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A Additional Experiments

In this section, we further investigate the effectiveness of the proposed DRFA algorithm. To do so,
we use the Adult and Shakespeare datasets.

Experiments on Adult dataset. The Adult dataset contains census data, with the target of predicting
whether the income is greater or less than $50K. The data has 14 features from age, race, gender,
among others. It has 32561 samples for training distributed across different groups of sensitive
features. One of these sensitive features is gender, which has two groups of “male” and “female”.
The other sensitive feature we will use is the race, where it has 5 groups of “black”, “white”, “Asian-
Pac-Islander”, “Amer-Indian-Eskimo”, and “other”. We can distribute data among nodes based on
the value of these features, hence make it heterogeneously distributed.

For the first experiment, we distribute the training data across 10 nodes, 5 of which contain only
data from the female group and the other 5 have the male group’s data. Since the size of different
groups’ data is not equal, the data distribution is unbalanced among nodes. Figure 4 compares DRFA
with AFL [35], q-FedAvg [25], and FedAvg [34] on the Adult dataset, where the data is distributed
among the nodes based on the gender feature. We use logistic regression as the loss function, the
learning rate is set to 0.1 and batch size is 50 for all algorithms, ~ is set to 0.2 for both DRFA and
AFL, and ¢ = 0.5 is tuned for the best results for q-FedAvg. The worst distribution or node accuracy
during the communication rounds shows that DRFA can achieve the same level of worst accuracy
with a far fewer number of communication rounds, and hence, less overall wall-clock time. However,
AFL computational cost is less than that of DRFA. Between each communication rounds DRFA,
g-FedAvg and FedAvg have 10 update steps. FedAvg after the same number of communications as
AFL still cannot reach the same level of worst accuracy. Figure 4(c) shows the standard deviation of
accuracy among different nodes as a measure for the fairness of algorithms. It can be inferred that
DRFA efficiently decreases the variance with a much fewer number of communication rounds with
respect to other algorithms.
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Figure 4: Comparing the worst distribution accuracy on DRFA, AFL, g-FedAvg, and FedAVG on the
Adult dataset. We have 10 nodes, and data is distributed among them based on the gender feature.
The loss function is logistic regression. DRFA needs a fewer number of communications to reach the
same worst distribution accuracy than the AFL and q-FedAvg algorithms. Also, DRFA efficiently
decreases the variance of the performance of different clients.

Next, we distribute the Adult data among clients based on the “race” feature, which has 5 different
groups. Again the size of data among these groups is not equal and makes the distribution unbalanced.
We distribute the data among 10 nodes, where every node has only data from one group of the race
feature. For this experiment, we use a nonconvex loss function, where the model is a multilayer
perceptron (MLP) with 2 hidden layers, each with 50 neurons. The first layer has 14 and the last layer
has 2 neurons. The learning rate is set to 0.1 and batch size is 50 for all algorithms, the -y is set to 0.2
for DRFA and AFL, and the ¢ parameter in q-FedAvg is tuned for 0.5. Figure 5 shows the results of
this experiment, where again, DRFA can achieve the same worst-case accuracy with a much fewer
number of communications than AFL and g-FedAvg. In this experiment, with the same number of
local iterations, AFL still cannot reach to the DRFA performance. In addition, the variance on the
performance of different clients in Figure 5(c) suggests that DRFA is more successful than q-FedAvg
to balance the performance of clients.

Experiments on Shakespeare dataset. Now, we run the same experiments on the Shakespeare
dataset. This dataset contains the scripts from different Shakespeare’s plays divided based on the
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Figure 5: Comparing the worst distribution accuracy on DRFA, AFL, g-FedAvg, and FedAvg with
the Adult dataset. We have 10 nodes, and data is distributed among them based on the race feature.
The model is an MLP with 2 hidden layers, each with 50 neurons and a cross-entropy loss function.
DRFA needs a fewer number of communications to reach the same worst distribution accuracy than
the AFL and g-FedAvg algorithms. Moreover, DRFA is more efficient in reducing the performance
variance among different clients than q-FedAvg.
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Figure 6: Comparing different algorithms on training an RNN on Shakespeare dataset using 100
clients. DRFA and FedAvg outperform the other two algorithms in terms of communication efficiency,
however, AFL can achieve the same level with lower computation cost. In the average performance,
AFL requires much more communication to reach to the same level as FedAvg and DRFA.

character in each play. The task is to predict the next character in the text, providing the preceding
characters. For this experiment, we use 100 clients’ data to train our RNN model. The RNN model
comprises an embedding layer from 86 characters to 50, followed by a layer of GRU [5] with 50 units.
The output is going through a fully connected layer with an output size of 86 and a cross-entropy
loss function. We use the batch size of 2 with 50 characters in each batch. The learning rate is
optimized to 0.8 for the FedAvg and used for all algorithms. The + is tuned to the 0.01 for AFL and
DRFA, and ¢ = 0.1 is the best for the g-FedAvg. Figure 6 shows the results of this experiment on the
Shakespeare dataset. It can be seen that DRFA and FedAvg can reach to the same worst distribution
accuracy compared to AFL and q-FedAvg. The reason that FedAvg is working very well in this
particular dataset is that the distribution of data based on the characters in the plays does not make it
heterogeneous. In settings close to homogeneous distribution, FedAvg can achieve the best results,
with DRFA having a slight advantage over that.

B Formal Convergence Theory for Alternative Algorithm in Regularized
Case

Here, we will present the formal convergence theory of the algorithm we described in Section 5.2,
where we use full batch gradient ascent to update A®). To do so, the server sends the current global
model @) to all clients and each client evaluates the global model on its local data shards and send
fi(@®)) back to the server. Then the server can compute the full gradient over dual parameter A and
take a gradient ascent (GA) step to update it. The algorithm is named DRFA-GA and described in
Algorithm 3. We note that DRFA-GA can be considered as communication-efficient variant of AFL,
but without sampling clients to evaluate the gradient at dual parameter. We conduct the convergence
analysis on the setting where the regularized term is strongly-concave in A, and loss function is
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Algorithm 3: Distributionally Robust Federated Averaging: Gradient Ascent (DRFA-GA)
Input: N clients , synchronization gap 7, total number of iterations 7', S = T'/7, learning rates 7, -,
sampling size m, initial model @(*) and initial 2O,
Output: Final solutions w = —2- ZZ:T/Q ZieD“%” wz(-t), A=1 Zf;ol A or (2) wT, A5,
1: for s=0t0o S —1 do
2:  Server samples D(*) C [N] according to A®) with size of m
3:  Server broadcasts w(®) to all clients i € D(*)

4:  for clients i € D*) parallel do

5: Client sets w'*") = w(®)

6: fort =s7,...,(s+1)7—1do

7 w*V =Ty, (v -7 siw?;e?))
8: end for

9: end for

((s+1)

10:  Clienti € D*) sends w, ™) back to the server

11:  Server sends @) to all clients // Update A
12:  Each client i € [N] evaluates w®) on its local data and sends f;(w(*)) back to server

13:  Server updates A+ = ITa ()\(s) +YVAF (ﬁJ(S), )\(s)))

14 Server computes @+ = LS qp{TDT)
15: end for

strongly-convex and nonconvex but satisfying Polyak-Lojasiewicz (PL) condition in w. So, our
theory includes strongly-convex-strongly-concave and nonconvex (PL condition)-strongly-concave
cases.

Strongly-Convex-Strongly-Concave case. We start by stating the convergence rate when the
individual local objectives are strongly convex and the regularizer g(\) is strongly concave in A,
making the global objective F(w, A) := Zivzl Ai fi(w) + g(X) also strongly concave in .

Theorem 5. Let each local function f; be p-strongly convex, and global function F' is p-strongly
concave in . Under Assumptions 1, 2,3,4, if we optimize (5) using the DRFA-GA (Algorithm 3) with
synchronization gap T, choosing learning rates as n = 4137%71 and v = % andT > %, where

o = kL + L, using the averaging scheme w = % ZthT/Q > wgt) we have:

e

€D LT

pD3, N k*LTD3% N o + G2 N k27%(02 + 1) N KST2G2,
T T umT uT? uT? ’

E[® () — ®(w*)] = O (
where k = L/u, and w* is the minimizer of ®.

Proof. The proof is given in Section F. O

Corollary 1. Continuing with Theorem 5, if we choose T = /T /m, we recover the rate:
k?LD% n uD3,  K*(02 +T) + kG2
vmT T pumT ‘

E[®(w) — ®(w*)] = O (

Here we obtain O (%) rate in Theorem 5. If we choose 7 = 1, which is fully synchronized SGD,
then we recover the same rate O (%) as in vanilla agnostic federated learning [35]. If we choose

7 to be O(1/T/m), we recover the rate O ( ot ﬁ), which can achieve linear speedup with
respect to number of sampled workers. The dependency on gradient dissimilarity I" shows that the

data heterogeneity will slow down the rate, but will not impact the dominating term.

Nonconvex (PL condition)-Strongly-Concave Setting. We provide the convergence analysis under
the condition where F' is nonconvex but satisfies PL. condition in w, and strongly concave in .
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In the constraint problem, to prove the convergence, we have to consider a generalization of PL
condition [17] as formally stated below.

Definition 4 ((u,n)-generalized Polyak-F.ojasiewicz (PL)). The global objective function F (-, ) is
differentiable and satisfies the (u,m)-generalized Polyak-Lojasiewicz condition with constant p if the
following holds:

2

> u(F(w,\) — mi%F(w',A)),VA €A
w’'e
2

1

pred [ (w = nVwF(w, X))

w

Remark 1. When the constraint is absent, it reduces to vanilla PL condition [17]. The similar
generalization of PL condition is also mentioned in [17], where they introduce a variant of PL
condition to prove the convergence of proximal gradient method. Also we will show that, if F satisfies
u-PL condition in w, ®(w) also satisfies u-PL condition.

We now proceed to provide the global convergence of ® in this setting.

Theorem 6. Let global function F' satisfy (u,m)-generalized PL condition in w and pu-strongly-
concave in . Under Assumptions 1,2,3,4, if we optimize (5) using the DRFA-GA (Algorithm 3)

with synchronization gap T, choosing learning rates n = 41};’#, v = % and m > T, with the total
iterations satisfying T > 80‘11# where o = L+ kL, k = %, we have:

E [®(w®) @(w*)} <0 <<I>(w(0))T— (I>(w*)> ! <W) +0 (W)

~ (KT2G? ~ (K2r2%(02 4+ 1)
+O< pT? >+O< pT? )

where w* € arg ming,eyw ®(w).

Proof. The proof is given in Section G. O

Corollary 2. Continuing with Theorem 6, if we choose T = /T /m, we recover the rate:

/272 (0)y _ * 2(,2 62
E[(d) — &(w")] = O (n LD% N O(w'®)) — d(w*) LB (00, + 1)+ & Gw) '
VT T uT

We obtain O (%) convergence rate here, slightly worse than that of strongly-convex-strongly-concave
case. We also get linear speedup in the number of sampled workers if properly choose 7. The best
known result of non-distributionally robust version of FedAvg on PL condition is O( %) [12], with
O(T'/3) communication rounds. It turns out that we trade some convergence rate to guarantee a
worst case performance. We would like to mention that, here we require m, the number of sampled
clients to be a large number, which is the imperfection of our analysis. However, we would note
that, this is similar to the analysis in [10] for projected SGD on constrained nonconvex minimization
problems, where it is required to employ growing mini-batch sizes with iterations to guarantee
convergence to a first-order stationary point (i.e., imposing a constraint on minibatch size based on
target accuracy € which plays a similar rule to m in our case).

C Proof of Convergence of DRFA for Convex Losses (Theorem 1)

In this section we will present the proof of Theorem 1, which states the convergence of DRFA in
convex-linear setting.

C.1 Preliminary

Before delving into the proof, let us introduce some useful variables and lemmas for ease of analysis.
We define a virtual sequence {'w(t)}tT:1 that will be used in our proof, and we also define some
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intermediate variables:

1
w® = = Z wz(.t), (average model of selected devices)
iep(LED
1
alt) = = Z \v4 fi(wz(-t)), (average full gradient of selected devices)
m sep(LED
1
ul) = — Z V fi(w!?; fft)) (average stochastic gradient of selected devices)
mn iep(LED
o = VaF(w® X) = [fl (w®), ..., fN(w(t))} (full gradient w.r.t. dual)
(s+1)T
As = Z Vﬁ(t)v
t=s7+1
As = myv, (see below)
1 2
0= % [t -w
m sep(LED

where v € RY is the stochastic gradient for dual variable generated by Algorithm | for updating X,
such that v; = f;(w®); &) fori € U C [N] where &; is stochastic minibatch sampled from ith local
data shard, and ¢’ is the snapshot index sampled from s7 + 1 to (s + 1)7.

C.2 Overview of the Proof

The proof techniques consist of analyzing the one-step progress for the virtual iterates w(*+1) and

A however periodic decoupled updating along with sampling makes the analysis more involved
compared to fully synchronous primal-dual schemes for minimax optimization. Let us start from
analyzing one iteration on w. From the updating rule we can show that

Elw ) — w|? < E|w® — w|? — 29E {F(w(t),)\“ﬂ)) _ F(w,A(LEJ))}
+ LiE [5@] +2E[a® — u®|? + 262,

Note that, similar to analysis of local SGD, e.g., [44], the key question is how to bound the deviation
5() between local and (virtual) averaged model. By the definition of gradient dissimilarity, we
establish that:

T
1 o2
~3E [5“)} = 101272 (03, + 2wy r) .
T Pt m

It turns out the deviation can be upper bounded by variance of stochastic graident, and the gradient
dissimilarity. The latter term controls how heterogenous the local component functions are, and it
becomes zero when all local functions are identical, which means we are doing minibatch SGD on
the same objective function in parallel.

Now we switch to the one iteration analysis on A:
E[ACTY — A7 < EJA® - A2
(s+1)7

— Y ERy(Fw,A) — Fw®, \)] + EJ|A,|* + B[ A, — Al
t=s7+1

It suffices to bound the variance of A;. Using the identity of independent variables we can prove:

A 112 2 2‘75\
E[|As — As|I7] < v7r° =
m

18



It shows that the variance depends quadratically on 7°, and can achieve linear speed up with respect
to the number of sampled workers. Putting all pieces together, and doing the telescoping sum will
yield the result in Theorem 1.

C.3 Proof of Technical Lemmas

In this section we are going to present some technical lemmas that will be used in the proof of
Theorem 1.

Lemma 1. The stochastic gradient u® s unbiased, and its variance is bounded, which implies:

N
]Eglmpuén {“(t)} :ED(L£J> [ﬁ(t)} =E lz )\ELH)Vfi(wz(‘t))] )

i=1

2
E {Hu(t) _ ﬂ(t)”?} — Tuw
m

Proof. The unbiasedness is due to the fact that we sample the clients according to ALZD . The
variance term is due to the identity Var(}"7", X;) = >, Var(X). O

Lemma 2. The stochastic gradient at X generated by Algorithm | is unbiased, and its variance is
bounded, which implies:

2
EA] =4, E[A, - A7) <20 ©

Proof. The unbiasedness is due to we sample the workers uniformly. The variance term is due to the
identity Var(}_", X;) = >_», Var(X;). O

Lemma 3 (One Iteration Primal Analysis). For DRFA, under the same conditions as in Theorem 1,
for all w € W, the following holds:

E[w*) — w|? < E|lw® — w2 — 24E {F(w(t)’)\(LﬁJ)) _ F(w,A(L%J))}

+ L [50] + ?EJal® — u®|? + 72G2,

Proof. From the updating rule we have:

2
Ellw*) — wl? = E

H(w(t) —u®) —w
w
<EJw® —w|? + E[-2(a, w® —w")] + " E|a"|* +E|a" — |

T1 T2

<Elw® - na® - w|? + PEla - u®|?

)

2This dependency is very heavy, and one open question is to see if we employ a variance reduction scheme
to loosen this dependency.
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We are going to bound 7} first:

1

N=Epie |~ > [-20(Vhiw?),w® —w) - 2 (Vfiw!"),w

m
ieD(LED

1

L ¢
<Epqep (20 ) {fww?))—fi(w(“)u|w<t>—w§”|2+fi<w>—fz-<w£-”>

L " epty

N
SN fiw®) = XY fiw)

=1

= —2nE {F<w(t),/\(L$J)> _ F(w,)\(LéJ))} + LnE [(5(15)] 7

= —E + LnE [5“)}

where from (8) to (9) we use the smoothness and convexity properties.

We then turn to bounding 75 as follows:

2

1 1
Ty = nE || — (w|| <=
2=nE|— > Vii(w") S .
iep(LED iep(LED

Plugging 77 and 7% back to (7) gives:

_ w*>}

> E|va@?)| <re.

Elw*) — w|? < E[w® — w|? — 29E {F(w(t),)\(HJ)) _ F(w,A(LEJ))}

+ L 6] + ?E[[a® - w2 + n2G2

w?

thus concluding the proof.

()

€))

The following lemma bounds the deviation between local models and (virtual) global average model
over sampled devices over T iterations. We note that the following result is general and will be used

in all variants.

Lemma 4 (Bounded Squared Deviation). For DRFA, DRFA-Prox and DRFA-GA algorithms, the

expected average squared norm distance of local models wl(»t), i € DD and w® is bounded as

follows:
1 < o2
O E {5“)} < 105272 (afu + F) .
t=0
where expectation is taken over sampling of devices at each iteration.
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Proof. Consider st <t < (s+1)7. Recall that, we only perform the averaging based on a uniformly
sampled subset of workers DD of [N]. Following the updating rule we have:

1
EPOI=E |~ Y [w!” —w®|?
miepuﬁn
L r ST r
<E o Z E ||w®™) — vaf’ () ) <w(‘ ) — Z Zan w() ))
iepL3 D r=sT zeDr sT
_1 t—1 1 2
—E|— Y || v -~ Y Z”sz (w9
sepLF D [|7=5T pep(Lth r=sT
2
(s+1)T
! r T 1 r r
SE|— 3wt Y VA -~ 3T Vi)
zeD(L D i irep(LED
(s+1)T
=B (= > > VA7) - Vi) + Vi(w!?) - Vfi(w™)
ZeD(L D r=sT

PR - LY V@) b Y Ve

epLED iepLED
2
1 (7) 1 (r). (7)
LY Vhwrl Y Ve -L T vl
irep(LED irep(LED Zepu i)
(10)
Applying Jensen’s inequality to split the norm yields:
(s+1)7 1 9 1 9
B <ste 3 |+ B\ 3 ol w0+ 28| D B [l - w®

iep(LED irep(LED

o2

1 2
E|= H (w ™) = V £ (w) H Tw
HE | Y ||VAD) = Vi (w®)| ] + (1n
irepLED
(s+1)7 o2
< 5n? 2 L LR[S +T + =2 ), 12
nTT2;<aw+ [0'] + +m (12)
where from (10) to (11) we use the Jensen’s inequality.
Now we sum (12) over t = s7to (s + 1)7 to get:
(s+1)1 (s4+1)7 (s+1)7 0_2
S EEO <str Sy (ag‘u LR[4T + m)
t=sT t=sT r=sT
(s+1)T - 02
= 5n?r? 2 4R[S 4T+ 22 ).
n°r T;T <aw +2E[0"] +T + m)
Re-arranging the terms and using the fact 1 — 10n*72L? > 1 yields:
(s+1)7 © (s+1)T 0_2
E[6M] < 109?72 24T+ 2.
tgs:'r [ ] a " T;T 7 o m
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Summing over communication steps s = 0 to S — 1, and dividing both sides by T' = St yields:

T
;ZE[a(”]gwn%?( 42w +F)

t=0
as desired. O

Lemma 5 (Bounded Norm Deviation). For DRFA, DRFA-Prox and DRFA-GA, Vi € DUED, the
) is bounded as follows:

norm distance between w® and w;
1o |1
— - ) _ p®
T ;E m Z sz v

sep(LED

§2n7(au,+&+\/f>.
m

Proof. Similar to what we did in Lemma 4, we assume s7 < ¢t < (s+ 1)7. Again, we only apply the

averaging based on a uniformly sampled subset of workers DD of [N]. From the updating rule
we have:

1 (t)
E|= (t) _ . (t)
- E |w;” —w'™

iep(LED
1 t—1
-E|— Yo wt =3 oV fi(w; €M) - <w<ST _ Z Z 0V fir (wD; <r>)>H
iep(LED r=sT M ieDr=sr
K = 1
=E|— Y E|Y aViwig) -~ 3 ana Sl
L iep(lzh ||7=sT sep(LE]) r=sT
<E|L % Si)TE Vi ey - 1 S VD)
= ) Si m W, 7
ZGD(L 5 r=sT srep(LED
(s+1)7

=gk |— 33 VA€ - Vi) + Vfi(w”) - Vfi(w) + 9 fi(w)

ZeD(L ) r=sT

1 1 r 1 r
—— Y Vi)~ 3 Vi) -~ 3 Vii(w)))
irep(LED irep(LED iep(LED
1 r 1 T T
o > Vfi'(’wl(v))—a > Vo (w;€)
yepLED sepLED

Applying the triangular inequality to split the norm yields:

1 ® _ ()
E|= )
- d o w;” = w®

;epLED
(s4+1)7
<l Y Y (owr kb fwl? —wt
,epu I r=sT
1 ") _ | L Tw
T 3 el - w3 VD) - 9w+ 2
m . m m
sepLED sepLED
(s+1)1 1 o
= w4 2LE | — Ellw! —w® || + VT + 22 |. 13
=n ) |owt X Bl w0l VT T (13)
T=S8T Z/ T
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Now summing (13) over ¢t = s7 to (s + 1)7 gives:

(s+1)1
2 E{ > Il —wl

t=s7 iep(LED

(s+1)7 (s+1)7

=D DD DI EARE 123 E ) o | AV

t=sT 1r=sT i’eD(r)
(sd1)r 1 o
= w+2LE | — (1) _ qp(") T4 v
= 2L |ow m_%) i —w® | + VT4 =

Re-arranging the terms and using the fact 1 — 2n7L > % yields:

(s+1)T 1 (s+1)T o
SE|- Yl - w®| <opr 3 (ot VT4 22).
t=sT 16D<L£J) r=sT

Summing over s = 0 to S — 1, and dividing both sides by 7" = ST yields:

T

1 1 (t) (t) Ow

TZE - Zt lw;” —w'|| §2n7’(ow+ﬁ+\ﬁ‘),
t=0 iep(LED

which concludes the proof. O

Lemma 6 (One Iteration Dual Analysis). For DRFA, under the assumption of Theorem I, the
Sfollowing holds true for any X € A:
E[ACTD — X2 <E[IA® — x|
(s+1)1
— > ERyFEw®, X)) — F(w® X))+ EA 2+ E|A, — A

t=s7+1

Proof. According to the updating rule for A and the fact F' is linear in A we have:
) 2

E HA(S“) - ,\H —E|[JA® +24,) -2
A

<EIlAG) —

—El|IAG _

—E[A® AP +E [2 <AS, A A>} +E|A|]2 + E|A, — A,

= EJA®) — x|
(s+1)1
+2y 3 E [<V)\F(w(t), AE), A )\>} +EA2 +E|A, — A, |2

t=s7+1
= A" = A2
-2y ) E [F(w(t), A) — F(w™®, ,\<S>))} +E|A* +E|A, — A%,

as desired.
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C.4 Proof for Theorem 1
Proof. Equipped with above results, we are now turn to proving the Theorem 1. We start by noting

that Vw € W, VA € A, according the convexity of global objective w.r.t. w and its linearity in terms
of A we have:

E[F (i, \) — E[F(w, \)]
{]E [F('w(t),/\)} _F {F(w,)\(HJ))}}

{]E [F(wu),)\)} _E [F(w(t),,\(Lﬂ))} L E [F(w(tu(m))} _E [F(w,,\“ﬂ))”

<

Nl =
E

~
Il
—

IN
Nl =
Me

t=1
S—1 (s+1)

1 ) © 7\

ST ;HE{FU’ A) — F(w', A1)} (14)
1 t t
TZE{FW“LA“T“)—F(w,A“f”)}, (15)
t=1

To bound the term in (14), pluggin Lemma 2 into Lemma 6, we have:

— s+1)7‘ 5
- w® ) — Faw® ALFD)y)y <« — N £G2 YTON
s=0 t=s7+1
D?\ + ’yTGi 'yTUE\
- 29T 2 2m

To bound the term in (15), we plug Lemma | into Lemma 3 and apply the telescoping sum from
t =1toT to get:

w® ALY = pw, AL7D))

N =
HM’%
=

2 G2 o2

< __E ) _ 2 5L 2 in T NnGw No0w

< o Bl W —wlT 45k lowt T ey,
D? o2 nG2  no?

< W 4507 24wy —

< 375 T5L°T (0w+m+ )+ SRR T

Putting pieces together, and taking max over dual A, min over primal w yields:

min maxIE[ (W, ) — E[F(TU,S\)]

weW e
2 o2 nG? no? D3 yrG3  yTo?
L 2 Yw r A A A .
fQT Wy 5Lnr (0w+m+ >+2 +72m+2’yT+ 5 +2m
Plugging in 7 = T\/lg ,n = ﬁ, and vy = ﬁ, we conclude the proof by getting:
X : 3 D3, +G% D}
I)I‘léi/)\{E[F(w, A)] - wmelll/lv]E[F(w7 A)] < O( Nia + To/s"
G? o2 ol +T
+ —tas T e T )
ml/2T3/8 " 3238 T T
as desired. O

D Proof of Convergence of DRFA for Nonconvex Losses (Theorem 2)

This section is devoted to the proof of Theorem 2).
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D.1 Overview of Proofs

Inspired by the techniques in [29] for analyzing the behavior of stochastic gradient descent ascent
(SGDA) algorithm on nonconvex-concave objectives, we consider the Moreau Envelope of ®:

. 1
O, (x) = Inin {@(w) + %Hw - w} .

We first examine the one iteration dynamic of DRFA:

1 ~
E[® )] < E[® (t=1)] 4 29Dy L2E | — H (t=1) _ (H)H
(@121 (w'")] < E[®q )91 (w )] +2nDyy m %:ID w; w

t—1

oL (]E[(I)(w(tfl))] _ E[F(w(tfl)’)\LTJ)]) _ %E MV@I/2L(w(t1))H1 .

We already know how to bound E {% Y ptsy
1 T

key is to bound E[®(w~1)] — E[F (w1, )\(L%J))]. Indeed this term characterizes how far

the current dual variable drifts from the optimal dual variable \* (fw(t’l)). Then by examining the
dynamic of dual variable we have VA € A:

le(-tfl) — 'w(t_l)m in Lemma 5. Then the

ST

3 (]E {@(w(t))} _E [F(w@),A(S—U)D

t=(s—1)7+1
< ¥ (E[F(w@),)\*(wt))}_E[F(w@),A)D
t=(s—1)7+1

2 1 2
+7? 272G + o (E [HA ~ At } —E [HA —A®

1)
The above inequality makes it possible to replace A with A*, and doing the telescoping sum so that
the last term cancels up. However, in the minimax problem, the optimal dual variable changes every

time when we update primal variable. Thus, we divide S global stages into v/.S groups, and applying
the telescoping sum within one group, by setting A = A* ('wc‘/gT) at cth stage.

D.2 Proof of Useful Lemmas

Before presenting the proof of Theorem 2, let us introduce the following useful lemmas.

Lemma 7 (One iteration analysis). For DRFA, under the assumptions of Theorem 2, the following
statement holds:

1 .
E[® )] < E[® DY 4 2DWL?E | — > H (=) _ <H>H
(@121 (w")] < E[®y 57 (w )+ 27Dy = w, w

iep(L5D

Lol (]E[(I,(w(t—l))] _ E[F(w(t—l),A(L%”)]) _ ZE |:qu)1/2L(w(t_l))H2:| |

Proof. Define w") = mingey ®(w) + L|jw — w® |2, the by the definition of @, /57 we have:

Dy jor(w) < @@ V) + L@ —w®|2 (16)
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Meanwhile according to updating rule we have:
2
E {Hﬁ,(m) Cw® ]

—E |||la®D = H w1 _ =
w

A
=

+2E | { @D — w1V 1
"m

Applying Cauchy inequality to the last inner product term yields:

E [Hﬁ,(t-n _w(wm

[H < (t—1) w(t_l)‘ﬂ (G2 +02) + 2 <ﬁ)(t—1) _w(t—1)7l

som o w2

iep(L5FED

2
<E [Hﬂz(tl) - w(t_l)H } +n*(G2 +o2) +

[ 2 1 _
S (t—1) (t—l)H E 2 (t=1), ((t=1)
B _w }+ — Y Vs )

Yo VafilwTHgY)

iepL5ED

iep(L5ED

Z wai(w(til)

iep 5D

Z mez(w(t_l))>

iepL5ED

[V fiw! ™) = Vo i)

1
nDwLE | —
m

+ 20 [(@7) — w1, 7, P, AL ) )]

According to smoothness of F' we obtain:

{<~ (t=1) _ 4pt=1) V. F(w(t 1) )\L' 1J)>}

E_F(~(t 1) )\Luj)] E[F(w(tfl)’)\L%J)} +§IE l:H,a,(tl)_w
<E[0@" )| — B [, AF)] +L]E {H (t-1) _ gl M

<E —(I)(ﬁ)(t 1))} +LE Hﬁ](t 1) _ =D H } R [F(w(t—l),AL%J)} _Lp

‘I,(w(t 1)) +L]E[||w(t—1)_w(t_1) H2]

<E[<I>(w(t_1))} —E [P(w(D, A7) }

[H - (t—1) w(t—l)HQ]
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%

w1 _ ,w(t—l)H

a7

(t1)H2]

2
s

(18)



Plugging (17) and (18) into (16) yields:

2
q)l/QL(w(t)) < (b(,a}(t—l)) +ILE |:Hﬁ}(t_1) . w(t_l)H :|
1 t—1 _
+ Ln*(G}, + o) + nDwL?E | — 3 ng ) _ ot I)H

iep(L5FD

=1 L 2
+2Ln (E [q)(w(t—l))} _E |:F(,w(t—1)7>\LTJ)} _ EE |:H,a}(t—1) _ W(t_l)H })

2
< By jor(wV) + LE {va(tl) - w(tfl)H ]

1 _
+ Ln* (G2 + 02) + nDw L*E — Z sz(.t D _ w(t—l)H

iep(L5FHD

2Ly (E [q)(w(tfl))} _E {F(w(tfl),k\'gj)]) _ gE {qu)l/%(w(tn)HT |

where we use the result from Lemma 2.2 in [7], i.e, V&, /o1 (w) = 2L(w — ). O

Lemma 8. For DRFA, Y\ € A, under the same conditions as in Theorem 2, the following statement
holds true:

ST

3 (E [‘D(w(t))} ) [F(w(t),)\(s_l))D
t=(s—1)7+1

ST

< ¥ (E [F(w<t>,>\*(wt))}—E[F(w@),,\)D

t=(s—1)7+1

2 1 2
+ 722 L@+ o (]E U’)\ ~ At } ~E [H)\ —A®
m

1)
Proof. YA € A, according to updating rule for AG7Y | we have:
<)\ @) A6 N1 AH> > 0.
Taking expectation on both sides, and doing some algebraic manipulation yields:
]
< 9E [<>\<S—U _ As_1>] +9F [<>\<S> A6, As_1>]
2 2
x[Jamse o e a-

< 9E [<>\(S*1> Y AS,1>] 4R [<>\<S> A6, AHH

+2E [(AD = AT A - A )] +E [HA ~AGD m “E M)‘(S) - A<51>H1 .

o) >
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Applying the Cauchy-Schwartz and aritmetic mean-geometric mean inequality: 2(p,q) <
2llplllqll < 3llpl? 2, we have:

el a-x]

2
<HE| S Fw®AC) - Fw® )| +E [HA - A<S‘1>H }
t=(s—1)7+1

E [; |3 = a0 4 28, - As_l\f] TE B [0 =D 42 HAHHQ]

& [H)\@ _ A(sl)HQ]

ST 2 2
<HE| Y F®ACD) - Faw® A | +22 2 422G 4+ E [HA - A<S—1>H ] .
m
t=(s—1)7+1

By adding 2,7 1), F(w®, X" (w")) on both sides and re-arranging the terms we have:

ST

3 (E [@(wm)} —E [F(w(t),)\(s_l))D
t=(s—1)r+1

ST

< Y (B[Fa®.x wh)] ~E[Fe®N)]) 52D + 5263

t=(s—1)7+1
+< {H)\ AG—D) M [HA)\(S) 2D

O
Lemma 9. For DRFA, under the assumptions in Theorem 2, the following statement holds true:
T t .
T Z ( [ } -k {F(w(t)’A(L?D)D = QfT”Gw\/WJrW— +77G3 + fﬂ

Proof. Without loss of generality we assume /S is an integer, so we can equally divide index 0 to
S — 1 into v/S groups. Then we have:

% XT: (E [@(ww))} _E [F(w@), A(L%J))])
VS—1 | (e+1)VS

Sl [ ol N T R et R

c=0 |[s=cv/S41t=(s—1)7+1
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Now we and examine one group. Plugging in Lemma 8 and letting A = \* (w(C“)‘/gT) yields:

(C+1)\/§ ST

>y (E [@(w(t))] —E [F(w“),)\(“))])

s=cV/B+1t=(s—1)7+1

<

<

<

<

(c+1)VS ST

Z Z (E [F(w(t)7>\*(wt))} _E {F(wu),)\*(w(cmﬁr)):

s=cV/E4+1t=(s—1)7+1
(c+1)VS
So? 1 ,
+ 77_2@ + ’77-2\/5(;3\ 4 — Z <E |:HA*(w(C+1)\/§T) _ )\(sfl)
m 2y
s:cx/§+1
(C+1)\/§ ST

Z Z (E [F(w(t)7>\*(wt)):| _E [F(w((c+1)\/§r)7)\*(wt)):

s=cV/E4+1t=(s—1)7+1
+E |:Fv(,w((c+1)\/§~r)7 )‘*(w(c+1)\/§7)):| _E {F(w(t),)\*(w(c—l—l)\/@r))])

(c+1)VS
1 2
L2 Yo% VSR | VIR Y (E {HA*(w@H)@T) *A(H)H ]
m
'Y s_cx/§+1
(c+1)VS sT D2
Z Z (2VSTGWw\/G2 + 02) + ’}/T + ™V8G3 + 2—;\

s=cV/S+1t=(s—1)T+1

257’ T]G \/G?D+O'2 +’}/T ZfGA+7

12|

E |

A (w(c+1)\/§7’)

b (w(c+1)\/§r)

(20)

2y

(22)

where from (20) to (21) we use the G, -Lipschitz property of F(-,A) so that F(w',A) —
F(w' A) < Gy |lw' — w2

Now

1 & ’
T; (E [‘D(w

D.3

plugging (22) back to (19) yields:

Proof of Theorem 2

)] - E [Fw®, x)]) < —2\/>ST NG/ Gl + 0%+ S

< 2V SmGy \/m+77'—+’77'G

\/§D/2\
2T~

2

\fm
O

Now we proceed to the formal proof of Theorem 2. Re-arranging terms in Lemma 7, summing over
t = 1to T, and dividing by 7" yields:

T

73 E (Vo @]

4
< ﬁE[@1/2L(w(O))] +

iep(LED

LT XT: < w®)] E[F(wu)’)\m)]) _

29

T
1 1 )
=S Dp’E |~ sz(. *“’(t)H
2T P m

—_A®

—A®

)

1)



Plugging in Lemma 5 and 9 yields:

T
1 ) A .
" [qu>1/2L(w(t>)H } < RE(®1 2 (w0 O)] D E? (o + 72+ VT)

2
+ 5 (2VEmGu /G T o+ 4G+ )
STy

4 w
< BBy or (w®)] + gDy L <ow y 2wy fr)
nT m

GiL  DRL
2 4/Sry

2
L
+VS8TG WL/ G2 + 02 + 77'02)‘

Plugging inn = M%M , Y = ﬁ and 7 = T''/* we recover the convergence rate as cliamed:
4 0 L? Tuw
T ZE 7] = Bie st + 75 (4 S )
2 2 2
5 5 oxL G5 L DiL
T1/8G wbV Gy 0wt S T g T aris
which concludes the proof. O

E Proof of Convergence of DRFA-Prox

This section is devoted to the proof of convergence of DRFA-Prox algorithm in both convex and
nonconvex settings.

E.1 Convex Setting

In this section we are going to provide the proof of Theorem 3, the convergence of DRFA-Prox on
convex losses, i.e., global objective F' is convex in w. Let us first introduce a key lemma:

Lemma 10. For DRFA-Prox, VX € A, and for any s such that 0 < s < g — 1 we have:
(s+1)T

3 (IE {F(w(t),)\)} —E {F(w(t),)\(s))D

t=s7+1

1 1 1 _
——E[ACTY — X2 + =E[JA® — A|?] + —E[J|A, — A,|?
o | | t5 [ | ]+27 [l [I°]

+ 729G (G + 1/ G2 + G3 + 03) + T27G3

Proof. Recall that to update G we sampled a index ¢’ from s7 + 1 to (s + 1)7, and obtain the
averaged model w®) . Now, consider iterations from s7 + 1 to (s 4 1)7. Define following function:

’ 1
U(u) = Tf('w(t ),y) +7g(u) — %Hy + Ay — ul?
’ 1 _ ]_ _
_ ) 1 ol LA AR
rr) 4 rglu) - -y + A -l - LB - A @

1 - _
+;<As*Asvy+Asfu>'

By taking the expectation on both side, we get:
E[¥(u)]

, 1, 1 1~ 1~
=E[rf(w™),y)] + -E[(A,,u — y)] + E[rg(u)] — —E|u — y||> = —E| A, — Ay|]? — —E||A,|?
() )]+ B )1+ Efra(u)) - 5-Ellu -yl - 5-E|A, - A - -EJA,|
(s+1)1

1 1. 1
=E F(w® — —Ellu—y|? - —E|A, — A|]> — —E|A?
t:SzT:H (w'™, u) 5 lw =yl o | | 5 1Al
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where we used the fact that E[7 f(w®), y)] = E {Zﬁstiﬂ f(w®, )] and %E[(As, u—y)| =
SB[ ) — fw®,y)].

Define the operator:

1
730) = argmae {ratw) - 5y + A, - ul? 4
Since U(u) is %—strongly concave, and Ty (y) is the maximizer of ¥(u), we have:
1

E[W(Ty(y))] - E[¥(u)] > ZEHTg(y) —ul?

Notice that:

ey 1 1 1
E[¥ (T, > Fw", Ty(y)| - %E[HTg(y) —yl*] - %E[HAS — A% - ZEHASHQ
t=s7+1
So we know that E [ E‘:i)ll F(w®, Tg(y))} > E[V(T,(y))], and hence:
(s+1)7
E| Y Fw?Ty(y)| —E¥(u)] > E[W(T,(y)] - E[(u)] > %E\\Tg(y) —ulf?
t=s7+1

Plugging in E[¥(u)] results in:

(s+1)T
]E[ > F(w(t)ng(y))] —E[¥(u)]

t=s174+1

(s+1)7 (s+1)7 1 1 _ 1 _
—E| Y F Ty)| - E| Y Fw" ) *%E[Hu*yHZ]*%EHlASfAs||2}*ZEHASHQ

t=s7+1 t=s7+1

Re-arranging the terms yields:
(s+1)7 (s+1)T

IE[ > F(w(t),u)} —E{ > F(w(t),Tg(y))]
t=s7+1 t=s7+1

1 1 1 _ R
< ——FE|T —u|?+ —FE[|ly — ul|?] + —E[||As — AL]?] + —E|| A%
S 1T4(y) — ul| +27 [y — ull ]+27 [l [ ]+27 1Al

(25)
Letu=\y = A®)_ then we have:
(s+1)1
> (B[P, N)] - E [F®,1,0))
t=s7+1

1 1 1 1
< — —E|T,(A®) = A2 + —E[IIA® — A2+ —E[||A, — ALlI?] + —E||A,]|.
<y [T (A*™) = Al +27 i ||]+2,y [l ||]+27 1Al

Since T,(A®) = A+ we have:

(s+1)T

3 (E [F(w(t),)\)} _E [F(w(t),)\(s))D

t=s7+1
1 , 1 1 ~ 1 ~
< **EHTg(A(&)) = AP+ ZE[IIA(S) — AP+ %]E[HAS — AP+ %EHASHQ

(s+1

+ Z ( { w® )\(3+1))} ) [F(w(t)7)\(s))})_

t=s7+1

T
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Now our remaining task is to bound 7). By the Lipschitz property of F', we have the following upper
bound for 77:

Ty < 7GLE|ACTY — X&), (26)
Then, by plugging u = A®), y = A® into (25), we have the following lower bound:
1 1 ~ 1 _
—EJACTY A2 — —R[|A, - Al]P] - 5-E[A|* < 1. 27
2y 2y 2y
Combining (26) and (27) we have:

1 1 - 1 _
SEIACTY - AQ I — —E[A, - A7) - -E[A|?
2y 2y 2y

< TGLEACTY —AB)| < 7@, \/EH,\<S+1> AW, @28)

Let X = \JE[ACT) —AW|2, A= L B = —7G, and C = —LE[|A, — A,|? — £E|A, |2,
then we can re-formulate (28) as:

AX? 4+ BX +C<0. (29)
Obviously A > 0. According to the root of quadratic equation we know that:

B+ VBE—IAC _ TGu+[Gh? + HEIIA - AP+ EJA?)
24 1/v

<7 (Gw /a2 +G§+a§) .
Hence, we have
Ty < 7GLE[ACTY AW < 724a,, <Gw +4/G% +G3 + oi) ,

which concludes the proof.

X<

O

Proof of Theorem 3. We start the proof by noting that Vw € W, VA € A, according the convexity
in w and concavity in A, we have:

E[F (@, A) - E[F(w, A)]

% ZT: {E [F(wu), A)} _E [F(w(t)’ A(L%J))} +E {F(w(t)’ )\(LﬁJ))} E [F(w, A(L%J))} }

<
t=1
1 S—1 (s+1)7 ) T t t
< T Z Z E[F(w®,X) — F(w®, X)) + 7 ZE[F(w(t), ALEDY = P, ALFD)).
s=0 t=s741 =1

(30)

To bound the first term in (30), plugging Lemma 2 into Lemma 10, and summing over s =0to S — 1
where S = T'/7, and dividing both sides with T yields:

S—1 (s+1)1

TZ 3 {IE[ (t) A)} ]E[F(w(t),)\(s))”
s=0 t=s7+1
32 TDA+2—E[||A — As|?] + TG W (G + £/ G2, + G2 + 03) + y7G3
SQTDA-‘F E[||A — Ag|P] 4+ (G + /G2 + G3 + 03) +v7G3
<D—‘2‘+WUA+T Guw(Gy + /G2 + G2 + 03) + y7G
=91 T om T A TR
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To bound the second term in (30), we plug Lemma | and Lemma 4 into Lemma 3 and apply the
telescoping sum from ¢ = 1 to 71" to get:

T

1 t t

T E E[F(w(t),A(LTJ)) _ F(w,)\(LTJ))]
t=1

G2,
n 1 no,
2 2m

1
< TEH w® — w4+ 5Ln%r2 (a + 2w + F)

/\

D3, , 02 nG2 no?
5L Tw 4 p w w
< opp 50T (au,+m+ T

So that we can conclude:

D2 nG2  no? D3
E[F (i, \) — A < 2 4500272 war Tw A
[F(w,\) — E[F(w, )}_QTn—i— 0T U—|— + + 5 +2m+2fyT
7'0'2
+77G?\+72m>\ w(Gu + /G2 + G2 + 02).

Since the RHS does not depend on w and A, we can maximize over A and minimize over w on both
sides:

wrnel)r/lvr?gX(E[F(w, A) — E[F(w, \)]

D2 o2 nG2 no? D3
-w L 2 L 2w, Tuw A
*ZT W 5Lt <0w+m+>+ 3 +2m+2'yT

2
FTGE 727:? + Gl (Gw +1/G2 + G2 + a§> .

Plugging in 7 = \F , N = ﬁ, and vy = ﬁ, we get:

D%,V—I—G?U_i_D/Q\—i-G?U G3 o3 UfU—FI’)

ax B (@, A)] - mig E[F(w, A)] < O( VT T3/8 i/2T3/8 T aarals T /T

A€A weW
thus concluding the proof.
E.2 Nonconvex Setting

In this section we are going to prove Theorem 4. The whole framework is similar to the proof of Theo-
rem 3, but to bound E [‘P(w(t) )] -E {F (w®, Al LD )] term, we employ different technique for prox-

imal method. The following lemma characterize the bound of E [®(w®)] — E [F(w(t), Al L%J)) :

Lemma 11. For DRFA-Prox, under Theorem 4’s assumption, the following statement holds true:

T
1 t
— ®)y _ ® \(UL=D
TE E[‘I)(w ) — F(w', X )]
G3 D% 2 2
< 2V STG. G2+02+777+77+ 275 +7YGw | G+ /G + G + 03 ).
St

Proof. We recall that in Lemma 10, we have:

(s+1)T

3 (]E {F(w“),)\)] —E {F(w(t),)\(s))D

t=s7+1

1 1 1 - 1 _
——E[ACTY — X2 + =E[IA® — X|2] + =E[|A, — A|]2] + —E[||Aq1?
S EINCT < X+ BIA < AP+ 5 EII&, - AP+ 5 EA
+727<Gw+\/G%U+G§+U§).
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Adding Zisti L E [@(w(t))] to both sides, and re-arranging the terms give:

(s+1)7
w®)] —E [Fw®, A0
tZ;HOE{‘I’( )] E[F( A )D
: _g; (B [0 )] ~ & [P, A)]) - ZBIACD - A2

1 1 ~ 1 -
il () A2+ — — 214 = 2 2 2 2 2
+ 5 BN = X+ ZBIIA = A7+ ElIA7] + 7*1Gu <Gw +1/G2+ & +0k> :

Then, we follow the same procedure as in Lemma 9. Without loss of generality we assume /S is an
integer, so we can equally divide index 0 to S — 1 into /S groups. Then we examine one block by
summing s from s = ¢v/S to (¢ + 1)v/5 — 1, and set A = A" (w(c+DVST):

(c+1) f 1 (s+1)7

Y X (B[ew)] Bl x0))

s= (.f t=s7+1
(c+1 -1 (s+1)7

< Z Z ( [ ,w(t A (w )):|7]E[F(w(t)’)\*(w(c+1)\/§7)):|)

s= (.f t=s7+1

So? SG?
VI (G 4G+ G 0 + 7Y g2 VIR

(c+1)VS—1 9 2
:| _E |:’ )\*(w(c+l)\/§7) _ A(S_H)H :|>

1
T (=]

Adding and subtracting E [F(w®, X*(w?))] — E [F(w(t) A" (w(”l)‘ﬁT))} yields:

)\*(w(c+1)\/§T) A

(e+1)VS—1 (s+1)7

3 3 ([ (t)} E[F(w@))\(s))D

s—= cf t=s7+1
(e+1)VS—1 (s+1)7

< > > ( [ (t)’)\*(wt))} _E [F(w((”l)ﬁf),)\*(wt»}

s—= cf t=s7+1
1
5 2 (]

\fa VSG2 D%
< (2 2 2) A 2 A YA
< Z Z VSTG W/ G2, + 02) + 772 o +

2y
+VST2G,, (Gw +4/G%+GE + a§> :

+E |:F(w(((1+1)\/§7')7A*(w(c+1)\/§7')):| ) [F(w(t),)\*(w(c—’_l)\/gT))})
2y
s=cy/§ t=sT+1 2 2’\/
34

)\*(w(c+1)\/§T) _

A* (w(c+1)\/§7’) . )\(s—l-l) Hz] >

2 2
+ '77'2 \/2§U>\ + '77‘2 \/520)\ + \/§T27Gw(Gw + G12u + Gi + 0’?\)
m
s= C\/§+1
+VST2G,, (Gw +1/G2+ G2+ a§>

(c+1)V'S 9
|-=
(c+1)VS—1 (s+1)7
2 2 D2
< 287G/ G2 + 02, + 477 7\/5@ + 72 \/§2G
m



So we can conclude that:

(c+1)VS—1 (s+1)7

X X (Blew)] Bl x0))

5= C\f t=s7+1
2 2
g2572nGw\/Ga+ag+772@+ 2\/;G DA+\f Gy (Gw+\/G%U+G§+a§>
m

Summing above inequality over ¢ from 0 to v/S — 1, and dividing both sides by T" gives

—1 (s+1)7

®) £\
Y Y (2 o] - [0
s=0 t=s7+1
D2
< 2VS™G W/ G2 + 02, +w—+7 G+2f + TGy (Gw—I—\/G%U-&-Gi—i—of\),
Sty
which concludes the proof. O

Proof of Theorem 4. Now we proceed to the formal proof of Theorem 4. Re-arranging terms in
Lemma 7, summing over ¢t = 1 to 7', and dividing by T yields:

Fy (e )]

T
4 1 1
" t=1 iep(LED
T
1 (Y] _ 0 y\L%]
+ L2T (E[fb(w )| — E[F(w®, X )]) :

Plugging in Lemmas 5 and | yields:

L5 s o] ]

4
< FE[(I)l/QL(’w(O))] + Dy L? (Uw + -2 4+VT

2
(2\FT17G \/m—k'w——i— %+2DS + 177G (G +\/M))

4
< ﬁE[@l/QL(w(O))] + 'I’]'T-.DV\}.L2 (Uw + — +

oL G?L D2L TYLG (G + /G2 + G5 + 02)
+VSTG Y L\/G2 + 02 + 4122 447222 4 A WA A
" T Ty 4/ Syt 2

Plugging in ) = 172577 , ¥ = 77z and 7 = T/ we recover the stated convergence rate as:

1T 2
—N'E
2

4 L o
w - L Tuw
< T1/4 B[ /20 (w™)] + 775 (o + = +T)

3 2 2 7 2
T1/8 AmT/4 " 4T1/4 " 47178 ST1/4

HV‘I%/zL(’w(t))

O
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F Proof of Convergence of DRFA-GA in Strongly-Convex-Strongly-Concave
Setting

In this section we proceed to the proof of the convergence in strongly-convex-strongly-concave
setting (Theorem 5). In this section we abuse the notation and use the following definition for wu;:

N
a, =Y ANV,
i=1

F.1 Overview of the Proof
We again start with the dynamic of one iteration:
2 2
< (1 - %) E Hw(t) —w|| —qE [@(w“)) - @(w*)}

202 4+ 4G?
4 7]2 Ow + Gw 4L2 (,'72 + 77) E |:5(t):|
m u

E Hw(tH) —w*

+4 <Z + n2> E| Vo F(w®, A7) - v (w®))|2.

In addition to the local-global deviation, in this case we also have a new term ||V, F/(w(®, A( L7 ) —
Vo (w®)||2. Recall that V@ (w®) is the gradient evaluated at \*(w®)). A straightforward ap-
proach is to use the smoothness of @, to convert the difference between gradient to the difference

between A(L71) and A* (w®). By examining the dynamic of A, we can prove that:

o LN (LED )
E H)\*(w(t)) - ,\“?DH <2 (1 - 2) E HA(O) - A*(w<0>)H + 2042 + 1)K 2262,
K

Putting these pieces together, and unrolling the recursion will conclude the proof.

F.2 Proof of Technical Lemmas

Lemma 12 ( Lin et al. [29]. Properties of ®(-) and X*(-)). If F(-, ) is L-smooth function and
F(w, ) is u-strongly-concave, L-smooth function, let k = % then ®(w) is a-smooth function where
a = L+ kL and X" (w) is k-Lipschitz. Also VO (w) = V., F(w, X*(w)).

Lemma 13. For DRFA-GA, under Theorem 5’s assumptions, the following holds true:

< (1- )] -

202 + 4G?
+ 772@4112 (772 + 77) E [5(0} 31
m I

2 2

E Hw(tﬂ) —w*

—1E [@(w®) - o (w")]

+4 (Z + n2> E[| Ve F(w® X170y - T (w®))12.

Proof. According to Lemma B2 in [30], if F'(-, A) is p-strongly-convex, then ®(-) is also p-strongly-
convex. Noting this, from the strong convexity and the updating rule we have:

Eljuw(t+) — |
2

=E H (w(t) _ nu(t)) —w*|| <E|w® —na® —w*|?+n’E|a® — u®|?
w
= Ellw® — | + E=2p@?, w® — w)] + n’Elal)| +7°Ela) - ul)?

T T
(32)
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First we are to bound the variance E||a(") — u(®)||?:

2
1
Ella® — u®|2 = - (t) _a®
[ w2 =E| L S Vg
sep(ED)
2
1 ), o0y _ 1 ) 202 + 4G?,
=E|— Vi — < ——mMmM8,
LS w5 o] <2
iepl=) iep(LED
where we use the fact Var(3>.!';X;) = Y .o, Var(X;) for independent vari-
2
ables Xii = 1,...om, and Var(Vfi(w!"ie) = E||[viw;e) - a0|" <

2| V0 6) ~ V)| + 2| Vi) — a0 < 202 1462,
Then we switch to bound 7T7:
Ty =2nE [f <V<I>(w(t)), w® — w*> + <V(I>(w(t)) —a® w® — w*>}

. 1% . 1 _ 1% «
< 20 |- (B(0) - B(w") - S0l - w4 L[TR0) - @O+ A - w|?]
[ 2
<E |[-2p(d(w®) — d(w*)) — L |jw® —w*|* + §||V¢<w<t>> - Wﬂ

[ 4 : 2
< B |-2n(@(w) = o) = P — | + 2 [T0(0) - v, P A D)

4 ¢ 2
<E _Qn(q)(w(t)) —o(w*)) = M) ® |2 4 21 qu)(w(t)> _ VwF(w(t),A(L?D)H
L H

AL S (2

+ HZAELTJ)”w(t)_wgt)Hz 7
-

where in the second step we use the arithmetic and geometric inequality and the strong convexity of

®(-); and at the last step we use the smoothness, the convexity of || - ||* and Jensen’s inequality.

Then, we can bound 75 as:

2
T, < 1PE {4 Hﬁa) Y F(w®, A(L%J))H 4|V F(a®, A1) — 7 ()2
o |?
+2|| V)| }
t 2 t 2
< 772E [4 Ha(t) _ vwF(w(t)’)\(L:J))H +4 vaF(w(t),/\(L;J)) _ Vq)(w(t))H

o (@(w®) - @(w*»]

N
<’ 4L 3 A w® — w2 4 490 F(w®, A1) - To(w®))2
=1
o (®(w,) - @(w*»]
1
<n’E 4L2E Z [w® — w2 + 4|V F(w®, ALFD) — v (w®)|2

iep(LED

+a(P(wy) — @(w*))] .
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Plugging T and 75 back to (32) results in:

E Hw(tﬂ) —w* ’ < (1 - %) E Hw(t) —w” ’ + (4an® — 2n)E {@(w(t)) — o(w™)
+ ﬁ% +4L2 (n2 + Z) E [5@]
+4 <Z + n2> E|| Vo F(w®, A7) = V@ (w®)||2. (33)
By choosing n < E’ it holds that (4an? — 2n) < —n), therefore we conclude the proof. O

Lemma 14 (Decreasing Optimal Gap of A). For DRFA-GA, if F(w,-) is p-strongly-concave,
choosing v = %, the optimality gap of X is decreasing by the following recursive relation:

o NE )
E Hx\*(w(t)) — /\(L?J)H <2 (1 — 2/{) E H/\(O) — )\*(w(o))H + 2(4K% + )22 G2 .

Proof: Assume st + 1 <t < (s+ 1)7. By the Jensen’s inequality:
E[A"(w®) = AV |2 < 2B A" (w®) = X" (w ) |2 + 2B A" (w)) — AW

Firstly we are going to bound E||A* (w®)) — X* (w(*7))||2. We use the x-Lipschitz property of A*(-):

2
E H)‘*(w(t)) O (w(sr)> H < W2E|lw® — wbD |2 < k22262,

Then we switch to bound E[|A*®) — ('w(” )||?. We apply the Jensen’s inequality first to get:
e B (T R |
(k— 1)
2
+(1+ 2(,-; ~1))E H)\ (w<<H>T>) A ('w(“) H
2
( : )E A9 = A7 (w0 [P 203262, G4
(k —

where we use the fact that X*(-) is x-Lipschitz.

2
To bound E H)\(s) - A7 (w((s_l)T)) H , by the updating rule of A and the pu-strongly-concavity of
F(w,-) we have:
o - w1
<E H)\(sfl) A\ (w((sq)r)) H2 e

42y <VAF (w«s—lm’ )\<H>) A= _

’VAF (wusfl)r),)\(sfl)) H2
A

* (q((s=1)7)
o )
< )

4 (29°L = 2) [F (w((s—1)7)7)\* (w((s-m))) _F (,w((s—l)r)7)\(sfl)>:|
<0

1 2
(1= sl o)
K

where we used the smoothness property of F'(w, -):

HV*F (w«s—l)f)’)\(s—l)) H2 <9I (F (w<<s—1>f),)\* (w((s—l)ﬂ)) _F (w((s—lm’}\(s—l))) .
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Plugging (35) into (34) yields:

2
o )

1 1 2
<(14— V(1-2 EH)\(S_”—X‘ ((s—1)7) H 937202 (32
( *‘2oa—1>> ( m> (w0 [ et

1 i 2
(-3 oo () st

Applying the recursion on the above relation gives:

1Y)° 2
EIA® — A (w12 < ( ) E H)\O - )\*(w(o))H + 412G

1— —
2K

Putting these pieces together concludes the proof:

1
2K

2 L£] 2
E HA*(w@)) - A(L%”H <2 (1 - ) E HAO - X“(w“)))H +2(4k2 + 1)R2r22GR,.

Lemma 15. Fornu < 1, k > 1,7 > 1, the following inequalities holds:

d 1y 1\ 2k
Z L= Snp - S
2 2Kk 1= 3nu

t=0
T t %]
1 1\"'" 26T
1nﬂ> <1> < T
; < 4 2Kk 1—3nu
Proof.
T S—1 7
1 1 s 1
1— = tl_il?J: 1— sT+t s
> (=)= 5-) (1= g™ (1 =)
t=0 s=0 t=1
S—1 1 T sT+t
< )8 -
<53 (1= gm)
s=0 t=1
S—1 1 ST 1 T
<o Ly gm0 (=)
- 2K um
s=0
2(1 — (1 — 1 Ty S—1 1 s 1 ST
RGO (-3
np = 2K
2(1— (1 Lpp)") =2 1\° 1\’
S22 (g (1_> (1_W
np = 2K
1
271n =) 1

< 1) ArT (1—-1)
T (- Dme2) T o \1-dnp

2KkT N 2kT
< — 1 = 1— 1 ;
Nk 3N XU

O

(36)

(37

(38)

(39)

where from (36) to (37) we use the inequality 1 — a” < zln %, and from (38) to (39) we use the

inequality Inz < x — 1.
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Similarly, for the second statement:

T S—1 7 sT+t
1 1. 1 1
> (- )l - )l = 1—- 1——)°
( 477u)( 2K) ( 4W> ( 2/_;)
=0 t=1
1

t=0 s
S— 1 T ST+t
< 1- s 1--
<> (-5 Z( 4W>
s=0 t=1
-1 1 ST T
1—2 1—(1—+
< 9 ( i)s ( 4 ) ( ( 477'u) )
2K uIz
s=0
2(1 — (1 — 1 Ty S—1 1 s 1 ST
_ 20— (1—gnm)") <1_> <1_W>
N = 2K
2(1 — (1 — 1 Ty S—1 1 s 1 S
< (1—-(1—gmm)") (1_> (1_W)
Uz = 2K
271 L
7ln =) 1
e 1= (=) (L=
1
B 27 In (1_%7”&) < 4/177' < 1 B 1)
T (FEH G sme?) T e \1—
2KkT N 2KT
<= )=
ne \1— gnu 1—3np

F.3 Proof of Theorem 5

Now we proceed to the proof of Theorem 5. According to Lemma 13 we have:

e
- 2

L 4r? (772 + ”) E [5“ '

n J

< (1 - ﬂ) E H'w(t) —w*
- 2

) L2
+4r? (n2 + ") E [5@ +4 (” + n2> L’E H,\*(w“)) - A(L?DH ,
p - o

2 2

E ) — v 2200+ 4G,
m

— 1 [@(w®) - d(w)| +

=

2
+4 <Z + 772) E HVwF(w(t), ALFD) - v«1>(w<t>)H

5202 +4G2,
2w T

2
‘ m

— 1 [@(w®) — d(w)| +

where we use the smoothness of F at the last step to substitute ||V, F(w®, A*(w®)) —
VwF(,w(t)’A(L%J))‘P
2

+ 2
vaF(ww, A*(w®)) = Vo F(w®), )\(L:J))H <12 ’

AT (w®) — )‘(L%J)H

Then plugging in Lemma 14 yields:
2 5202 +4G?
L/ —

E”w(t+1) . w*H2 < (1 _ ﬂ) EHw(t) — w*
2 m

42 (772 + ”) E {5@}
]

Ky
1 T
+8 (Z + 772) L? ((1 - %> E[A® — X (w )2 + k2702 G2 (46% +1) | .

(40)

i [B(w ) — o(w")] +
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Unrolling the recursion yields:

Efw™ —w*|?

1 T T 1 t
<(1_2 () 0 %2 _ 1 2,22 202 2
< <1 2,u77> E||w w”|| Jr; (1 2;m> [SL T Gz, (,u +1n ) (4 Jrl)]
_|_Z 1 } t 2M+4L2 2_|_Q ]E[(S(t)}
Tl B R

T t %]
1 1\'7
+8 (” + n2> LZE[A? = X" (w@)[2 > (1 -~ m;) (1 —~ ) (41)
) =1 2 2K
1 402 +8G?
< L 2 w 2 5®
_eXp( 2M77T> Dw+n7um +8L < )ZE[ }
1
F16L2K27202G, (’7 + 2) (452 + 1) + 1612 ( ll ) <77 + n2> D2, 42)
B 1—3gnu/) \u

where we used the result from Lemma 15 from (41) to (42). Now, we simplify (40) by applying the
telescoping sum on (40) for t = % to 1"

;t—z:TﬂE [(D(w(t)) - @(w*)}

2 207 +4G?
< 7E||w(T/2) — w2 +ﬂ% +4L2 (77 ) Z E [5@)]
t=T/2

T

L[£]
1 99 2 1\ 1 2 2722 (4,2
+8<M+n>LDAT E (1—%) +8<M+77)"€7'77LGw(4“ +1)

2 202, + 4G?, 1 2
< ZBlw™/? w2 42202 | gop272 L2 (n + ) (”3” tt P)
nT m W m

+16 <; + n) L*0 (T eXp(_;”T/L”)Di) +38 <u n) K2R LG (462 + 1)

2 202 + 4G2 1 2
< LR 2 420w 4% g2y (n + ) (ai + 2wy P>
nT m W m

T
Plugging in (42) yields:
2y [(I’(w(t)) - @)(w*)}
T t=T/2
< niT <eXp (—iunT) D3, + ”W +8L2 ( ) ZE [WD

|

2 n 1 KT
+ — [ 16L2Kk**n*G? ( + ) 4k% +1) + 16L? ( ) < +n
nT ( Y\pop? ( ) 1—gnu) \p

202 + 4G? 1 2
n (P w 807’]272[2 (77 M) (0_3] Ow F>

+16 (; + n) 120 (T eXp(_;”T/‘”)Di) +8 ( + n) PRL2GE (4K + 1)
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Combining the terms yields:

% XT: E[@(w(t))—é(w*)}

t=T/2
2 1 1 Texp(—unT/4T)
< — ——unT ) D3, +16 | - L? — D2
_nTeXP< 1Hn > w Tt 6<M+77> O( T A

4 202 + AG2 2 1 2
(A ) 2t Gy 2 st (e B) (02 Tu g
wT m pnT I m

4 1
+ ( + 1> SL?K** G2 (4K + 1) (n + )
pwnT I

32L2< KT )(1 ) 5
+ ) (=+9n) D3
T \1-4nu) \p A

And finally, plugging inn = 41;’%T and using the fact that ®(2 ZZ;T/? w®) <2 ZtT:T/Q d(w®)
yields:
E[®(w) — ®(w")]

/LD%/V 1 4logT\ , ( T 2)
< —2— 416 | — LO(=—=D
= 2TlogT - (;L * uT T+1/7)7A

(A 4losT 202 +4G2, (12 1280k272log® T Ll 2 . o2 T
= ) (o2 4 Tw
uT uT m unT T2 g I Y m

1 8kir2log? T 4logT 1
1 G2, (4s® +1 =
+<logT+) T° w(KJF)(uT +u)

3212 KT 1 4logT
- D?
tr <1—21‘;%'T> <u+ uT> A
~ (nD3, kLTD3% ~ (02 +G?
SO( - )+O(T(1+1/T) +O[(= ) +0

~ (K*LTD3% ~ (KT2G2
+0(T ) +0(MT2 )

(;-;272(03, + F))

w1

G Proof of Convergence of DRFA-GA in Nonconvex (PL
Condition)-Strongly-Concave Setting

G.1 Overview of Proofs

In this section we will present formal proofs in nonconvex (PL condition)-strongly-concave setting
(Theorem 6). The main idea is similar to strongly-convex-strongly-concave case: we start from one

iteration analysis, and plug in the upper bound of §) and ||V, F/(w® A( LéJ)) — V(w2

However, a careful analysis need to be employed in order to deal with projected SGD in constrained
nonconvex optimization problem. We employ the technique used in [10], where they advocate to
study the following quantity:

Pyv(w, g,7) = - [w [ (w —ng)] :

n W

If we pluginw = w®, g =ul® = L Zz‘gD“ﬁ” Vfi(w'; &h), then

1 3

Poo(w®, u®, ) = 2 lwu) 11 ('w(t) _ num)] .

" w
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characterize the difference between iterates w(**t1) and w®). A trivial property of operator Pyy is
contraction mapping, which follows the property of projection:

2 2
||Pw(w791777) —Pw(w,gz,n)ll < ||91 _92” .

The significant property of operator Py, is given by the following lemma:
Lemma 16 (Property of Projection, [10] Lemma 1). Forallw € W C R g € R and n > 0, we
have:

<97PW(waga77)> > ||PW(’U’79»7I)||2 .

The above lemma establishes a lower bound for the inner product (g, P\ (y, g,7)), and will play a
significant role in our analysis.

G.2 Proof of Technical Lemmas

Lemma 17. If F(-, ) satisfies u-generalized PL condition, then ®(-) also satisfies p-generalized
PL condition.

Proof. Let w* € arg ming,, ey ®(w). Since F(-, A) satisfies u-generalized PL condition, we have
for any w € W:

2

> p(F (w, A" (w) — min F(w', A"(w))

Hw NV F(w, X" (w)))
w

H(F (w, A" (w) — F(w*, A" (w))
H(F (w, A" (w) — F(w*, A" (w")).
(

w))||? > pu(®(w) — ®(w*)) as desired. [

AVARLY

which immediately implies 55 zllw =TIy (w—nVe

Lemma 18. For DRFA-GA, under Theorem 6’s assumptions, we have:

E [cp(w<t+1>) - @(w*)] < (1 - %) E [@(w@)) - @(w*)}

N 2
L 202 +4G?
E )\EL’J)Vfi(wgt)) - V(D(w(t)) + 377701”2—; =,

i=1

3n
“r
3

(43)
where « = L + kL

Proof. Define the following quantities:

N
1 (). oty ~ (L£)) (t)
= Z V fi(w; 7§i)>ut_z/\i Vfi(w;?).

€Dt =1
RY = PW("U Uy, m) = w® — 5 ( 77Ut>
1
R(t) = PW(wtvﬁtan) = w(t) - ; ( —nu f>

R = Py (w!, d(w?),n)

%H (w(t) — Vo 'w(t)))
w

By the a-smoothness of ® and the updating rule of w we have:
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E[®(w)] — E[®(w®)] < [Hw t+1)

{Hgm
L Tag D’R(t) ?
=73

—nE [<V<I>(w(t)) — Uy, R(t)ﬂ .

} + <V<I>(w(t)), wtD) — w(t)>

}—mwvﬂ .10)

} —nE [(ue, P (y", ue,m))]

R
2
L Tag
-2

According to Lemma 16, we can bound the first dot product term in the last inequality by |[R® |2, so

then we have:

E[®(w*1)] — E[®(w®)]
2a 2 - -
<Lk [HR@ } — (IR 2] = nE [(VO(w ) — u, RO)]
2 - 2 ~
< (n - 77“) E U R(t)‘ } —E KV@(w(t)) - ut,R“)ﬂ
2
2 - 2 2 - 2
<= (- 22)z Jr] « oo -l ]
n_mra 2Ol Oy _all’ + 1 2
<-(2-Z%)E ‘R ‘ + K HV<1>(w ) — ||+ [ — ]
N————
<—in
M. 27 r 2 2 2 4 2
< —nE ’R(t) ‘ +nE qu;(w(t)) — ﬁtH ] + M. (44)
m
Notice that:
n 2 - 27 TR - 2
E “R(”H } <2E ||R®|"| + 2E |||2® — R®)
. - 2: R 2: ~ 2
<2E ||| | +4E [|2®O - RO|"| +4E {HR(”R(” }
. 2: - . 2: 9
<2 ||RD| | +4E ||2® — RO|"| + 4E {Hu(t)—u(t) }
- 2: - - 5 9 9
<2 ||RO|"| + 4E ||vo(w®) —ﬁtH } 4 Q0w +4Gy) 4,
m
- 2
Thus, plugging (45) into (44) to substitute E U R® } yields:
E[@(w*)] - E[®(w")]
NTEI | 2 202 + 4G?
< —-qE ‘R(t) } + B [qu)(w(t)) _ ﬁt” ] + w
L 2 2m
2 202 + 4G?
+nE “ Vq)(w(t)) _ atH } + n( Uw;; G3)
1 A(t) 2 3 (t) _ 2 377(20',[21} + 4G12u)
< _—E ‘R + Sk HV<I>(w )—utH + e 46)

Plugging in the generalized PL-condition:

w® — nV@(w(t)))

1E[W<

_w®

] :E[m
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into (46) yields:

E [(I)(,w(t+1)) _ @('w*)} < (1 _ %) E [(I)(w(t)) _ ‘b(w*)}

N 2
S AV - vew®)

=1

202 +4G2,

+ 3n o

3n
“r
T3

G.3 Proof for Theorem 6

Now we proceed to the proof of Theorem 6. According to Lemma 18 we have:

E [#(w+) - @(w*)} < (1 - %) E [@(w(“) - <1>(w*)}
2

202 +4G2,
+In—"r—".

3n
—E
+ 2 2m

N
S AT £ w®) - va(w®)
=1

T

Now, we bound the term 77 in above as:

N 2

Ty < 2E |V d(w®) = SN0, fi(w®)
=1
(Lt SNES) i
+2E Y AV fi(w®) - ST AV f (w0l
i=1 =1

. 2
<9E vap(wu), A (w®) — Vo F(w®, )\(L;J))H
N . ,
+23 NV w®) - il
=1

2
< 217K [ A" (w®) - A“%J))H +20°E [50)]

1£]

1 T

< 2L? (2 (1 — 2) E[A® — X" (w )| + 2627202 G2 (4K2 + 1)) +2L°E [5“)} ,
K

where we plug in the Lemma 14. Plugging 77 back yields:
E[@(w ) - o(w")]

1 202 + 4G?
< _ - )y _ * Pw T T w
(1 ,un> E {@(w ) (I>(w )] + 3n om

4]

3 1 i

+ 377 (4L2 (1 - 2) EIA"(w @) = AO |2 4+ 4L2627202G2 (45% + 1) + 2L°F [WD
K

1 202 + 4G?
< _Z )y _ * Sw T T w
< <1 4,u77> E {q)(w ) — P(w )} +3n 5

4]
1 T
+ 6nL> <(1 - %) E[|A* (w®) — A(°>||2>

+ 3377 (4L2K2722G2, (42 + 1) + 2L%E [60)] ).

45



Unrolling the recursion yields

E [@(wm) - @(w*)}

< (1= L) B [m) o] 3 (1 ) w201
T 1 t 1\ L7
+OLZEIN ()~ Aol Kl - gm) (1-5:) ]
3 (= 1\ - o 1\
+3m (Z (1 - 4;“7) AR TG, (46° +1) + 207 ) (1 _ 4/“7) E [5@)})

t=0 t=0
202 +4G2,

< exp (J‘ZT) E [cp(wm)) - @(w*)} +12 2y

" 2KT
+6nL B A" (w ) — X2 (1 1 )
1K

2
+ g (4L2H2T2T]2va (4/{2 + 1)) + 3nL? (107727'2 (03, + % + F)) T,

where we use the result of Lemmas 4 and 15. Plugging inn = 41;’7%71, and m > T, we have:
O (w?) — d(w*) ~ (02 + G? ~ (k?LTD%
S(w®) — d(w*) < O O " "w O 21==A
(w) = d(w") < - +O( T ) 10 (T
~ (KST2G2 ~ (K*r2(0? +T)
O w o2 Ywm )
i ( puT? ) i ( puT? ) ’

thus concluding the proof.
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