use during training [7]].

Given the importance of this problem, numerous suggestions for how to address it have been proposed.
Much work has been inspired by approaches that were not originally formulated in a deep learning
context, such as Platt scaling [30]], histogram binning [40], isotonic regression [41]], and Bayesian
binning and averaging [22} [21]. As deep learning has become more dominant, however, various
works have begun to directly target the calibration of deep networks. For example, Guo et al. [7]
have popularised a modern variant of Platt scaling known as temperature scaling, which works by
dividing a network’s logits by a scalar T" > 0 (learnt on a validation subset) prior to performing
softmax. Temperature scaling has the desirable property that it can improve the calibration of a
network without in any way affecting its accuracy. However, whilst its simplicity and effectiveness
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have made it a popular network calibration method, it does have downsides. For example, whilst it
scales the logits to reduce the network’s confidence in incorrect predictions, this also slightly reduces
the network’s confidence in predictions that were correct [[16]]. Moreover, it is known that temperature
scaling does not calibrate a model under data distribution shift [27].

By contrast, [[16] initially eschew temperature scaling in favour of minimising a differentiable proxy
for calibration error at training time, called Maximum Mean Calibration Error (MMCE), although
they do later also use temperature scaling as a post-processing step to obtain better results than
cross-entropy followed by temperature scaling [[7]. Separately, [20] propose training models on
cross-entropy loss with label smoothing instead of one-hot labels, and show that label smoothing has
a very favourable effect on model calibration.

In this paper, we propose a technique for improving network calibration that works by replacing
the cross-entropy loss conventionally used when training classification networks with the focal loss
proposed by [19]]. We observe that unlike cross-entropy, which minimises the KL divergence between
the predicted (softmax) distribution and the target distribution (one-hot encoding in classification
tasks) over classes, focal loss minimises a regularised KL divergence between these two distributions,
which ensures minimisation of the KL divergence whilst increasing the entropy of the predicted
distribution, thereby preventing the model from becoming overconfident. Since focal loss, as shown
in §4] is dependent on a hyperparameter, -y, that needs to be cross-validated, we also provide a method
for choosing v automatically for each sample, and show that it outperforms all the baseline models.

The intuition behind using focal loss is to direct the network’s attention during training towards
samples for which it is currently predicting a low probability for the correct class, since trying to
reduce the NLL on samples for which it is already predicting a high probability for the correct class
is liable to lead to NLL overfitting, and thereby miscalibration [7]. More formally, we show in §4]that
focal loss can be seen as implicitly regularising the weights of the network during training by causing
the gradient norms for confident samples to be lower than they would have been with cross-entropy,
which we would expect to reduce overfitting and improve the network’s calibration.

Overall, we make the following contributions:

1. In §E], we study the link that [[7]] observed between miscalibration and NLL overfitting in detail, and
show that the overfitting is associated with the predicted distributions for misclassified test samples
becoming peakier as the optimiser tries to increase the magnitude of the network’s weights to
reduce the training NLL.

2. In §4] we propose the use of focal loss for training better-calibrated networks, and provide both
theoretical and empirical justifications for this approach. In addition, we provide a principled
method for automatically choosing ~ for each sample during training.

3. In §B] we show, via experiments on a variety of classification datasets and network architectures,
that DNNs trained with focal loss are more calibrated than those trained with cross-entropy
loss (both with and without label smoothing), MMCE or Brier loss [1]]. Finally, we also make
the interesting observation that whilst temperature scaling may not work for detecting out-of-
distribution (OoD) samples, our approach can. We show that our approach is better at detecting
out-of-distribution samples, taking CIFAR-10 as the in-distribution dataset, and SVHN and
CIFAR-10-C as out-of-distribution datasets.

2 Problem Formulation

Let D = ((x;,y:))Y ; denote a dataset consisting of N samples from a joint distribution D(X,))),
where for each sample 4, x; € X is the inputand y; € Y = {1, 2, ..., K} is the ground-truth class
label. Let p; , = fo(y|x;) be the probability that a neural network f with model parameters 6 predicts
for a class y on a given input x;. The class that f predicts for x; is computed as §; = argmax, ¢y Pi y,
and the predicted confidence as p; = maxycy P; . The network is said to be perfectly calibrated
when, for each sample (x,y) € D, the confidence p is equal to the model accuracy P(§ = y|p), i.e.
the probability that the predicted class is correct. For instance, of all the samples to which a perfectly
calibrated neural network assigns a confidence of 0.8, 80% should be correctly predicted.

A popular metric used to measure model calibration is the expected calibration error (ECE) [22],
defined as the expected absolute difference between the model’s confidence and its accuracy, i.e.
E [ [P(9 = y|p) — p| ]. Since we only have finite samples, the ECE cannot in practice be computed

using this definition. Instead, we divide the interval [0, 1] into M equispaced bins, where the i*" bin



is the interval (7, 77 |. Let B; denote the set of samples with confidences belonging to the i*" bin.

The accuracy A; of this bin is computed as A; = ﬁ >_jen: 1(U; = y;), where 1 is the indicator
function, and §j; and y; are the predicted and ground-truth labels for the 4t sample. Similarly, the
confidence C; of the i*® bin is computed as C; = ﬁ > jeB; Dj, i.e. Cj is the average confidence of
all samples in the bin. The ECE can be approximated as a weighted average of the absolute difference

between the accuracy and confidence of each bin: ECE = Z£1 ‘ﬁ;‘l |A; — Cy.

A similar metric, the maximum calibration error (MCE) [22], is defined as the maximum absolute
difference between the accuracy and confidence of each bin: MCE = max;ec1,.. a3y [Ai — Cil.

AdaECE: One disadvantage of ECE is the uniform bin width. For a trained model, most of the
samples lie within the highest confidence bins, and hence these bins dominate the value of the ECE.
We thus also consider another metric, AdaECE (Adaptive ECE), for which bin sizes are calculated
so as to evenly distribute samples between bins (similar to the adaptive binning procedure in [25]):

AdaECE = "M B4, — ¢y s vi,j - |Bi| = |By.

Classwise-ECE: The ECE metric only considers the probability of the predicted class, without
considering the other scores in the softmax distribution. A stronger definition of calibration would
require the probabilities of all the classes in the softmax distribution to be calibrated [|14, |36} 39} [15].
This can be achieved with a simple classwise extension of the ECE metric: ClasswiseECE =

LM Zf{:l ‘Bji,’" |A; ; — C; |, where K is the number of classes, B;; denotes the set of samples

from the j'" class in the i*" bin, A;; = ﬁ ZkeB” 1(j=yx)and C; ; = ﬁ ZkeBu Drj-

A common way of visualising calibration is to use a reliability plot [26], which plots the accuracies
of the confidence bins as a bar chart (see Appendix Figure[A.T). For a perfectly calibrated model,
the accuracy for each bin matches the confidence, and hence all of the bars lie on the diagonal. By
contrast, if most of the bars lie above the diagonal, the model is more accurate than it expects, and is
under-confident, and if most of the bars lie below the diagonal, then it is over-confident.

3 What Causes Miscalibration?

We now discuss why high-capacity neural networks, despite achieving low classification errors on
well-known datasets, tend to be miscalibrated. A key empirical observation made by [7]] was that
poor calibration of such networks appears to be linked to overfitting on the negative log-likelihood
(NLL) during training. In this section, we further inspect this observation to provide new insights.

For the analysis, we train a ResNet-50 network on CIFAR-10 with state-of-the-art performance
settings [31]]. We use Stochastic Gradient Descent (SGD) with a mini-batch of size 128, momentum
of 0.9, and learning rate schedule of {0.1,0.01,0.001} for the first 150, next 100, and last 100 epochs,
respectively. We minimise cross-entropy loss (a.k.a. NLL) £., which, in a standard classification
context, is — log p; ,, where p; ., is the probability assigned by the network to the correct class y; for
the i*" sample. Note that the NLL is minimised when for each training sample i, f); ,, = 1, whereas
the classification error is minimised when p; ,,, > p; ,, for all y # y;. This indicates that even when
the classification error is 0, the NLL can be positive, and the optimisation algorithm can still try to
reduce it to O by further increasing the value of p; ,,, for each sample (see Appendix @)

To study how miscalibration occurs during training, we plot the average NLL for the train and test
sets at each training epoch in Figures [I[a) and[I{b). We also plot the average NLL and the entropy of
the softmax distribution produced by the network for the correctly and incorrectly classified samples.
In Figure[T|c), we plot the classification errors on the train and test sets, along with the test set ECE.

Curse of misclassified samples: Figures[I(a) and [[(b) show that although the average train NLL
(for both correctly and incorrectly classified training samples) broadly decreases throughout training,
after the 150" epoch (where the learning rate drops by a factor of 10), there is a marked rise in
the average test NLL, indicating that the network starts to overfit on average NLL. This increase in
average test NLL is caused only by the incorrectly classified samples, as the average NLL for the
correctly classified samples continues to decrease even after the 150" epoch. We also observe that
after epoch 150, the test set ECE rises, indicating that the network is becoming miscalibrated. This
corroborates the observation in [7]] that miscalibration and NLL overfitting are linked.

Peak at the wrong place: We further observe that the entropies of the softmax distributions for both
the correctly and incorrectly classified test samples decrease throughout training (in other words, the
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Figure 1: Metrics related to calibration plotted whilst training a ResNet-50 network on CIFAR-10.

distributions get peakier). This observation, coupled with the one we made above, indicates that for
the wrongly classified test samples, the network gradually becomes more and more confident about
its incorrect predictions.

Weight magnification: The increase in confidence of the network’s predictions can happen if the
network increases the norm of its weights W to increase the magnitudes of the logits. In fact,
cross-entropy loss is minimised when for each training sample i, p; ,, = 1, which is possible only
when ||[W|| — oo. Cross-entropy loss thus inherently induces this tendency of weight magnification
in neural network optimisation. The promising performance of weight decay [7] (regulating the norm
of weights) on the calibration of neural networks can perhaps be explained using this. This increase
in the network’s confidence during training is one of the key causes of miscalibration.

4 Improving Calibration using Focal Loss

As discussed in §3] overfitting on NLL, which is observed as the network grows more confident on all
of its predictions irrespective of their correctness, is strongly related to poor calibration. One cause
of this is that the cross-entropy objective minimises the difference between the softmax distribution
and the ground-truth one-hot encoding over an entire mini-batch, irrespective of how well a network
classifies individual samples in the mini-batch. In this work, we study an alternative loss function,
popularly known as focal loss [19]], that tackles this by weighting loss components generated from
individual samples in a mini-batch by how well the model classifies them. For classification tasks
where the target distribution is a one-hot encoding, it is defined as Ly = —(1 — p; 4, ) log Pi v,
where + is a user-defined hyperparameterEl

Why might focal loss improve calibration? We know that cross-entropy forms an upper bound
on the KL-divergence between the target distribution ¢ and the predicted distribution p, i.e. L. >
KL(g||p), so minimising cross-entropy results in minimising KL(g||p). Interestingly, a general
form of focal loss can be shown to be an upper bound on the regularised KL-divergence, where the
regulariser is the negative entropy of the predicted distribution p, and the regularisation parameter is
7, the hyperparameter of focal loss (a proof of this can be found in Appendix [B):

Ly > KL(ql[p) — vH[p]. M

The most interesting property of this upper bound is that it shows that replacing cross-entropy with
focal loss has the effect of adding a maximum-entropy regulariser [29] to the implicit minimisation
that was previously being performed. In other words, trying to minimise focal loss minimises the KL
divergence between p and ¢, whilst simultaneously increasing the entropy of the predicted distribution
p. Note, in the case of ground truth with one-hot encoding, only the component of the entropy of p
corresponding to the ground-truth index, y(—p; ,, log P 4. ), will be maximised (refer Appendix .
Encouraging the predicted distribution to have higher entropy can help avoid the overconfident
predictions produced by DNNs (see the ‘Peak at the wrong place’ paragraph of §3), and thereby
improve calibration.

Empirical observations: To analyse the behaviour of neural networks trained on focal loss, we use
the same framework as mentioned above, and train four ResNet-50 networks on CIFAR-10, one using
cross-entropy loss, and three using focal loss with v = 1,2 and 3. Figure[2{a) shows that the test NLL

2We note in passing that unlike cross-entropy loss, focal loss in its general form is not a proper loss function,
as minimising it does not always lead to the predicted distribution p being equal to the target distribution g (see
Appendix [B]for the relevant definition and a longer discussion). However, when ¢ is a one-hot encoding (as in
our case, and for most classification tasks), minimising focal loss does lead to p being equal to q.
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Figure 2: How metrics related to model calibration change whilst training several ResNet-50 networks
on CIFAR-10, using either cross-entropy loss, or focal loss with v set to 1, 2 or 3.

for the cross-entropy model significantly increases towards the end of training (before saturating),
whereas the NLLs for the focal loss models remain low. To better understand this, we analyse the
behaviour of these models for correctly and incorrectly classified samples. Figure 2[b) shows that
even though the NLLs for the correctly classified samples broadly-speaking decrease over the course
of training for all the models, the NLLs for the focal loss models remain consistently higher than that
for the cross-entropy model throughout training, implying that the focal loss models are relatively
less confident than the cross-entropy model for samples that they predict correctly. This is important,
as we have already discussed that it is overconfidence that normally makes deep neural networks
miscalibrated. Figure [2Jc) shows that in contrast to the cross-entropy model, for which the NLL
for misclassified test samples increases significantly after epoch 150, the rise in this value for the
focal loss models is much less severe. Additionally, in Figure [2{d), we notice that the entropy of the
softmax distribution for misclassified test samples is consistently (if marginally) higher for focal loss
than for cross-entropy (consistent with Equation [T)).

Note that from Figure [2(a), one may think that applying early stopping when training a model on
cross-entropy can provide better calibration scores. However, there is no ideal way of doing early
stopping that provides the best calibration error and the best test set accuracy. For fair comparison,
we chose 3 intermediate models for each loss function with the best val set ECE, NLL and accuracy,
and observed that: a) for every stopping criterion, focal loss outperforms cross-entropy in both test
set accuracy and ECE, b) when using val set ECE as a stopping criterion, the intermediate model
for cross-entropy indeed improves its test set ECE, but at the cost of a significantly higher test error.
Please refer to Appendix [J] for more details.

As per §3] an increase in the test NLL and a decrease in the test entropy for misclassified samples,
along with no corresponding increase in the test NLL for the correctly classified samples, can be
interpreted as the network starting to predict softmax distributions for the misclassified samples that
are ever more peaky in the wrong place. Notably, our results in Figures 2(b), 2[c) and 2(d) clearly
show that this effect is significantly reduced when training with focal loss rather than cross-entropy,
leading to a better-calibrated network whose predictions are less peaky in the wrong place.

Theoretical justification: As mentioned previously, once a model trained using cross-entropy
reaches high training accuracy, the optimiser may try to further reduce the training NLL by increasing
the confidences for the correctly classified samples. It may achieve this by magnifying the network
weights to increase the magnitudes of the logits. To verify this hypothesis, we plot the Lo norm of the
weights of the last linear layer for all four networks as a function of the training epoch (see Figure
[2le)). Notably, although the norms of the weights for the models trained on focal loss are initially
higher than that for the cross-entropy model, a complete reversal in the ordering of the weight norms
occurs between epochs 150 and 250. In other words, as the networks start to become miscalibrated,
the weight norm for the cross-entropy model also starts to become greater than those for the focal loss
models. In practice, this is because focal loss, by design, starts to act as a regulariser on the network’s
weights once the model has gained a certain amount of confidence in its predictions. This behaviour
of focal loss can be observed even on a much simpler setup like a linear model (see Appendix [C). To
better understand this, we start by considering the following proposition (proof in Appendix [D):

Proposition 1. For focal loss L and cross-entropy L., the gradients %% = %ﬁ; 9(Di,ys»7Y), where

g(p,v) = (1 —p)" —yp(1 —p)"~tlog(p), v € RT is the focal loss hyperparameter, and w denotes
Ly o
aw || < 15l i 9(Bii) € [0,1)

ow
Proposition [[]shows the relationship between the norms of the gradients of the last linear layer for
focal loss and cross-entropy loss, for the same network architecture. Note that this relation depends
on a function g(p,7), which we plot in Figure a) to understand its behaviour. It is clear that for

the parameters of the last linear layer. Thus H
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every -, there exists a (different) threshold py such that for all p € [0, po], g(p,y) > 1, and for all
p € (po, 1], g(p,y) < 1. (For example, for v = 1, pg ~ 0.4.) We use this insight to further explain
why focal loss provides implicit weight regularisation.

Implicit weight regularisation: For a network trained using focal loss with a fixed ~, during the
initial stages of the training, when p; ,,, € (0,p0), §(Pi,y,,y) > 1. This implies that the confidences
of the focal loss model’s predictions will initially increase faster than they would for cross-entropy.
However, as soon as p; ,, crosses the threshold py, g(p; ,,,7) falls below 1 and reduces the size of
the gradient updates made to the network weights, thereby having a regularising effect on the weights.
This is why, in Figure {e), we find that the weight norms of the models trained with focal loss are
initially higher than that for the model trained using cross-entropy. However, as training progresses,
we find that the ordering of the weight norms reverses, as focal loss starts regularising the network
weights. Moreover, we can draw similar insights from Figures [3(b), B[(c) and [3(d), in which we
plot histograms of the gradient norms of the last linear layer (over all samples in the training set) at
epochs 10, 100 and 200, respectively. At epoch 10, the gradient norms for cross-entropy and focal
loss are similar, but as training progresses, those for cross-entropy decrease less rapidly than those
for focal loss, indicating that the gradient norms for focal loss are consistently lower than those for
cross-entropy throughout training.

Finally, observe in Figure a) that for higher ~ values, the fall in g(p, ) is steeper. We would thus
expect a greater weight regularisation effect for models that use higher values of . This explains
why, of the three models that we trained using focal loss, the one with v = 3 outperforms (in terms
of calibration) the one with v = 2, which in turn outperforms the model with v = 1. Based on
this observation, one might think that, in general, a higher value of gamma would lead to a more
calibrated model. However, this is not the case, as we notice from Figure a) that for v > 7, g(p, )
reduces to nearly O for a relatively low value of p (around 0.5). As a result, using values of -y that are
too high will cause the gradients to die (i.e. reduce to nearly 0) early, at a point at which the network’s
predictions remain ambiguous, thereby causing the training process to fail.

How to choose : As discussed, focal loss provides implicit entropy and weight regularisation, which
heavily depend on the value of +. Finding an appropriate v is normally done using cross-validation.
Also, traditionally, -y is fixed for all samples in the dataset. However, as shown, the regularisation
effect for a sample ¢ depends on p; ,,, i.e. the predicted probability for the ground truth label for the
sample. It thus makes sense to choose -y for each sample based on the value of p; ,,. To this end, we
provide Proposition 2] (proof in Appendix D)), which we use to find a solution to this problem:

Proposition 2. Given a po, for1 > p > po >0, g(p,v) < 1forally > v* = § + @W,l( -

Q(1—a/b)

5 log a), where a = 1 — pg, b = pg log po, and W_1 is the Lambert-W function [4]. Moreover,
Sforp > po > 0and~ > ~*, the equality g(p,~) = 1 holds only for p = py and v = v*.

It is worth noting that there exist multiple values of v where g(p,~y) < 1 for all p > py. For a given
Do, Propositionallows us to compute v s.t. (i) g(po,y) = 1; (i) g(p,v) > 1 for p € [0, py); and (iii)
g(p,7) < 1for p € (po, 1]. This allows us to control the magnitude of the gradients for a particular
sample ¢ based on the current value of p; ,,, and gives us a way of obtaining an informed value of
for each sample. For instance, a reasonable policy might be to choose v s.t. g(p;,y,,y) > 1if iy,
is small (say less than 0.25), and ¢(p; ,,,7) < 1 otherwise. Such a policy will have the effect of
making the weight updates larger for samples having a low predicted probability for the correct class
and smaller for samples with a relatively higher predicted probability for the correct class.
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Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-3 (Ours) FLSD-53 (Ours)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T Pre T Post T

ResNet-50 17.52 3.42Q2.1) 6.52 3.64(1.1) 1532 2.38(1.8) 7.81 4.01(1.1) 5.13 1.97(1.1) 4.5 2.01.1)
CIFAR-100 ResNet-110 19.05  4.43(2.3) 7.88 4.65(1.2) 19.14  3.86(2.3) 11.02  5.89(1.1) 8.64 3.95(1.2) 8.56 4.12(1.2)
: Wide-ResNet-26-10 1533 2.88(2.2) 4.31 2.7(1.1) 13.17  4.37(1.9) 4.84 4.84(1) 213 2.13(1) 3.03 1.64(1.1)
DenseNet-121 2098  4.27(2.3) 517 2.29(1.1) 19.13  3.06(2.1) 1289 7.52(1.2) 4.15 1.25(1.1) 3.73 1.31(1.1)
ResNet-50 4.35 1.35(2.5) 1.82 1.08(1.1) 4.56 1.19(2.6) 2.96 1.67(0.9) 1.48 1.42(1.1) 1.55 0.95(1.1)
CIFAR-10 ResNet-110 4.41 1.09(2.8) 2.56 1.25(1.2) 5.08 1.42(2.8) 2.09 2.09(1) 1.55 1.02(1.1) 1.87 1.07(1.1)
Wide-ResNet-26-10 3.23 0.92(2.2) 1.25 1.25(1) 3.29 0.86(2.2) 4.26 1.84(0.8) 1.69 0.97(0.9) 1.56 0.84(0.9)
DenseNet-121 4.52 1.312.4) 1.53 1.53(1) 5.1 1.61(2.5) 1.88 1.82(0.9) 1.32 1.26(0.9) 1.22 1.22(1)
Tiny-ImageNet ResNet-50 1532 5.48(1.4) 4.44 4.13(0.9) 13.01 5.55(1.3) 1523 6.51(0.7) 1.87 1.87(1) 1.76 1.76(1)

20 Newsgroups  Global Pooling CNN 17.92  2.39(3.4) 1358 3.22(2.3) 1548  6.78(2.2) 4.79 2.54(1.1) 8.67 3.51(1.5) 6.92 2.19(1.5)

SST Binary Tree-LSTM 7.37 2.62(1.8) 9.01 2.79(2.5) 5.03 4.02(1.5) 4.84 4.11(1.2) 16.05 1.78(0.5) 9.19 1.83(0.7)

Table 1: ECE (%) computed for different approaches both pre and post temperature scaling (cross-
validating T on ECE). Optimal temperature for each method is indicated in brackets. T' =~ 1 indicates
innately calibrated model.

Following the aforementioned arguments, we choose a threshold pg of 0.25, and use Proposition 2] to
obtain a vy policy such that g(p, ) is observably greater than 1 for p € [0,0.25) and g(p,y) < 1 for
p € (0.25,1]. In particular, we use the following schedule: if p; ,, € [0,0.2), then v = 5, otherwise
v = 3 (note that g(0.2,5) ~ 1 and g(0.25,3) ~ 1: see Figure[3|a)). We find this ~ policy to perform
consistently well across multiple classification datasets and network architectures. Having said that,
one can calculate multiple such schedules for -y following Proposition 2} using the intuition of having
arelatively high « for low values of p; ,,, and a relatively low -y for high values of p; ,, .

5 Experiments

We conduct image and document classification experiments to test the performance of focal loss. For
the former, we use CIFAR-10/100 [13]] and Tiny-ImageNet [6] , and train ResNet-50, ResNet-110 [8],
Wide-ResNet-26-10 [42] and DenseNet-121 [[10] models, and for the latter, we use 20 Newsgroups
[17] and Stanford Sentiment Treebank (SST) [32] datasets and train Global Pooling CNN [18]] and
Tree-LSTM [33]] models. Further details on the datasets and training can be found in Appendix [E]

Baselines Along with cross-entropy loss, we compare our method against the following baselines:
a) MMCE (Maximum Mean Calibration Error) [16], a continuous and differentiable proxy for
calibration error that is normally used as a regulariser alongside cross-entropy, b) Brier loss [1]], the
squared error between the predicted softmax vector and the one-hot ground truth encoding (Brier
loss is an important baseline as it can be decomposed into calibration and refinement [3]), and c)
Label smoothing [20] (LS): given a one-hot ground-truth distribution q and a smoothing factor «
(hyperparameter), the smoothed vector s is obtained as s; = (1 — a)q; + a(1 —q,)/(K — 1), where
s; and q; denote the i*" elements of s and q respectively, and K is the number of classes. Instead of
q, s is treated as the ground truth. We train models using o = 0.05 and a = 0.1, but find a = 0.05
to perform better. We thus report the results obtained from LS-0.05 with o = 0.05.

Focal Loss: As mentioned in §4] our proposed approach is the sample-dependent schedule FLSD-53
(y = 5 for p,, € [0,0.2), and v = 3 for p,, € [0.2, 1]), which we find to perform well across most
classification datasets and network architectures. In addition, we also train other focal loss baselines,
including ones with ~ fixed to 1, 2 and 3, and also ones that have a training epoch-dependent schedule
for v. Among the focal loss models trained with a fixed -, using validation set we find v = 3 (FL-3)
to perform the best. Details of all these approaches can be found in Appendix [F

Temperature Scaling: In order to compute the optimal temperature, we use two different methods:
(a) learning the temperature by minimising val set NLL, and (b) performing grid search over tempera-



Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-3 (Ours) FLSD-53 (Ours)

ResNet-50 23.3 23.39 232 23.43 22.75 23.22
CIFAR-100 ResNet-110 22.73 25.1 23.07 2343 22.92 22.51
: Wide-ResNet-26-10 20.7 20.59 20.73 21.19 19.69 20.11
DenseNet-121 24.52 23.75 24.0 24.05 23.25 22.67
ResNet-50 4.95 5.0 4.99 5.29 5.25 4.98
ResNet-110 4.839 5.48 5.4 5.52 5.08 5.42
CIFAR-10 \yige ResNet-26-10 3.86 408 391 42 413 401
DenseNet-121 5.0 5.11 541 5.09 5.33 5.46
Tiny-ImageNet ResNet-50 49.81 53.2 51.31 47.12 49.69 49.06
20 Newsgroups  Global Pooling CNN 26.68 27.06 27.23 26.03 29.26 27.98
SST Binary Tree-LSTM 12.85 12.85 11.86 13.23 12.19 12.8
Table 2: Test set error (%) computed for different approaches.
Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05 FL-3 (Ours) FLSD-53 (Ours)
Pre T Post T PreT  PostT  PreT Post T PreT  PostT  PreT Post T Pre T Post T
ResNet-110 61.71 59.66 94.80 95.13 85.31 85.39 68.68 68.68 96.74 96.92 90.83 90.97
CIFAR-10/SVHN Wide-ResNet-26-10 96.82 97.62 94.51 94.51 97.35 97.95 84.63 84.66 98.19 98.05 98.29 98.20
ResNet-110 77.53 75.16 84.09 83.86 71.96 70.02 72.17 72.18 82.27 82.18 85.05 84.70

CIFAR-IO/CIFAR-10-C e ResNet-26-10 8106 8068 8503 8503 8217 8172 7110 7116 8217 8186 87.05  87.30

Table 3: AUROC (%) computed for models trained on CIFAR-10 (in-distribution), and using SVHN
and CIFAR-10-C (Gaussian Noise corruption with severity level 5) respectively as the OoD datasets.

tures between 0 and 10, with a step of 0.1, and finding the one that minimises val set ECE. We find
the second approach to produce stronger baselines and report results obtained using this approach.

Performance Gains: We report ECE% (computed using 15 bins) along with optimal temperatures in
Tableﬂ], and test set error in Table@ We report the other calibration scores (AdaECE, Classwise-ECE,
MCE and NLL) in Appendix [F] Firstly, for all dataset-network pairs, we obtain very competitive
classification accuracies (shown in Table2)). Secondly, it is clear from Table[l} and Tables[F1|and|F2]
in the appendix, that focal loss with sample-dependent v and with v = 3 outperform all the baselines:
cross-entropy, label smoothing, Brier loss and MMCE. They broadly produce the lowest calibration
errors both before and after temperature scaling. This observation is particularly encouraging, as
it also indicates that a principled method of obtaining values of v for focal loss can produce a very
calibrated model, with no need to use validation set for tuning . As shown in Figure §] we also
compute 90% confidence intervals for ECE, AdaECE and Classwise-ECE using 1000 bootstrap
samples following [13]], and using ResNet-50/110 trained on CIFAR-10 (see Appendix [G]for more
results). Note that FLSD-53 produces the lowest calibration errors in general, and the difference in
the metric values between FLSD-53 and other approaches (except Brier loss) is mostly statistically
significant (i.e., confidence intervals don’t overlap), especially before temperature scaling. In addition
to the lower calibration errors, there are other advantages of focal loss as well, which we explore next.

More advantages of focal loss: Behaviour on Out-of-Distribution (OoD) data: A perfectly calibrated
model should have low confidence whenever it misclassifies, including when it encounters data which
is OoD [34]. Although temperature scaling calibrates a model under the i.i.d. assumption, it is
known to fail under distributional shift [27]. Since focal loss has implicit regularisation effects on the
network (see §4)), we investigate if it helps to learn representations that are more robust to OoD data.
To do this, we use ResNet-110 and Wide-ResNet-26-10 trained on CIFAR-10 and consider the SVHN
[23] test set and CIFAR-10-C [9] with Gaussian noise corruption at severity 5 as OoD data. We use
the entropy of the softmax distribution as the measure of confidence or uncertainty, and report the
corresponding AUROC scores both before and after temperature scaling in Table[3] For both SVHN
and CIFAR-10-C (using Gaussian noise), models trained on focal loss clearly obtain the highest
AUROC scores. Note that Focal loss even without temperature scaling performs better than other
methods with temperature scaling. We also present the ROC plots pre and post temperature scaling
for models trained on CIFAR-10 and tested on SVHN in Figure[5] Thus, it is quite encouraging to
note that models trained on focal loss are not only better calibrated under the i.i.d. assumption, but
also seem to perform better than other competitive loss functions when we try shifting the distribution
from CIFAR-10 to SVHN or CIFAR-10-C (pre and post temperature scaling).

Confident and Calibrated Models: It is worth noting that focal loss with sample-dependent « has
optimal temperatures that are very close to 1, mostly lying between 0.9 and 1.1 (see Table[I). This
property is shown by the Brier loss and label smoothing models as well, albeit with worse calibration



1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8
o 0.6 — CE o 0.6 o 0.6 — CE o 0.6 — CE
a BS o o BS o BS
o4 —— MMCE o4 o4 —— MMCE o4 — MMCE
— s — s — s
0.2 — FL(y=3) 0.2 0.2 — FL(y=3) 0.2 — FL(y=3)
0.0 — FLSD-53 0 0 — FLSD-53 0 — FLSD-53
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
FPR FPR FPR FPR

(a) ResNet-110 (pre-T)  (b) ResNet-110 (post-T) (c) Wide-ResNet (pre-T) (d) Wide-ResNet (post-T)

Figure 5: ROC plots obtained from ResNet-110 and Wide-ResNet-26-10 architectures trained on
CIFAR-10 (in-distribution) and tested on SVHN (OoD), both pre and post temperature scaling.

errors. By contrast, the temperatures for cross-entropy and MMCE models are significantly higher,
with values lying between 2.0 and 2.8. An optimal temperature close to 1 indicates that the model
is innately calibrated, and cannot be made significantly more calibrated by temperature scaling. In
fact, a temperature much greater than 1 can make a model underconfident in general, as it is applied
irrespective of the correctness of model outputs. We observe this empirically for ResNet-50 and
ResNet-110 trained on CIFAR-10. Although models trained with cross-entropy have much higher
confidence before temperature scaling than those trained with focal loss, after temperature scaling,
focal loss models are significantly more confident in their predictions. We provide quantitative and
qualitative empirical results to support this claim in Appendix

6 Conclusion

In this paper, we have studied the properties of focal loss, an alternative loss function that can yield
classification networks that are more naturally calibrated than those trained using the conventional
cross-entropy loss, while maintaining accuracy. In particular, we show in §4]that focal loss implic-
itly maximises entropy while minimising the KL divergence between the predicted and the target
distributions. We also show that, because of its design, it naturally regularises the weights of a
network during training, reducing NLL overfitting and thereby improving calibration. Furthermore,
we empirically observe that models trained using focal loss are not only better calibrated under i.i.d.
assumptions, but can also be better at detecting OoD samples which we show by taking CIFAR-10 as
the in-distribution dataset and SVHN and CIFAR-10-C as out-of-distribution datasets, something
which temperature scaling fails to achieve.



7 Broader Impact

Our work shows that using the right kind of loss function can lead to a calibrated model. This helps
in improving the reliability of these models when used in real-world applications. It can help in
deployment of the models such that users can be alerted when its prediction may not be trustworthy.
We do not directly see a situation where calibrated neural networks can have a negative impact on
society, but we do believe that research on making models more calibrated will help improve fairness
and trust in AL
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