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A Proofs

Lemma 1. Suppose 𝑚 ≥ 4. Then𝔼𝒙 [𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)]1 + 2𝖻(𝑚) ≤ 𝖱𝑚(𝖢D(F),D) ≤ 𝔼𝒙 [𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)]1 − 2𝖻(𝑚) .
Proof. We first show the rightmost inequality. Starting from the definition of the RA of the
distributional centralization, and then subtracting and adding 𝔼̂𝒙[𝑓], it holds𝖱𝑚(𝖢D(F),D) = 𝔼𝝈,𝒙 [sup𝑓∈F ∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖((𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓]) + (𝔼̂𝒙[𝑓] − 𝔼D[𝑓]))∣] .
The subadditivity of the supremum and of the absolute value, and the linearity of the
expectation allow us to split the r.h.s. into two summands and obtain𝖱𝑚(𝖢D(F),D) ≤ 𝔼𝝈,𝒙 [sup𝑓∈F ∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])∣]+𝔼𝝈,𝒙 [sup𝑓∈F ∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝔼̂𝒙[𝑓] − 𝔼D[𝑓])∣] .
Both terms on the r.h.s. can be seen as expectations w.r.t. 𝒙 of the ERAs on 𝒙 of two
sample-dependent families: the empirical centralization of F , and the family

K𝒙 ≐ {𝑦 ↦ 𝔼̂𝒙[𝑓] − 𝔼D[𝑓], 𝑓 ∈ F} .
Each function in K𝒙 is constant. Thus, we can write𝖱𝑚(𝖢D(F),D) ≤ 𝔼𝒙[𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)] + 𝔼𝒙[𝖱̂𝑚(K𝒙, 𝒙)] . (13)

Using (5) and the linearity of expectation we have that, for each 𝒙 ∈ X𝑚, it holds𝖱̂𝑚(K𝒙, 𝒙) = sup𝑓∈F|𝔼̂𝒙[𝑓] − 𝔼D[𝑓]|𝖻(𝑚) = SD(F , 𝒙)𝖻(𝑚) = SD(𝖢D(F), 𝒙)𝖻(𝑚), (14)

where in the last step we use the fact that the SD is invariant to shifting of functions.
Continuing from (13) and using (14) and the rightmost inequality of (4), we obtain𝖱𝑚(𝖢D(F),D) ≤ 𝔼𝒙[𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)] + 2𝖱𝑚(𝖢D(F),D)𝖻(𝑚) .
The hypothesis 𝑚 ≥ 4 implies 1 − 2𝖻(𝑚) > 0 (see (5)), so we can rewrite the above as𝖱𝑚(𝖢D(F),D) ≤ 11 − 2𝖻(𝑚)𝔼𝒙[𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)],
which completes the proof of the upper bound.

We next show the lower bound. Starting from the definition of 𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙) and subtracting
and adding 𝔼D[𝑓], it holds𝔼𝒙[𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)] = 𝔼𝝈,𝒙 [sup𝑓∈F∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖((𝑓(𝑥𝑖) − 𝔼D[𝑓]) + (𝔼D[𝑓] − 𝔼̂𝒙[𝑓]))∣] .
The subadditivity of the supremum and of the absolute value, and the linearity of the
expectation allow us to split the r.h.s. into two summands and obtain𝔼𝒙[𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)] ≤𝔼𝝈,𝒙 [sup𝑓∈F ∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝑓(𝑥𝑖) − 𝔼D[𝑓])∣]+ 𝔼𝝈,𝒙 [sup𝑓∈F ∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝔼D[𝑓] − 𝔼̂𝒙[𝑓])∣] . (15)
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The first term on the r.h.s. is the RA of the distributional centralization of F , i.e., it is𝖱𝑚(𝖢D(F),D). The second term is the expectation w.r.t. 𝒙 of the ERA on 𝒙 of the family

Z𝒙 ≐ {𝑥 ↦ 𝔼D[𝑓] − 𝔼̂𝒙[𝑓], 𝑓 ∈ F} .
Each function in Z𝒙 is constant. Proceeding in exactly the same way as we did for the family
K𝒙 in the proof of the upper bound, we can write𝖱̂𝑚(Z𝒙, 𝒙) = SD(𝖢D(F), 𝒙)𝖻(𝑚) . (16)
Continuing from (15) and using (16) and the rightmost inequality of (4), we obtain𝔼𝒙[𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)] ≤ 𝖱𝑚(𝖢D(F),D) + 2𝖱𝑚(𝖢D(F),D)𝖻(𝑚) ≤ (1 + 2𝖻(𝑚))𝖱𝑚(𝖢D(F),D),
and our proof is complete.

Definition 2. A function 𝖹 ∈ X𝑚 → ℝ is (𝛼,𝛽)-self-bounding with scale 𝛾, for some 𝛼 > 0,𝛽 ≥ 0, 𝛾 ≥ 0 if for each 𝑗 = 1, … , 𝑚, there exists a function 𝖹𝑗 ∈ X𝑚 → ℝ such that, for any𝒙 ∈ X𝑚 it holds that

1. 𝖹𝑗(𝒙) does not depend on the 𝑗-th component 𝑥𝑗 of 𝒙; and

2. it holds 𝖹𝑗(𝒙) ≤ 𝖹(𝒙) ≤ 𝖹𝑗(𝒙) + 𝛾;

Additionally, the functions 𝖹𝑗, 𝑗 = 1, … , 𝑚, must be such that, for any 𝒙 ∈ X𝑚, it holds𝑚∑𝑗=1(𝖹(𝒙) − 𝖹𝑗(𝒙)) ≤ 𝛼𝖹(𝒙) + 𝛽.

Theorem 6. Let 𝖹 be a function from X𝑚 to ℝ that is (𝛼, 𝛽)-self-bounding with scale 𝛾, for𝛼 ≥ 1/3. Let 𝛿 ∈ (0, 1) and let 𝒙 be a collection of 𝑚 i.i.d. samples from X . With probability
at least 1 − 𝛿 over the choice of 𝒙, it holds𝔼𝒙 [𝖹(𝒙)] ≤ 𝖹(𝒙) + 𝛼𝛾 ln

1𝛿 + √(𝛼𝛾 ln
1𝛿 )2 + 2𝛾(𝛼𝖹(𝒙) + 𝛽) ln

1𝛿 . (17)

Additionally, when 𝛼 = 1, we may improve the constants to𝔼𝒙 [𝖹(𝒙)] ≤ 𝖹(𝒙) + 23𝛾 ln
1𝛿 + √( 1√3𝛾 ln

1𝛿 )2 + 2𝛾(𝖹(𝒙) + 𝛽) ln
1𝛿 . (18)

Proof. In both cases, we will assume WLOG 𝛾 = 1. The results then hold by linearity, noting
that if 𝖹(⋅) is 𝛼-𝛽 self-bounding, with scale 𝛾, then 1𝛾 𝖹(⋅) is 𝛼-𝛽/𝛾 self-bounding, with scale 1;
the general case thus follows by dividing out 𝛾, obtaining a bound, and then multiplying
through by 𝛾.
We first show eq. (17). Assume scale 𝛾 = 1. It is known that for 𝛾 = 1, we have for all𝛼 ≥ 13 , as described in [6, Thm. 1], which improves the earlier bounds of [17]

Pr (𝖹(𝒙) ≤ 𝔼𝒙[𝖹(𝒙)] − 𝜀) ≤ exp ( −𝜀22(𝛼𝔼𝒙[𝖹(𝒙)] + 𝛽)) . (19)

Now, taking 𝛿 equal to the RHS of (19), and solving for 𝜀, this implies that with probability
at least 1 − 𝛿, we have𝖹(𝒙) + 𝛽𝛼 ≥ 𝔼𝒙 [𝖹(𝒙)] + 𝛽𝛼 − √2(𝛼𝔼𝒙 [𝖹(𝒙)] + 𝛽) ln

1𝛿 .
Note that this is a quadratic inequality in √𝔼𝒙 [𝖹(𝒙)] + 𝛽𝛼 , solving for which (via the
quadratic formula) yields nondegenerate solution𝔼𝒙 [𝖹(𝒙)] ≤ 𝖹(𝒙) + 𝛼 ln

1𝛿 + √(𝛼 ln
1𝛿 )2 + 2𝛼(𝔼𝒙 [𝖹(𝒙)] + 𝛽) ln

1𝛿 .
12



Finally, in the general case, with 𝛾-scaling, we have𝔼𝒙 [𝖹(𝒙)] ≤ 𝖹(𝒙) + 𝛾𝛼 ln
1𝛿 + √(𝛾𝛼 ln

1𝛿 )2 + 2𝛾𝛼(𝔼𝒙 [𝖹(𝒙)] + 𝛽) ln
1𝛿 .

We now show eq. (18) (i.e., assume 𝛼 = 1). Again assume 𝛾 = 1. This result follows via
identical logic to the above, this time using the sub-gamma form (see Boucheron et al. [7,
Ch. 2.1], section 2.1) of the stronger sub-Poisson 1-𝛽 self-bounding function inequality [4,
Thm. 1].
In particular, here we have that with probability at least 1 − 𝛿,𝖹(𝒙) ≥ 𝔼𝒙 [𝖹(𝒙)] + 13 ln

1𝛿 − √2(𝔼𝒙 [𝖹(𝒙)] + 𝛽) ln
1𝛿 ,

which by the quadratic formula, yields𝔼𝒙 [𝖹(𝒙)] ≤ 𝖹(𝒙) + 23 ln
1𝛿 + √( 𝛾√3 ln

1𝛿 )2 + 2(𝔼𝒙 [𝖹(𝒙)] + 𝛽) ln
1𝛿 .

The general result then follows via 𝛾-scaling.

Theorem 1. Suppose 𝑚 ≥ 1, and let 𝜒 ≐ 1 + 2𝖻(𝑚). For any 𝛿 ∈ (0, 1), with probability at
least 1 − 𝛿 over the choice of 𝒙, it holds that𝔼𝒙[𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)]≤𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)+ 2𝑟𝜒ln 1𝛿3𝑚 +√√√√⎷⎛⎜⎝𝑟𝜒ln 1𝛿√3𝑚⎞⎟⎠2+2𝑟𝜒(𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙)+𝑟𝖻(𝑚)) ln 1𝛿𝑚 . (7)

Proof. This proof proceeds by showing that 𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙) is a (1, 𝑟𝖻(𝑚))-self-bounding
function with scale 𝑟𝜒/𝑚, then applying (18) from Thm. 6. First note that the result trivially
holds for 𝑚 = 1, as the empirically centralized ERA will always be 0, thus we assume 𝑚 ≥ 2
henceforth.
For any 𝒙 ∈ X𝑚, let 𝖸(𝒙) ≐ 𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙),
and let 𝒙⧵𝑗 (resp. 𝝈⧵𝑗) denote the 𝑚 − 1-dimensional vector of all but the 𝑗-th element of 𝒙
(resp. 𝝈). Define𝖸𝑗(𝒙) ≐ 𝑚 − 1𝑚 𝖱̂𝑚−1 ( ̂𝖢𝒙⧵𝑗(F), 𝒙⧵𝑗) = 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1,𝑖≠𝑗 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])∣] .
We define these functions for convenience of notation. They will be handy when we later
introduce the functions 𝖹 and 𝖹𝑗, 𝑗 = 1, … , 𝑚 that we want to show to be self-bounding.
We now show that 𝖸𝑗(𝒙) ≤ 𝖸(𝒙) + 𝑟/𝑚𝖻(𝑚). Starting from the definition of 𝖸𝑗(𝒙) and
adding and subtracting (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])/2𝑚 to the argument of the supremum, it holds𝖸𝑗(𝒙) = 𝔼𝝈⧵𝑗 ⎡⎢⎢⎣sup𝑓∈F 1𝑚 ∣∣∣∣⎛⎜⎜⎜⎝ 𝑚∑𝑖=1𝑖≠𝑗 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])⎞⎟⎟⎟⎠ + 12(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓]) − 12(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])∣∣∣∣⎤⎥⎥⎦ .
Doubling and halving the sum in the argument of the expectation, and leveraging the
subadditivity of the supremum and of the absolute value, we obtain

𝖸𝑗(𝒙) ≤ 𝔼𝝈⧵𝑗
⎡⎢⎢⎢⎢⎢⎢⎣

12 ⎛⎜⎜⎜⎝sup𝑓∈F 1𝑚 ∣∣∣∣ 𝑚∑𝑖=1𝑖≠𝑗 𝜎𝑖(𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓]) + (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])∣∣∣∣⎞⎟⎟⎟⎠+ 12 ⎛⎜⎜⎜⎝sup𝑓∈F 1𝑚 ∣∣∣∣ 𝑚∑𝑖=1𝑖≠𝑗 𝜎𝑖(𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓]) − (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])∣∣∣∣⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

.
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The two-term sum forming the argument of the outermost expectation is the expectation
w.r.t. only 𝜎𝑗 (i.e., conditioned on 𝝈⧵𝑗) of the quantity

sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])∣ .
Thus, using the law of total expectation, we can write𝖸𝑗(𝒙) ≤ 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])∣] .
By subtracting and adding 𝔼̂𝒙[𝑓] to each term of the sum, and using the subadditivity of
the supremum and of the absolute value, and the linearity of the expectation, we obtain𝖸𝑗(𝒙) ≤ 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])∣]⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵=𝖸(𝒙) +𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝔼̂𝒙[𝑓] − 𝔼̂𝒙⧵𝑗[𝑓])∣] .

(20)
The first term on the r.h.s. is 𝖸(𝒙). The second term is the ERA of the sample-dependent
family

W𝒙 ≐ {𝑦 ↦ 1𝑚(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓]), 𝑓 ∈ F} .
Each function in W𝒙 is constant. Using (5) and the linearity of expectation, like we did in
the proof of Lemma 1 for the family K𝒙 (see (14)), it holds𝖱̂𝑚(W𝒙, 𝒙) = 1𝑚 sup𝑓∈F|𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓]|𝖻(𝑚) ≤ 𝑟𝑚𝖻(𝑚) .
Thus, continuing from (20) by incorporating the above fact, it holds𝖸𝑗(𝒙) ≤ 𝖸(𝒙) + 𝑟𝑚𝖻(𝑚) . (21)

We now show that 𝖸𝑗(𝒙) ≥ 𝖸(𝒙) − (1 + 𝖻(𝑚))𝑟/𝑚. Starting from the definition of 𝖸𝑗 and
adding and removing 1𝑚 (𝜎𝑗(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓]))
to the argument of the supremum, it holds𝖸𝑗(𝒙) = 𝔼𝝈 ⎡⎢⎢⎣sup𝑓∈F 1𝑚 ∣∣∣∣⎛⎜⎜⎜⎝ 𝑚∑𝑖=1𝑖≠𝑗 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])⎞⎟⎟⎟⎠ + 𝜎𝑗(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓]) − 𝜎𝑗(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])∣∣∣∣⎤⎥⎥⎦ .
Then, from the triangle inequality and the fact that

sup𝑓∈F∣𝜎𝑗(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])∣ ≤ 𝑟,
we obtain 𝖸𝑗(𝒙) ≥ 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])∣] − 𝑟𝑚 .
From here, we add and subtract 𝜎𝑖𝔼̂𝒙[𝑓] to each term of the sum, and then use the triangle
inequality, the subadditivity of the supremum, and the linearity of expectation, to obtain𝖸𝑗(𝒙) ≥ 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])∣]⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵=𝖸(𝒙) −𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝔼̂𝒙[𝑓] − 𝔼̂𝒙⧵𝑗[𝑓])∣] − 𝑟𝑚 .
The second term on the r.h.s. is again the ERA of a family of constant functions, each of
them taking value at most 𝑟/𝑚. Thus using (5), it follows that𝖸𝑗(𝒙) ≥ 𝖸(𝒙) − (1 + 𝖻(𝑚)) 𝑟𝑚 .
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Combining the above and (21), we obtain𝖸(𝒙) − (1 + 𝖻(𝑚)) 𝑟𝑚 ≤ 𝖸𝑗(𝒙) ≤ 𝖸(𝒙) + 𝑟𝑚𝖻(𝑚) . (22)

We now show that 𝑚∑𝑗=1 (𝖸(𝒙) − 𝖸𝑗(𝒙)) ≤ 𝖸(𝒙) . (23)

Starting from the definition of the 𝖸𝑗 functions, and using the linearity of expectation and
the subadditivity of the supremum𝑚∑𝑗=1 𝖸𝑗(𝒙) = 𝑚∑𝑗=1 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1,𝑖≠𝑗 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])∣]

≥ 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑗=1 𝑚∑𝑖=1,𝑖≠𝑗 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓]) .∣] .
We rearrange the terms in the double sums, and use the linearity of expectation to obtain𝑚∑𝑗=1 𝖸𝑗(𝒙) ≥ 𝔼𝝈 [sup𝑓∈F 1𝑚 ∣(𝑚 − 1) 𝑚∑𝑖=1 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])∣]≥ (𝑚 − 1)𝔼𝝈 [sup𝑓∈F 1𝑚 ∣ 𝑚∑𝑖=1 𝜎𝑖 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])∣] ,
which completes our proof of (23), as the last expectation is 𝖸(𝒙).
Define now the functions𝖹(𝒙) ≐ 𝖸(𝒙) and 𝖹𝑗(𝒙) ≐ 𝖸𝑗(𝒙) − 𝑟𝑚𝖻(𝑚) for each 𝑗 = 1, … , 𝑚 .
The value of 𝖹𝑗(𝒙) clearly does not dependent on the 𝑗-th component of 𝒙. Also, from (22)
it follows that 𝖹𝑗(𝒙) ≤ 𝖹(𝒙) ≤ 𝖹𝑗(𝒙) + (1 + 2𝖻(𝑚)) 𝑟𝑚 for each 𝑗 = 1, … , 𝑚 .
A consequence of (23) is finally that𝑚∑𝑗=1 (𝖹(𝒙) − 𝖹𝑗(𝒙)) ≤ 𝖹(𝒙) + 𝑟𝖻(𝑚) .
Thus 𝖹, i.e., 𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙), is a (1, 𝑟𝖻(𝑚))-self-bounding function with scale (1 + 2𝖻(𝑚))𝑟/𝑚.
An application of (18) from Thm. 6 completes the proof.

Before proving Thm. 2, we need the following lemma.
Lemma 4. It holds 𝖶(F) ≤ 𝑚𝑚 − 1𝔼𝒙[𝖶̂𝒙(F)] .
Proof. Using Bessel’s correction, we can rewrite the definition of wimpy variance to use the
empirical expectation as𝖶(F) = sup𝑓∈F 𝔼𝒙 [ 1𝑚 𝑚∑𝑖=1 (𝑓(𝑥𝑖) − 𝔼D[𝑓])2] = sup𝑓∈F 𝔼𝒙 [ 1𝑚 − 1 𝑚∑𝑖=1 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])2] .
An application of Jensen’s inequality gives𝖶(F) ≤ 𝔼𝒙[ sup𝑓∈F 1𝑚 − 1 𝑚∑𝑖=1 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])2⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵= 𝑚𝑚−1 𝖶̂𝒙(F) ] .
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Theorem 2. Suppose 𝑚 ≥ 2. Let 𝛿 ∈ (0, 1). With probability ≥ 1 − 𝛿 over the choice of 𝒙,

𝖶(F) ≤ 𝑚𝑚−1 𝖶̂𝒙(F) + 𝑟2 ln 1𝛿𝑚 − 1 + √√√√⎷⎛⎜⎝𝑟2 ln 1𝛿𝑚 − 1 ⎞⎟⎠2 + 2𝑟2 𝑚𝑚−1 𝖶̂𝒙(F) ln 1𝛿𝑚 − 1 . (9)

Proof. This proof proceeds by showing that 𝖶̂𝒙(F) is a (𝑚/𝑚−1, 0)-self-bounding with scale𝑟2/𝑚, then applying Lemma 4, and finally (17) from Thm. 6.
Let 𝒙⧵𝑗 denote the vector 𝒙 with the 𝑗-th component removed, as we defined it also in the
proof for Thm. 1. Let 𝖵̂𝒙[𝑓] denote the (unbiased) sample variance of 𝑓 over 𝒙, i.e.,𝖵̂𝒙[𝑓] ≐ 1𝑚 − 1 𝑚∑𝑖=1 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])2 .
Define 𝖹(𝒙) ≐ 𝑚𝑚 − 1𝖶̂𝒙(F) = sup𝑓∈F 𝖵̂𝒙[𝑓] = sup𝑓∈F 1𝑚 − 1 𝑚∑𝑖=1 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])2
and 𝖹𝑗(𝒙) ≐ sup𝑓∈F 1𝑚 − 1 𝑚∑𝑖=1,𝑖≠𝑗 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])2 . (24)

We first show that 𝖹𝑗(𝒙) = sup𝑓∈F [𝖵̂𝒙[𝑓] − 1𝑚(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2] , (25)

as this form comes in handy many times. Starting from the definition of 𝖹𝑗 in (24), we add
and subtract 1𝑚−1 (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2

to the argument of the supremum, and then add and
subtract 𝔼̂𝒙[𝑓] to the argument of the sum, to obtain:𝖹𝑗(𝒙) = sup𝑓∈F 1𝑚 − 1 [( 𝑚∑𝑖=1 (𝑓(𝑥𝑖) − 𝔼̂𝒙⧵𝑗[𝑓])2) − (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2]= sup𝑓∈F 1𝑚 − 1 [( 𝑚∑𝑖=1 ((𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓]) + (𝔼̂𝒙[𝑓] − 𝔼̂𝒙⧵𝑗[𝑓]))2) − (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2]
By expressing the square in the argument of the sum, separating the three resulting terms in
three distinct sums (associative property of the sum), and noticing that one of these sum is∑𝑚𝑖=1(𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓]) = 0, and another has argument (𝔼̂𝒙[𝑓] − 𝔼̂𝒙⧵𝑗[𝑓])2

independent from 𝑖,
we obtain𝖹𝑗(𝒙) = sup𝑓∈F 1𝑚 − 1[ ( 𝑚∑𝑖=1 (𝑓(𝑥𝑖) − 𝔼̂𝒙[𝑓])2)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵=(𝑚−1)𝖵̂𝒙[𝑓] +𝑚(𝔼̂𝒙[𝑓] − 𝔼̂𝒙⧵𝑗[𝑓])2 − (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2] .
It holds 𝔼̂𝒙[𝑓] = 1𝑚 𝑓(𝑥𝑗) + 𝑚−1𝑚 𝔼̂𝒙⧵𝑗[𝑓], so we have𝖹𝑗(𝒙) = sup𝑓∈F 1𝑚 − 1 [(𝑚 − 1)𝖵̂𝒙[𝑓] + 𝑚( 1𝑚𝑓(𝑥𝑗) − 1𝑚𝔼̂𝒙⧵𝑗[𝑓])2 − (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2] .
The identity in (25) then follows through simple algebraic steps.
We want to show that 𝖹 is a (𝑚/𝑚−1, 0)-self-bounding function with scale 𝑟2/𝑚 (see Def. 2).
By definition of 𝖹𝑗 in (24), the value of 𝖹𝑗(𝒙) does not depend on the 𝑗-th component of 𝒙,
as required by the first point in Def. 2.
We now show that, for any 𝑗 = 1, … , 𝑚, it holds,𝖹𝑗(𝒙) ≤ 𝖹(𝒙) ≤ 𝖹𝑗(𝒙) + 𝑟2𝑚 for any 𝒙 ∈ X𝑚, (26)
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as required by the second point in Def. 2. The leftmost inequality follows from the definitions
of 𝖹 and 𝖹𝑗. To show the rightmost inequality, we start from (25), and use the subadditivity
of the supremum to obtain𝖹𝑗(𝒙) ≥ ⎡⎢⎢⎣ (sup𝑓∈F 𝖵̂𝒙[𝑓])⎵⎵⎵⎵⎵⎵=𝖹(𝒙) − (sup𝑓∈F 1𝑚(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2)⎤⎥⎥⎦ .
The rightmost supremum is always smaller than 𝑟2/𝑚 because |𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓]| ≤ 𝑟, thus we
have obtained the rightmost inequality in (26).
We now show that, for any 𝒙 ∈ X𝑚, it holds𝑚∑𝑖=1 (𝖹(𝒙) − 𝖹𝑗(𝒙)) ≤ 𝑚𝑚 − 1𝖹(𝒙),
as in the last requirement of Def. 2. Starting again from (25) and using the subadditivity of
the supremum, it holds𝑚∑𝑗=1 𝖹𝑗(𝒙) = 𝑚∑𝑗=1 sup𝑓∈F [𝖵̂𝒙[𝑓] − 1𝑚(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2] ≥ sup𝑓∈F 𝑚∑𝑗=1 [𝖵̂𝒙[𝑓] − 1𝑚(𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2] .
By simple algebra we then get𝑚∑𝑗=1 𝖹𝑗(𝒙) ≥ sup𝑓∈F [𝑚𝖵̂𝒙[𝑓] − 1𝑚 𝑚∑𝑗=1 (𝑓(𝑥𝑗) − 𝔼̂𝒙⧵𝑗[𝑓])2] .
From here, we use the fact that𝔼̂𝒙⧵𝑗[𝑓] = 1𝑚 − 1(𝑚𝔼̂𝒙[𝑓] − 𝑓(𝑥𝑗)),
to get 𝑚∑𝑗=1 𝖹𝑗(𝒙) ≥ sup𝑓∈F [𝑚𝖵̂𝒙[𝑓] − 1𝑚 𝑚∑𝑗=1 ( 𝑚𝑚 − 1𝑓(𝑥𝑗) − 𝑚𝑚 − 1𝔼̂𝒙[𝑓])2] .
Now by simplifying some terms on the r.h.s., we obtain

𝑚∑𝑗=1 𝖹𝑗(𝒙) ≥ sup𝑓∈F ⎡⎢⎢⎢⎣𝑚𝖵̂𝒙[𝑓] − 𝑚(𝑚 − 1) 1𝑚 − 1 𝑚∑𝑗=1 (𝑓(𝑥𝑗) − 𝔼̂𝒙[𝑓])2⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵=𝖵̂𝒙[𝑓]
⎤⎥⎥⎥⎦ .

Collecting terms and using the original definition of 𝖹 results in𝑚∑𝑗=1 𝖹𝑗(𝒙) ≥ (𝑚 − 𝑚𝑚 − 1) 𝖹(𝒙) .
Thus, 𝑚∑𝑗=1 (𝖹(𝒙) − 𝖹𝑗(𝒙)) ≤ 𝑚𝖹(𝒙) − (𝑚 − 𝑚𝑚 − 1) 𝖹(𝒙) ≤ 𝑚𝑚 − 1𝖹(𝒙),
which concludes our proof that 𝖹, is (𝑚/𝑚−1, 0)-self-bounding with scale 𝑟2/𝑚.
We now use the above fact to prove the thesis. A consequence of Lemma 4 is

Pr𝒙 (𝖶̂𝒙(F) ≤ 𝖶(F) − 𝜀) ≤ Pr𝒙 (𝖶̂𝒙(F) ≤ 𝑚𝑚 − 1𝔼𝒙[𝖶̂𝒙(F)] − 𝜀) .
From here, we use the definition 𝖹(𝒙) = 𝑚𝑚 − 1𝖶̂𝒙(F)
and apply (17) from Thm. 6 to obtain the thesis.
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The constants in this bound are somewhat sub-optimal, as there is a significant gap between
the best-known (sub-Poisson) tails for (1, 0)-self-bounding and the best-known (sub-gamma)
tails for (1 + 𝜀, 0)-self-bounding functions. We hope that future work leads to refined analysis
of tail bounds for (𝛼, 0)-self-bounding functions that decay gracefully as 𝛼 exceeds 1.
Lemma 2. For any 𝒙 ∈ X𝑚, it holds𝖱̂𝑚(F , 𝒙) ≥ √𝖶̂𝗋𝒙(F)2𝑚 and 𝖱̂𝑚( ̂𝖢𝒙(F), 𝒙) ≥ √𝖶̂𝒙(F)2𝑚 .
Furthermore, it holds

lim𝑚→∞ √𝑚𝖱𝑚(F ,D) ≥ √ 2𝜋 𝖶𝗋(F) and lim𝑚→∞ √𝑚𝖱𝑚(𝖢D(F),D) ≥ √ 2𝜋 𝖶(F) .
Proof. From the subadditivity of the supremum, it holds that𝖱̂𝑚(F , 𝒙) ≥ sup𝑓∈F 𝔼𝝈 [∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖𝑓(𝑥𝑖)∣] .
An application of Khintchine’s inequality [12] gives𝖱̂𝑚(F , 𝒙) ≥ sup𝑓∈F 1√2√‖𝑓(𝒙)‖22𝑚2 ,
where 𝑓(𝒙) denotes the 𝑚-dimensional vector of values of 𝑓 on 𝒙. The proof of the leftmost
inequality in the thesis ends by noting that𝖶̂𝗋𝒙(F) = ‖𝑓(𝒙)‖22𝑚 .
The rightmost inequality is then a corollary, using the identity 𝖶̂𝗋𝒙( ̂𝖢𝒙(F)) = 𝖶̂𝒙(F).
The asymptotic lower bounds follow by replacing the Khintchine’s inequality step with an
application of the central limit theorem.

Before proving Thm. 5 we need to introduce an important technical result. For any 𝑢 ∈ ℝ,
let 𝗁(𝑢) ≐ (1 + 𝑢) ln(1 + 𝑢) − 𝑢, and let (𝑢)+ ≐ max(0, 𝑢).
Theorem 7 (Samson’s bound, [7, Thm. 12.11]). Let Q1, … ,Q𝑚 be possibly different proba-
bility distributions over a domain Y. Let G ⊆ X → [−1, 1]. Furthermore, assume that for
each 𝑔 ∈ G and 𝑖 ∈ {1, … , 𝑚}, it holds 𝔼Q𝑖[𝑔] = 0. Now, for any 𝒚 ∈ Y𝑚, let𝖹(𝒚) ≐ sup𝑔∈G 𝑚∑𝑖=1 𝑔(𝑦𝑖) and 𝑆2 ≐ 𝔼𝒚 [sup𝑔∈F 𝑚∑𝑖=1 𝔼𝑦′𝑖∼Q𝑖 [((𝑔(𝑦𝑖) − 𝑔(𝑦′𝑖))+)2]] .
Let 𝒚 ∈ Y𝑚, with each 𝑦𝑖 ∼ Q𝑖, independently (but not necessarily identically, since the
distributions may be different). It holds4

Pr𝒚 (𝖹(𝒚) ≤ 𝔼Q1∶𝑚[𝖹] − 𝜀) ≤ exp (−𝑆24 𝗁 ( 2𝜀𝑆2 )) . (27)

Theorem 5. Let 𝝈 ∈ (±1)𝑛×𝑚 be a matrix of i.i.d. Rademacher r.v.’s. Let 𝛿 ∈ (0, 1). With
probability at least 1 − 𝛿 over the choice of 𝝈, it holds

𝖱̂𝑚(F , 𝒙) ≤ 𝖱̂𝑛𝑚(F , 𝒙, 𝝈) + 2 ̂𝑞F(𝒙) ln 1𝛿3𝑛𝑚 + √4𝖶̂𝗋𝒙(F) ln 1𝛿𝑛𝑚 . (12)
4To be precise, this is an immediate consequence of the statement of [7, Thm. 2.11], through an

application of the Chernoff method to the moment generating function given therein.

18



Proof. Without loss of generality, we assume that ̂𝑞F(𝒙) = 1. The general case then follows
via scaling.
Let 𝖹(𝝈) ≐ 𝑛𝑚𝖱̂𝑛𝑚(F , 𝒙, 𝝈) = 𝑛∑𝑗=1 sup𝑓∈F ∣ 𝑚∑𝑖=1 𝜎𝑗,𝑖𝑓(𝑥𝑖)∣ .
It holds 𝔼𝝈[𝖹] = 𝑛𝑚𝖱̂𝑚(F , 𝒙).
We first show that we can apply Samson’s bound (Thm. 7) to 𝖹, i.e., to the scaled MC-ERA.
Consider the function family F± introduced in Coro. 1, and consider the 𝑛-times Cartesian
product of F± with itself (F±)𝑛 = F± × ⋯ × F±⎵⎵⎵⎵⎵⎵𝑛 times

.
We use 𝒇 = (𝑓1, … , 𝑓𝑛) to denote an element of (F±)𝑛. Now, define the family

G ≐ {𝑔(𝜎𝑗,𝑖) ≐ 𝜎𝑗,𝑖𝑓𝑗(𝑥𝑖), 𝒇 ∈ (F±)𝑛} .
The functions in G have domain Y = {−1, 1} and values in [−1, 1]. It holds𝖹(𝝈) = sup𝒇∈(F±)𝑛

𝑛∑𝑗=1 𝑚∑𝑖=1 𝜎𝑗,𝑖𝑓𝑗(𝑥𝑖) = sup𝑔∈G ∑(𝑗,𝑖)∈{1,…𝑛}×{1,…,𝑚} 𝑔(𝜎𝑗,𝑖) . (28)

Thus 𝖹 has the form required by Thm. 7.
Let 𝝈′ denote a second 𝑛 × 𝑚 i.i.d. Rademacher matrix (like 𝝈), and define𝑆2 ≐ 𝔼𝝈 [ sup𝒇∈(F±)𝑛

𝑛∑𝑗=1 𝑚∑𝑖=1 𝔼𝜎′𝑗,𝑖 [((𝜎𝑗,𝑖𝑓𝑗(𝑥𝑖) − 𝜎′𝑗,𝑖𝑓𝑗(𝑥𝑖))+)2]]= 𝑛𝔼𝝈 [ sup𝑓∈F±
𝑚∑𝑖=1 2((𝜎1,𝑖𝑓(𝑥𝑖))+)2] .

It holds 𝑆2 ≤ 2𝑛𝑚𝖶̂𝗋𝒙(F) . (29)
For each 𝑔 ∈ G, 𝑔(𝜎𝑗,𝑖) and 𝑔(𝜎𝑗′,𝑖′) are independent, though not necessarily identically
distributed, for (𝑗, 𝑖) ≠ (𝑗′, 𝑖′), due to the dependence of 𝑔(𝜎𝑗,𝑖) on indices (𝑗, 𝑖). It also holds,
for each 𝑔 ∈ G, and indices (𝑗, 𝑖), that 𝔼𝜎𝑖,𝑗[𝑔(𝜎𝑖,𝑗)] = 0, simply due to multiplication by
symmetric (Rademacher) r.v.’s.
Thus, we can use Samson’s bound (Thm. 7) on G, 𝖹, and 𝑆2, although it is generally more
convenient to work with F and (F±)𝑛.
We now show the thesis. Fix 𝜀 ∈ (0, 1). It follows from Samson’s bound that

Pr𝝈 (𝖱̂𝑚(F , 𝒙) ≥ 𝖱̂𝑛𝑚(F , 𝒙, 𝝈) + 𝜀) = Pr𝝈 (𝔼[𝖹] ≥ 𝖹(𝝈) + 𝑛𝑚𝜀) ≤ exp (−𝑆24 𝗁 (2𝑛𝑚𝜀𝑆2 )) .
The function 𝑔(𝑥) ≐ 𝑥𝗁 (2𝑛𝑚𝜀𝑥 )
is monotonically decreasing in its argument. Thus, using (29) gives

Pr𝝈 (𝖱̂𝑚(F , 𝒙) ≥ 𝖱̂𝑛𝑚(F , 𝒙, 𝝈) + 𝜀) ≤ exp (−𝑛𝑚𝖶̂𝗋𝒙(F)2 𝗁 ( 𝜀𝖶̂𝗋𝒙(F))) .
Now, for 𝑢 > −1/2, define the function𝗁1(𝑢) ≐ 1 + 𝑢 − √1 + 2𝑢 .
Using the fact (see Boucheron et al. [7, Ch. 2.4]) that𝗁(𝑢) ≥ 9𝗁1 (𝑢3 ) for every 𝑢 ∈ (−1, +∞),
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we obtain

Pr𝝈 (𝖱̂𝑚(F , 𝒙) ≥ 𝖱̂𝑛𝑚(F , 𝒙, 𝝈) + 𝜀) ≤ exp (−92𝑛𝑚𝖶̂𝗋𝒙(F)𝗁1 ( 𝜀𝖶̂𝗋𝒙(F))) .
The result for ̂𝑞F(𝒙) = 1 is obtained by imposing that the r.h.s. be at most 𝛿 and solving for 𝜀
using standard sub-gamma inequalities. The general case then follows via linear scaling.

This bound is quite comparable to Bousquet’s bound on the SD (see Thm. 3). The variance
factors 𝖶̂𝗋𝒙(F) and 𝖶̂𝒙(F) are convenient, as they depend only on sample variances, rather
than true variances and expected supremum deviations.
Even if Samson’s inequality introduces additional 2-factors on both the range and variance
w.r.t. Thm. 3, both are divided by MC-trial count 𝑛, so for 𝑛 ≥ 2 trials, the Monte-Carlo
error terms become negligible.

B Details on the Experimental Evaluation

As mentioned in the main text, Lemma 3 is a consequence of [27, Lemmas 26.11, 26.10],
reported here for completeness.5

Lemma 5 (27, Lemmas 26.11, 26.10). It holds𝖱̂𝑚(F1, 𝒙) = 𝔼𝝈 [∥ 1𝑚 𝑚∑𝑖=1 𝜎𝑖𝑥𝑖∥∞] ≤ max𝑖 ‖𝑥𝑖‖∞√2 ln(2𝑑)𝑚 ,
and 𝖱̂𝑚(F2, 𝒙) = 𝔼𝝈 [∥ 1𝑚 𝑚∑𝑖=1 𝜎𝑖𝑥𝑖∥2] ≤ max𝑖 ‖𝑥𝑖‖2 1√𝑚 .
We now show the centralized variants.
Lemma 3. Let ̄𝑥 ≐ 1𝑚 ∑𝑚𝑖=1 𝑥𝑖 ∈ ℝ𝑑. For the ℓ1 norm, it holds

𝖱̂𝑚( ̂𝖢𝒙(F1), 𝒙) = 𝔼𝝈 [∥ 1𝑚 𝑚∑𝑖=1 𝝈𝑖(𝑥𝑖 − ̄𝑥)∥∞] ≤ max𝑖 ‖𝑥𝑖 − ̄𝑥‖∞√2 ln(2𝑑)𝑚 ,
while for the ℓ2 norm, it holds𝖱̂𝑚( ̂𝖢𝒙(F2), 𝒙) = 𝔼𝝈 [∥ 1𝑚 𝑚∑𝑖=1 𝝈𝑖(𝑥𝑖 − ̄𝑥)∥2] ≤ max𝑖 ‖𝑥𝑖 − ̄𝑥‖2 1√𝑚 .
Proof. We show the ℓ2 case in detail; the reasoning for the ℓ1 case is essentially the same
(see details at the end of the proof). The definition of 𝖱̂𝑚( ̂𝖢𝒙(F2), 𝒙) is𝖱̂𝑚( ̂𝖢𝒙(F2), 𝒙) = 𝔼𝝈 [ sup𝑤∶‖𝑤‖2≤1 ∣ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝑤 ⋅ 𝑥𝑖 − 𝔼̂𝒙[𝑤])∣] ,
where 𝔼̂𝒙[𝑤] = 1𝑚 𝑚∑𝑖=1(𝑤 ⋅ 𝑥𝑖) = 𝑤 ⋅ ̄𝑥 .
Using linearity, we then get𝖱̂𝑚( ̂𝖢𝒙(F2), 𝒙) = 𝔼𝝈 [ sup𝑤∶‖𝑤‖2≤1 ∣𝑤 ⋅ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝑥𝑖 − ̄𝑥)∣] .

5The identities in the lemma are not reported in the original, but can be easily obtained through
a slightly more refined proof than the one presented in the original. See the proof of Lemma 3 for
intuition.
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Now, for ease of notation, let 𝑢 ≐ 1𝑚 ∑𝑚𝑖=1 𝜎𝑖(𝑥𝑖 − ̄𝑥). The supremum is realized when𝑤 = 𝑢‖𝑢‖2 ,
because in this case the vector 𝑤 has the same direction as 𝑢, and the largest possible norm‖𝑤‖2 = 1. Since the two vectors 𝑤 and 𝑢 are collinear, the Cauchy-Schwarz inequality holds
with equality, and we have𝑤 ⋅ 𝑢 = ‖𝑤‖2‖𝑢‖2 = ‖𝑢‖2 = ∥ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝑥𝑖 − ̄𝑥)∥2 .
We thus obtain 𝖱̂𝑚( ̂𝖢𝒙(F2), 𝒙) = 𝔼𝝈 [∥ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝑥𝑖 − ̄𝑥)∥2] .
From here, we can proceed as in the second part of the proof of [27, Lemma 26.10] to obtain
the thesis.
By similar reasoning (now with Hölder’s inequality in place of the Cauchy-Schwarz inequality,
and following the proof of Shalev-Shwartz and Ben-David [27, Lemma 26.11]), we get that𝖱̂𝑚( ̂𝖢𝒙(F1), 𝒙) = 𝔼𝝈 [∥ 1𝑚 𝑚∑𝑖=1 𝜎𝑖(𝑥𝑖 − ̄𝑥)∥∞] ≤ max𝑖 ‖𝑥𝑖 − ̄𝑥‖∞√2 ln(2𝑑)𝑚 .
B.1 Data Generation

Our data distributions for both the ℓ1 and ℓ2 constrained linear family experiments are both
randomized and parameterized by dimension 𝑑. Rademacher averages and wimpy variances
depend on the randomization and 𝑑, and ranges may be bounded a priori in terms of 𝑑.ℓ1 Datasets In our ℓ1 experiments, each 𝑥𝑗 is independently Beta-distributed, thus 𝒙 ∼Β(𝜶1, 𝜷1)×⋯×Β(𝜶𝑑, 𝜷𝑑). The parameters 𝜶 and 𝜷 are themselves randomized, in particular,
we sample 𝜶𝑗 and 𝜷𝑗 from √𝜒2𝑗 , where 𝜒2𝑘 is the 𝜒2 distribution with 𝑘 degrees of freedom.
In these datasets, 𝑟 = 𝑞 = 1.ℓ2 Datasets In our ℓ2 experiments, we generate random mean vector 𝝁 ∈ ℝ𝑑 and covariance
matrix 𝜮 ∈ ℝ𝑑×𝑑, then sample 𝒙′

∼ N (𝜇, 𝜮), and finally obtain sample 𝒙 by projecting 𝒙′
to the nonnegative hyperquadrant of the radius

√𝑑 ℓ2 sphere; i.e.,𝒙 = argmin𝒙∈ℝ𝑑∶‖𝒙‖2≤√𝑑∧𝟎⪯𝒙‖𝒙 − 𝒙′‖2 .
Taking I𝑑 to be the identity matrix, we sample 𝝁 ∼ N (𝟏, I𝑑), and taking 𝒂 ∼ U(0, 1)𝑑×𝑑, we
let 𝜮 ≐ 𝒂𝒂⊤𝑑 + I𝑑. In these datasets, 𝑟 = 𝑞 = √𝑑.

B.2 Supplementary Plots

Figure 3 shows the same results as Fig. 1 (in the main text), but without the scaling of
the quantities by

√𝑚. Similarly, Fig. 4 shows the same results as Fig. 2, sans scaling by√𝑚. Additionally, both plots also include a McDiarmid term 3𝑟√
ln 1𝜂 /2𝑚, representing the

additive error incurred bounding the SD in terms of 𝖱̂1𝑚(F , 𝒙, 𝝈). We stress that this term
does not include the MC-ERA itsef, and thus is just one summand of the total McDiarmid
SD bound. Nevertheless, the McDiarmid term alone asymptotically exceeds all other bounds
in all experiments, except for the (loose) noncentralized analytical bound of F1 over ℝ256.
This further reinforces the improvement of variance-sensitive bounds over the (range-only)
McDiarmid bounds.
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F1 over ℝ4 F1 over ℝ256 F2 over ℝ64

Sample size 𝑚 Sample size 𝑚 Sample size 𝑚
Figure 3: Comparison of SD bounds as functions of the sample size 𝑚. See the main text for
an explanation of the results.

F1 over ℝ4 F1 over ℝ256 F2 over ℝ64

Sample size 𝑚 Sample size 𝑚 Sample size 𝑚
Figure 4: Comparison of SD bounds as functions of the sample size 𝑚. See the main text for
an explanation of the results.
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