
A Properties of Algorithm 1

Background on polytopes. To prepare the proof of Theorem 3 we want to recall that a well-known
tool from discrete geometry, is that polygons and polyhedral descriptions are equivalent. That is
C(x) is an affine span of the vectors x as in Definition 1, but equivalently C(x) is the intersection of
hyperplanes. In general this is the content of the celebrated Weyl–Minkowksi theorem and computing
one representation from the other is non-trivial, see [23]. However, when restricted to n generic
vectors in Rn (as is the case required in Theorem 3), one can immediately switch from one to the
other, see item 2 of Theorem 3.

Proofs of Theorem 3 and Proposition 1
Theorem 3. Let x = {x1, . . . ,xn+1} be a set of n+1 points in Rn such that x\{xn+1} spans Rn. Let
A be the matrix that transforms x \ {xn+1} = {x1, . . . ,xn} to the orthonormal basis {e1, . . . ,en} of
Rn, i.e. Axi = ei. Further, let hi be the unit vector such that 〈hi,x〉= 0 for all x ∈ x\{xi,xn+1} and
〈hi,xi〉< 0 and denote with Hx\{xn+1} a n×n matrix that has h1, . . . ,hn as row vectors. It holds that

1. C(x\{xn+1}) = {c|Hx\{xn+1}c≤ 0} and C−(x\{xn+1}) = {c|Hx\{xn+1}c≥ 0}.

2. Ax≥ 0 if and only if Hx\{xn+1}x≤ 0 and Ax≤ 0 if and only if Hx\{xn+1}x≥ 0.

3. There exists a convex combination of x with 0 as barycentre, ∑
n+1
i=1 wixi = 0 for some wi >

0, and ∑
n+1
i=1 wi = 1 if and only if xn+1 ∈C−(x\{xn+1}).

Proof. For item 1 first note that the hi are well-defined since any set of n− 1 independent points
determines a hyperplane that includes 0 and that divides Rn into two parts. Each of these two parts is
of the form {x : 〈h,x〉 ≤ 0} or {x : 〈h,x〉> 0} and the additional condition 〈h,xi〉< 0 selects one of the
two parts. Now let c = ∑x∈x\{xn+1}wxx be a general vector. Since Hx\{xn+1}x≤ 0, for x ∈ x\{xn+1},
it follows that Hx\{xn+1}c = ∑x∈x\{xn+1}wxHx\{xn+1}x satisfies Hx\{xn+1}c≤ 0 if and only if the wx, for
x ∈ x\{xn+1}, are positive.

For item 2, we can write x = ∑
n
i=1 wixi, for some wi ∈ R, hence Ax = (w1, . . . ,wn)

>. By definition

Hx\{xn+1}x = ∑wiHx\{xn+1}xi = ∑wi(〈h1,xi〉, . . . ,〈hn,xi〉)> = (w1〈h1,x1〉, . . . ,wn〈hn,xn〉)>.

Note that 〈hi,xi〉 ≤ 0 by definition, therefore sign {−Ax}= sign {Hx\{xn+1}x}. The statement with
the reversed inequalities follows similarly.

For item 3(⇒) assume there exists a convex combination of x, this means that xn+1 =− 1
wn+1

∑
n
i=1 wixi,

and

Axn+1 =−
1

wn+1

n

∑
i=1

wiAxi =
n

∑
i=1
− wi

wn+1
ei.

Therefore, Axn+1 ≤ 0 which is by item 2 equivalent to Hx\{xn+1}x≥ 0. Thus, xn+1 ∈C−(x\{xn+1}).
Finally, for item 3(⇐) assume that xn+1 ∈ C−(x \ {xn+1}). The by item 2 Axn+1 ≤ 0. Moreover,
∃λi ∈ R such that xn+1 = ∑

n
i=1 λixi, therefore Axn+1 = ∑

n
i=1 λiei = (λ1, . . . ,λn)

> ≤ 0. Let us call
λ ∗ := 1−∑

n
i=1 λi, by the decomposition of xn+1 we know that

1
λ ∗

xn+1 +
n

∑
i=1

−λi

λ ∗
xi = 0 and

1
λ ∗

+
n

∑
i=1

−λi

λ ∗
= 1 and

1
λ ∗

,
−λi

λ ∗
≥ 0.

Remark 1. The assumption that {x\{xn+1}} spans Rn can be relaxed, indeed item 1 is a particular
case of the Weyl’s Theorem, which briefly does not require the independence of the cone basis.
From an implementation point of view, however, item 2 gives an important boost, indeed the computa-
tion of Hx\{xn+1} is heavier than inverting a matrix, i.e. computing A, since it requires the computation
of the coefficients of n different hyperplanes in Rn. Moreover, speaking about the greedy searching
strategy of Algorithm 2, using Hx\{xn+1} in place of A does not allow the use of the Sherman–Morrison
formula weighing even more on the total computational cost.

12

Proposition 1. Let N > n+1 and µ be a discrete probability with finite support and f1, . . . , fn be as
in Theorem 1. Moreover wlog assume EX∼µ [fi(X)] = 0 for i = 1, . . . ,n. With p := n·n!(N−n)!

N! it holds
that E[τ]≤ 1

p and Var(τ)≤ 1−p
p2 and, for fixed n, limN→∞E[τ] = 1.

Proof. Note that in every run through the loop, n points are randomly selected. However, by
Theorem 3, Algorithm 1 finishes when the event

A := {for n uniformly at random chosen points x? from x, ∃x ∈ x s.t. x ∈C−(x?)}.

occurs. Combined with Tchakaloff’s Theorem guarantees this shows that there exists at least one set
of n points x? such that C−(x?) 6= /0 and therefore

P(A)≥
(n+1

n

)(N
n

) =
n ·n!(N−n)!

N!
,

By independence, τ can be modelled by a geometric distribution with parameter p = P(A)

P(τ = k) = (1− p)k−1 p

and the bounds for mean and variance follow.

B Properties when applied to special measures

Proof of Proposition 2
Proposition 2. Let N > n+ 1 and let f1, . . . , fn be n real-valued functions and X1, . . . ,XN be N
i.i.d. copies of a random variable X. Set F(X) = (f1(X), . . . , fn(X)), assume E[F(X)] = 0 and denote

E := {0 ∈ Conv{F(Xi), i ∈ {1, . . . ,N}}}. (2)

1. E[τ|E]≤ 1
p and Var(τ|E)≤ 1−p

p2 , where

p = max
{

n ·n!(N−n)!
N!

,1−P(0 6∈ Conv{F(X1), . . . ,F(Xn+1)})N−n
}
, (3)

2. If the law of F(X) is invariant under reflection in the origin, then
P(0 6∈ Conv{F(X1), . . . ,F(Xn+1)}) = 1−2−n,

3. For fixed n, as N→ ∞

P(for n uniformly at random chosen points x? from x, ∃x ∈ x s.t. x ∈C−(x?))→ 1,

where x = {F(X1),F(X2), . . . ,F(XN)}.

Proof. As in Proposition 1, the algorithm terminates when the event

A := {for n uniformly at random chosen points x? from x, ∃x ∈ x s.t. x ∈C−(x?)}

happens, where x = {F(X1),F(X2), . . . ,F(XN)}.
For item 1 denote Fi := (f1(XIi), . . . , fn(XIi)) where {I1, . . . , IN} is a uniform shuffle of {1, . . . ,N},
i.e. a random permutation of its elements that makes every rearrangement equally probable, then

A = {∃i ∈ {n+1, . . . ,N} s.t. Fi ∈C−(F1, . . . ,Fn)}

and note that

P(A|E) = P(E|A)P(A)
P(E)

≥ P(A)

13

since by Theorem 3 P(E|A) = 1 and P(E) > 0 since N ≥ n+ 1 and EF(X) = 0. The estimate of
Proposition 1 P(E|0 ∈ Conv{Fi})≥ n·n!(N−n)!

N! is still valid, moreover

P(A|E)≥ P(A) =P(∃i ∈ {n+1, . . . ,N} such that Fi ∈C−(F1, . . . ,Fn))

=1−
N

∏
j=n+1

P(Fj /∈C−(F1, . . . ,Fn))

=1−P(Fn+1 /∈C−(F1, . . . ,Fn))
N−n

=1−P(0 /∈ Conv(F1, . . . ,Fn+1))
N−n

where the last equality follows from Theorem 3. We have therefore two different bounds for P(A|E),
so we can take the maximum, i.e.

P(A|E)≥max
{

n ·n!(N−n)!
N!

,1−P(0 6∈ Conv{F1, . . . ,Fn+1})N−n
}

Item 2. In [24] the author shows that when the Fi are distributed uniformly randomly on the unit
sphere, then P(0 /∈ Conv(F1, . . . ,Fn+1))

N−n = (1−2−n)
N−n. In [13][Theorem 8.2.1] it is shown the

same result, for all the symmetric distributions with respect to 0.
Now τ can be modelled by a geometric distribution with parameter p = P(A|E), i.e. P(τ = i) ≥
(1− p)i−1 p and the mean and variance follows.
For item 3, it is enough to show P(A)→ 1:

P(A) = P(A
∣∣E)×P(E)+P

(
A
∣∣EC)×P

(
EC)=P(A

∣∣E)×P(E)+0×P
(
EC)→ 1×1,

as N→ ∞, where P
(
A
∣∣EC
)
= 0 is due to Theorem 3, the convergence P(E)→ 1 is guaranteed by

Theorem 5 and the convergence P(A
∣∣E)→ 1, is guaranteed by the proof of item 1 for fixed n.

As intuition suggest, the event that the mean is included in the convex hull occurs almost surely.
Theorem 5 ([8]). Let X1, . . . ,XN be i.i.d. samples from a random variable X that has a first moment
E[X]< ∞. Then P(E[X] ∈ Conv{Xi}N

i=1)→ 1, as N→ ∞.

Sampling from empirical measures Often we do not know the distribution φ of the points or
E[F(X)], moreover it could be that for the realized samples {Fi}N

i=1, E[F(X)] 6∈ Conv{Fi}N
i=1. In

these cases, due to Theorem 2, and since Algorithm 1 is based on Theorem 3, which assumes that the
barycentre of the points given is 0, the input of the Algorithm is not the collection {Fi}N

i=1, but

F̂i =(f1(Xi), . . . , fn(Xi))−

(
N

∑
j=1

f1(X j)w j, . . . ,
N

∑
j=1

fn(X j)w j

)
,

in this way we are sure that the barycentre is 0 and 0 ∈ Conv{F̂i}N
i=1, and the hypothesis of both

Theorem 2 and 3 are satisfied. Unfortunately the {F̂i}N
i=1 are not independent, which leads to an

impossible analysis, even though the correlation between the F̂i decreases when N becomes bigger
and tends to 0. Thus, we can believe that the analysis of the proof of Proposition 2 is a good
approximation of the complexity of the Algorithm 1, when the {F̂i}N

i=1 are given as input and N is
big “enough”, as it is shown in Figure 7 and Figure 3 in case of symmetric distribution.

It is relevant to note at this point that we can always consider uniform measures, i.e. µ = 1
N ∑

N
i=1 δxi ,

modifying the support of the measure, and then eventually go back to the original (not-uniform)
measure.
Lemma 1. Let us consider a set x = {xi}N

i=1in Rn and a sequence {κi}N
i=1 of strictly positive numbers.

There exists a measure µ on x such that µ(x) = 0 if and only if there exists a measure µ? on { xi
κi
}N

i=1

such that µ∗({ xi
κi
}N

i=1) = 0.

Proof. Let us assume that there exists µ on x such that µ(x) = 0, and let us call µi := µ(xi). It is
enough to define µ? = µiκi. The other side of the equivalence is proved in the same way.

Remark 2. Lemma 1 is a consequence of the fact that a cone is defined only by the directions of the
vectors of the “basis”, and not from their length.

14

Proposition 2 shows us a “universal strategy” to explore the space of all the combination of points
more efficiently, i.e. choosing the basis of the cone to maximize the probability placed on its inverse.
In other words, ideally we should try to maximize

max
Fi∈x

P
(
F(X) ∈C−(F1, . . . ,Fn)

)
.

n=7

n=8

5 10 50 100 500 1000
log(N)

1

2

3

4

5

Figure 7: The plots shows the logplot of Equation (4). It can be seen that this is the same shape
obtained with the experimental simulations in Section 4.

Figure 7 shows the complexity of Algorithm 1 in case of symmetric distributions; it can be noticed
that it has a local minima N∗n .

C Properties of Algorithm 2

Complexity of Algorithm 2
Proposition 3. The complexity of Algorithm 2 to compute a reduced measure µ̂ ,as in Theorem 1, is

O(n3 +n2N)+(τ−1)O(n2 +nN),

here τ = inf{i≥ 1 : C−(Xi)∩x 6= /0} where X1,X2, . . . are obtained as in Algorithm 2.

Proof. The most expensive steps are the same ones as in Algorithm 1 and in addition the maximization
problem. After the first step, given that we update one point of the basis at time, we can be more
efficient using the Sherman–Morrison formula. Let us call X?

t the matrix whose rows are the vectors
of the basis at the step t x?t , therefore we have At = ((X?

t)
>)−1, thus (shifting properly the vectors)

At+1 =
(
(X?

t)
>+(X?−X?

1) · e>1
)−1

= At −
At(X?−X?

1)e
>
1 At

1+ e>1 At(X?−X?
1)

,

in the case we want to substitute the “first” vector of the basis X?
1 with the vector X?. Let us note that

the only multiplications to be computed are At(X?−X?
1) and [At(X?−X?

1)] ·
[
e>1 At

]
, which are done

in O(n2) operations. To check if there are points inside the cone (or the inverse cone), we multiply
the matrix A times the matrix X (of all the remaining vectors X), and again after the first step costs
O(Nn2), we can use the Sherman–Morrison formula as before and obtain

At+1X> =AtX>−
At(X?−X?

1)e
>
1 AtX>

1+ e>1 At(X?−X?
1)

.

Let us note that we have already computed AtX> at the previous step, At(X?−X?
1) to compute At+1,

therefore the only cost is to compute [At(X?−X?
1)] ·

[
e>1 AtX>

]
, which is done in O(nN) operations.

The previous computations show us that after the first step, updating one element at a time, improves
the computational efficiency of the successive steps of a factor n. Let us now tackle the maximization
problem, it requires to compute the norm, i.e. O(Nn2) operations, which could be done only once.
Moreover, the maximization problem requires to compute (part of) the sum of the vectors in x? and
then the scalar product, which require O(Nn). The last expensive operation we should consider is
due to solve the last system to find the weights. The system we want to solve is(

(X?)> X?

1 1

)
w =

(
0
1

)
,

15

where 0 is a n× 1 vector of 0, and 1 is a 1× n vector of 1. Using again the Sherman–Morrison
formula, since we have already computed A = (X?)−1 the weights wi can be computed as

w =

(
(X?)> X?

1 1

)−1(0
1

)
=

(
A>+A>X?c−11A>, −A>X?c−1

−c−11A>, c−1

)(
0
1

)
=− 1

c

(
A>X?

1

)
,

where c = 1− 1A>X? is a number. In this way we need O(n2) operations, not O(n3), i.e. the
complexity of solving a linear system.
The total cost therefore is O(n3 +n2N)+(κ−1)O(n2 +nN).

Remark 3. The gain in the computational cost we obtain using the Sherman–Morrison formula has
a cost in term of numerical stability.

Robustness of the solution.
Proposition 4. Assume that span(x̂) = span(x̂−1) =Rn, where x̂−i := x̂\ x̂i. Denote with X a matrix
which as has rows the vectors in x. Suppose there exists an invertible matrix R and another matrix E,
such that X = YR+E. Denote γ1 := (X̂>−1)

−1X̂>1 , where x̂ is a solution to the RP x. Assuming that
the inverse matrices exist, X̂R+Ex̂ is a solution to the RP y if and only if

γ
>
1 +Ex̂1R−1A>1 ≤

(
γ
>
1 +Ex̂1R−1A>1

)
Ex̂−1

(
I +R−1A>1 Ex̂−1

)
R−1AT

1

where Ey indicates the part of the matrix E related to the set of vectors y⊂ x and A1 = (X̂>−1)
−1.

Proof. From Theorem 3, we know that X̂R + Ex̂ is a solution if and only if((
X̂−1R+Ex̂−1

)>)−1 (
X̂1R+Ex̂1

)> ≤ 0. Let us note that the last product is a vector, there-
fore we can study the transpose and using the Woodbury matrix identity we have that(

X̂1R+Ex̂1

)(
X̂−1R+Ex̂−1

)−1
=
(
X̂1 +Ex̂1R−1)(X̂−1 +Ex̂−1R−1)−1

=
(
X̂1 +Ex̂1R−1)(I−AT

1 Ex̂−1

(
I +R−1AT

1 Ex̂−1

)
R−1)AT

1 .

Setting the last equation less or equal than 0 shows the result.

This also implies that the solution is invariant under rotations.

D Divide and conquer, choice of the subgroup size

As mentioned in Section 3, to apply a divide and conquer strategy requires to balance the size of
subgroups against the property of Algorithm 2 to exploit a large number of points as to maximize the
likelihood of points being in the (inverse) cone. Let us explain how we have chosen N∗n = 50(n+1),
which should be thought as linear approximation of the exact minimum for the complexity of
Algorithm 2. Therefore first note, that as Figure 8 shows, choosing any number between 20 and 80,

0 10 20 30 40 50 60 70
n

1

2

3

4

5

Sp
ee

d
up

Running time ratio, Symmetric
factor = 20
factor = 50
factor = 80
factor = 100
1x

0 10 20 30 40
n

1

2

3

4

5

6

Sp
ee

d
up

Running time ratio, Non Symmetric
factor = 20
factor = 50
factor = 80
factor = 100
1x

Figure 8: Bottom-right: it is shown how much the optimized-reset algorithm is faster than det4 in
case N = (n+1)× factor.

in place of 50, has similar effects if n < 70 in the case of symmetric distribution, whilst the same

16

holds in the case of mixture of exponentials (non symmetric) if n≤ 40. We think that this effect is
due to the fact that “experimentally” there exists a long plateau in the running time of the optimized
Algorithms with and without reset, see Figure 3. Therefore, let us suppose that there exist k,K
s.t. for any k(n+1)≤ N(1),N(2) ≤ K(n+1) and n < 40, then C̄(N(1),n+1)≈ C̄(N(2),n+1), where
C̄(·,n+1) is the computational cost to reduce · number of points in Rn using Algorithm 2. Moreover,
we suppose that the argminx C̄(x,n+ 1) ∈ [k(n+ 1),K(n+ 1)]. The previous two conditions are
equivalent to the presence of the plateau in Figure 3, in correspondence with the minimum value of
the running time, for the optimized Algorithms with and without reset. Under these assumptions, the
best choice would be N∗n = K(n+1). Without knowing the value of K, however we can estimate the
difference into the complexity for different group subdivisions: if we have N� K(n+1) number
of points, using the “divide and conquer” paradigm with N(i) groups, we can build two algorithms
s.t. the difference of the computational costs is

O
(

Nn+ logN(1)/n (N/n)C(N(1),n+1)
)
−O

(
Nn+ logN(2)/n(N/n)C(N(2),n+1

)
≈ (6)

≈ C̄(Kn,n+1) logN(2)/n(N/n)

(
1

logN(2)/n N(1)/n
−1

)
.

Therefore, we have that the difference depends on a factor |1/ logN(2)/n(N
(1)/n)−1|. Given Figure

8, we have estimated approximately k = 20, K = 80 for the symmetric case, thus as a rule of thumb
we assume that N∗n = 50(n+1) is a reasonable value, and in view of Equation (6) we can say that
changing slightly 50 the running time would remain stable. The analogous argument can be made for
the mixture of exponentials.

E A hybrid algorithm.

As mentioned in the introduction, the strategy of our randomized Algorithm 2 is very different to the
deterministic ones, and one can combine both to form a new algorithm. The randomized Algorithm 2
runs into trouble when the independence assumption for the cone basis in Theorem 3 is not met
which can happen in datasets with highly correlated features; on the other hand, the deterministic
algorithms have the disadvantage that they need to complete a full run over the whole dataset even
when geometric greedy sampling could have finished much earlier. We give the details for this
hybrid Algorithm 3 below; it has a worst case running time of the same order as the deterministic
Algorithms [4, 5, 6] but in return has a very good chance of terminating faster. We demonstrate this
by benchmarking it against the same datasets for fast least square solvers that were used in [6].

0 20 40 60 80 100 120
time (ms)

0

50

100

150

200

250
Distr. running time Combined Algorithm - 3D Roads

mean combined algo
mean randomized algo
mean log-random algo
mean det3
mean det4

0 100 200 300 400 500 600
time (ms)

0

25

50

75

100

125

150
Distr. running time Combined Algorithm - Power Consumption

mean combined algo
mean randomized algo
mean log-random algo
mean det3
mean det4

0 20 40 60 80 100 120 140
time (ms)

0

50

100

150

200

250

300
Distr. running time Combined Algorithm - House sales

mean combined algo
mean det3
mean det4

Figure 9: The running time of the Combined Algorithm 3. Note that the mean of the log-random
Algorithm is essentially equal to the one of the Combined Algorithm, except for the dataset [22] where
the random-algo does not work (cf. discussion above). For [22] the features are highly correlated,
so Algorithm 2 fails, but the additional time necessary to Algorithm 3 is only due to checking if the
sampled basis are invertible; hence, in this case Algorithm 3 behaves as it was deterministic. We have
chosen #_trials= 10 and G = 50(n+1).

Some observations: (i) Algorithm 3 always finds a solution; (ii) in the case of dataset “with linear
dependence”, e.g. [22], if PCA reductions are not allowed as in the case of the application of [6], the
basis b won’t be invertible and therefore the complexity of the Algorithms in [5, 4, 6] would worsen
of “only” the complexity to check #_trials times if a n×n matrix is invertible, i.e. #_trials×O(n3),
see Figure 9; (iii) Algorithm 2 must be run without reset, however note that we can add a reset strategy
changing the number of iterations allowed to Algorithm 2 at step 8; (iv) following the guidelines of
Section D, G = 50(n+1) for “small n”.

17

Algorithm 3 Combined measure reduction algorithm

1: procedure REDUCE-COMBINED(A set x of N points in Rn, µ = {wi})
2: rem_points← N
3: while rem_points> n+1 do
4: Subdivide the points x in G∧ rem_points groups {x j}G∧rem_points

j=1
5: Compute w̄ j = ∑wi :xi∈x j wi, x̄ j = ∑xi∈g j wixi/w̄ j

6: for #_trials times do
7: b← n random vectors from {x̄ j−∑ j w̄ jx j}G

j=1
8: x?,w?← Algorithm 2 with the points {x̄ j−∑ j w̄ jx j} using b as cone basis
9: if Algorithm 2 has found a solution then

10: Exit for
11: end if
12: end for
13: if Algorithm 2 has not found a solution then
14: x?,w?← Deterministic Algorithm (e.g. [5, 4, 6]) with measure {x̄ j}, {w̄ j}
15: end if
16: x← x\{xi s.t. xi ∈ x j and x̄ j ∈ x?} . Eliminate the points
17: rem_points← N−Cardinality({xi s.t. xi ∈ x j and x̄ j ∈ x?})
18: {wi}← {wi}\{wi s.t. xi ∈ x j and x̄ j ∈ x?}
19: {wi}← {wi×w?

j s.t. xi ∈ x̄ j} . Recalibrate the weights
20: end while
21: return (x?,w?)
22: end procedure

To sum up, as Figure 92, the hybrid Algorithm 3 takes advantage of both the greedy geometric
sampling of Algorithm 2 and robustness of the deterministic Algorithms for highly correlated datasets.
Totalled over all the datasets Algorithm 3 is the fastest. Many variations of the above hybrid algorithm
are of course possible.

F Implementation and benchmarking.

For det4 we have used the code provided by the authors of [6] available at the repository3 in Python;
for det3 the code of [5] has not been written in Python, therefore we have implemented it to allow for
a fair comparison using standard Numpy libraries. We used throughout the same codeblocks for the
Divide and Conquer strategy in all the implementations. We did not use the tree data-structure in [5]
since it does not not change complexity bounds and is independent of the reduction procedure itself;
however, it could be also used for det4 and our randomized algorithms. Code for all experiments is
available in public repository4.

2For practical reasons in our implementation of Algorithm 3 we have used our implementation of det3, see
Section F.

3https://github.com/ibramjub/Fast-and-Accurate-Least-Mean-Squares-Solvers
4https://github.com/FraCose/Recombination_Random_Algos

18

https://github.com/ibramjub/Fast-and-Accurate-Least-Mean-Squares-Solvers
https://github.com/FraCose/Recombination_Random_Algos

	Properties of Algorithm 1
	Properties when applied to special measures
	Properties of Algorithm 2
	Divide and conquer, choice of the subgroup size
	A hybrid algorithm.
	Implementation and benchmarking.

