
Supplementary Material for "Adaptive Experimental Design with341

Temporal Interference: A Maximum Likelihood Approach"342

A An Example: Cooperative Exploration343

Throughout this section, we refer to the two Markov chains depicted in Figure 1. The state space344

for both chains is S = {1, . . . , s}, where s > 1. The red chain corresponds to ` = 1 and the blue345

chain corresponds to ` = 2. The transition probabilities are as depicted in the figure. In particular,346

we assume that chain 1 has P (x, x + 1) = P (s, 1) = 1 for x = 1, . . . , s � 1, and chain 2 has347

P (x, x� 1) = P (1, s) = 1 for x = 2, . . . , s.348

We assume the experimenter knows the transition matrices exactly (as they are deterministic), and349

thus the only uncertainty in estimating the reward distribution comes from uncertainty regarding350

the reward distribution of each chain. We assume each chain only earns a reward in state x = 1. In351

particular, chain ` earns a reward that is Bernoulli(q(`)) in state 1, for some unknown parameter q(`)352

with 0 < q(`) < 1. Clearly the stationary distribution of each chain is ⇡(`, x) = 1/s, and so the353

steady state mean reward of each chain is ↵(`) = q(`)/s. Thus the treatment effect is (q(2)�q(1))/s.354

First, suppose that for ` = 1, 2 we wanted to estimate only ↵(`) by running chain `, i.e., An = ` for355

all n. Then note that in every S steps, only one observation is received of the reward in state 1. Let356

↵̂n(`) denote the maximum likelihood estimate of steady state reward obtained from the first n steps.357

Given the structure of this chain, it is straightforward to check that the MLE at time n > s reduces to358

the sample average of bn/sc independent Bernoulli(q(`)) samples. This estimator has variance that359

scales as ⇥(s/n). Thus, any attempt at estimation of the variance of steady state reward by running360

each chain in isolation will have variance that scales with s.361

On the other hand, now suppose we use the following sampling policy: the policy always samples362

chain 1 when in state s; the policy always samples chain 2 in states 2, . . . , s� 1; and in successive363

visits to state 1, the policy deterministically alternates between sampling chains 1 and 2. Suppose364

for simplicity that this chain starts at X0 = 1. Then in every four periods, this chain obtains one365

independent sample each of a reward from chain 1 in state 1 (i.e., Bernoulli(q(1)), and a reward from366

chain 2 in state 1 (i.e., Bernoulli(q(2)). Thus the maximum likelihood estimator of ↵(`) will have367

variance that scales as⇥(4/n), and in particular, does not grow with s. In particular, the improvement368

in variance under this policy relative to the preceding approach can be made unboundedly large by369

increasing s.370

This example illustrates the surprising insight that by cooperatively exploring using both chains371

together, substantial benefits in estimation variance can be achieved relative to the variance of372

estimation with each chain in isolation. In this example, both approaches to estimation will be373

consistent. However, the state-dependent sampling policy leads to a substantial reduction in variance,374

because it benefits from cooperative exploration: for each chain ` = 1, 2, the other chain is used to375

drive the system back to where samples are most needed to reduce variance. By contrast, running376

each chain in isolation forces the experimenter to wait s time steps between successive observations377

of the random reward in state 1. When s becomes larger, the long run average time spent in state378

1 approaches 1/2 for the state-dependent sampling policy, but approaches zero for either chain in379

isolation.380

Figure 1: The two Markov chains described in Appendix A. Chain 1 is red, and chain 2 is blue.
Rewards are only earned in state 1 for each chain; in particular, the reward distribution in state 1 is
Bernoulli(q(`)) for chain `.
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B Proofs: Section 4381

Proof of Proposition 4. Relations (18) and (19) are obvious. As for (17), note that382
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(Here we use the notation that f(n) = Op(1/n) to denote stochastic boundedness of nf(n): for all383

✏ > 0, there exists deterministic M such that P (|nf(n)| > M) < ✏ for all n.)384

Let Wj = I(Xj�1 = x,Aj�1 = `)[I(Xj = y) � P (`, x, y)]. This is a martingale difference385

sequence adapted to Gj . In particular, as a result the Wj are orthogonal in the sense that for j < k,386

there E{jWk} = 0. (This result follows by conditioning on Gj and nesting conditional expectations:387

E{WjWk} = E{E{Wk|Gj}Wj} = 0.) Using orthogonality of the martingale differences implies388

that389
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as n!1. Therefore, by Chebyshev’s inequality390
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as n!1. Taking the limits in (43) yields (17).391

Proof of Proposition 6. We start by proving (22). We recall that392
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Therefore,394
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as n!1, where the convergence in (53) holds because �(`, x) are almost surely positive.395

We now prove (23). Let µn denote the law of ⇡̂n, and view it as a probability measure on vectors396

in the probability simplex on the state space S, denoted�(S). The set�(S) is compact, and so by397
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large k there holds ⇡̂nk(`)P̂nk(`) = ⇡̂nk(`). It follows that ⇡0(`) = ⇡
0(`)P (`), so that ⇡0(`) = ⇡(`)402

almost surely. In other words, the measure µ is the Dirac measure that places probability one on ⇡(`).403

Since this is the case for every convergent subsequence of {µn}, we conclude that ⇡̂n(`) ) ⇡(`).404

Since ⇡(`) is deterministic, we conclude that ⇡n(`)
p
�! ⇡(`) as n!1, as required.405

Proof of Corollary 7. Since the policy limits of A are almost surely positive, it is straightforward to406

show that for each `, x, r̂n(`, x)
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�! r(`, x) as n!1. The result then follows from Proposition 6.407

C Proofs: Section 5408
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Recall that ↵̂n = ⇡̂n(2)r̂n(2)� ⇡̂n(1)r̂n(1). We can write:417
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Note that for each `, x, Dj(`, x) is a martingale difference sequence adapted to Gj .419

For deterministic w(`) = (w(`, x) : x 2 S), ` = 1, 2, consider420

Tn =
1
p
n

nX

j=1

2X

`=1

X

x2S

Dj(`, x)w(`, x) (67)

, 1
p
n

nX

j=1

Dj , (68)

where421

Dj =
2X

`=1

X

x2S

Dj(`, x)w(`, x). (69)

The Dj’s are martingale differences adapted to (Gj : j � 0). Since they are bounded by422

2max{|g̃(`, x)| : x 2 S, ` = 1, 2} < 1 (since r(`, x) is finite), the following conditional Lin-423

deberg’s condition holds (Eq. (3.7) of [10]):424

for all ✏ > 0,
nX

j=1

1

n
E{D

2
j I(|Dj | > ✏)|Gj�1}

p
�! 0. (70)

Furthermore,425

1

n

nX

j=1

E{D
2
j |Gj�1} =

1

n

2X

`=1

X

x2S

n�1X

j=0

I(Xj = x,Aj = `)�2(`, x)w2(`, x) (71)

=
2X

`=1

X

x2S

�
2(`, x)w2(`, x)

�n(`, x)

n
(72)

p
�!

2X

`=1

X

x2S

�
2(`, x)w2(`, x)�(`, x) , ⌘

2
, (73)

since A is assumed to be a TAR policy. We therefore conclude that (by Corollary (3.1) of [10])426
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as n!1.3427

Stable weak convergence implies that the following convergence of characteristic functions holds as428

well:429
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as n!1. Finally, Result 2, (80), and another application of Slutsky’s lemma imply that434
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as n!1, proving the Theorem.435

Proof of Corollary 10. Note that the Skorohod representation theorem together with Fatou’s lemma436

applied to (29) yields the following:437
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Using Jensen’s inequality on the right hand side of (83), we obtain the result in (30), as required.438

(Note that E{�(`, x)} > 0 for all `, x since we assumed the policy limits are almost surely positive.)439
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Proof of Corollary 11.441

First we show the following limits hold:442
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3If a sequence of random variables Yn on a probability space (⌦,F , P ) converges weakly to Y , we say
the convergence is stable if for all continuity points y of the cumulative distribution function of Y and for
all measurable events E, the limit limn!1 P ({Yn  y} \ E) = Qy(E) exists, and if Qy(E) ! P (E) as
y ! 1.
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We know from Proposition 6 that ⇡̂n
p
�! ⇡n for all `, x. Further, we know from the definition of policy443

limits that �(`, x)/n p
�! �(`, x) for all `, x. Thus the vector (⇡̂n,�n/n) converges in probability to444

the vector (⇡, �). Use the Skorohod representation theorem to construct a joint probability space on445

which these limits hold almost surely. Then note that each of the terms inside the expectations are446

bounded in (84)-(85), so the desired results hold by the bounded convergence theorem.447

For the next steps, we use the same definitions as in the proof of Theorem 9, and refer the reader there448

for the relevant notation. In particular, we define Dj(`, x) as in that proof, and use the relationship in449

(65). We make the following two definitions:450
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Note that ↵̂n � ↵ = Yn(2)� Yn(1). The main remaining step in our proof is to show that we can451

compute the scaled asymptotic variance of Zn(2)� Zn(1), and to use this to upper bound the scaled452

asymptotic variance of Yn(2)� Yn(1).453

We now show the following limit holds:454
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Observe that Zn(`) is a weighted sum of martingale differences; thus we use orthogonality of455
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We show that E{Dj(1, x)Dk(2, y)} = 0. If j = k, then the product Dj(1, x)Dj(2, y) = 0 since458

only one of the two chains ` = 1, 2 can be run at time k. If j > k, then the tower property of459

conditional expectations is applied as usual to give:460

E{E{Dj(1, x)|Gk}Dk(2, x)} = 0.

The same holds of course if j < k. Thus we have E{Zn(1)Zn(2)} = 0 for all n. Finally, using (71)461

with w(1, x) = ⇡(1, x)/�(1, x) and w(2, x) = 0, together with the Skorohod representation theorem462

and the bounded convergence theorem, it follows that:463
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(Use of bounded convergence here requires assuming boundedness of rewards.) An analogous result464

holds for the limit of E{nZn(2)2}. Combining these steps, we obtain (86).465

Finally, we can establish the following upper bound:466
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To prove this we upper bound the variance of Yn(2)�Yn(1) in terms of the variance of Zn(2)�Zn(1).467

Note that Var(Yn(2) � Yn(1))  E{(Yn(2) � Yn(1))2}. Further, because Dj(`, x) are bounded,468
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Taking expectations on both sides, and applying Steps 2 and 3, establishes (87). Combining (87) with470

(30) yields the desired result (note that E{�(`, x)} = �(`, x) since the policy limits are almost surely471

constant).472

Proof of Theorem 13. First, we show that (33)-(34) has a unique optimal solution 
⇤, with entries473

that are all positive. It is straightforward to see that the solution to this problem will be positive in all474

coordinates, since the objective function approaches infinity as any (`, x) approaches zero (as all475

�(`, x) are positive). Further, note that the objective function is strictly convex and K is convex and476

compact, and thus there must be a unique solution 
⇤
2 K to the optimization problem (33)-(34).477

Next, we show that the limit inferior of the scaled asymptotic variance of the MLE under any TAR478

policy with positive policy limits is bounded below by the optimal value of (33)-(34). This follows479

by applying Corollary 10. In particular, from Remark 5, we know � is a probability measure over the480

set K (cf. Definition 3). The set K is convex and compact, and so  = E{�} 2 K. In particular, as a481

consequence by applying (30) we conclude that the optimal value of (33)-(34) is a lower bound to482

lim infn!1 Var(↵̂n � ↵).483

Finally, the fact that (35) holds follows from Corollary 11. The stationary Markov policy A
⇤ defined484

via (20) has the constant policy limit ⇤ (cf. Remark 5), so it is efficient. The theorem follows.485

D Pseudocode for OnlineETI486

The pseudocode for OnlineETI is prsented as Algorithm 1.487

E Proofs: Section 6488

Proof of Theorem 14. We establish that for OnlineETI there holds:489

1

n
�n(`, x)

p
�! 

⇤(`, x), (88)

where 
⇤ is the solution to (33)-(34).490

First, note that the forced exploration (i.e., the Mn(x)�1/2 term in the definition of p̂n(`, x)) ensures491

that �n(`, x) ! 1 almost surely for all `, x. To see this, note first that as long as Mn(x) ! 1492

almost surely, it must be the case that �n(`, x)!1 for ` = 1, 2 almost surely as well, due to the493

forced exploration term, the fact that
P

k�1 k
�1/2 diverges, and the Borel-Cantelli Lemma. Since494

the state space is finite, almost surely, there exists at least one state x
0 that is visited infinitely often.495

Thus almost surely, all states reachable from x
0 in one step under either P (1) or P (2) must be visited496

infinitely often as well. The same argument applies to those states, and so on. Since the state space is497

finite, and both P (1) and P (2) are irreducible, this process exhausts all the states, and we conclude498

Mn(x)!1 almost surely for all x 2 S.499

Next we show that for all `, x, y, P̂n(`, x, y) converges to P (`, x, y) almost surely. For each500

`, x, it is convenient to define Tm(`, x) = inf{n : �n(`, x) = m}. By the standard strong law501

of large numbers, it follows that P̂Tm(`,x)(`, x, y) ! P (`, x, y) almost surely; this is because502

P̂Tm(`,x)(`, x, y) is the sample average of m independent Bernoulli random variables, each with503

success probability P (`, x, y). Now observe that for n such that Tm(`, x)  n < Tm+1(`, x),504

P̂n(`, x, y) = P̂Tm(`,x)(`, x, y); i.e., between successive visits to state x in which policy ` is sampled,505

P̂n(`, x, y) remains constant. It follows therefore that P̂n(`, x, y)! P (`, x, y) almost surely as well.506

We now use a compactness argument analogous to that used to establish (23) to show that ⇡̂n(`)!507

⇡(`) almost surely. Let J be the first n at which P̂n(`) is irreducible for both ` = 1, 2. The time508

J is almost surely finite, because both chains are sampled with equal probability until time J , and509

because P (`) is irreducible for ` = 1, 2. Thus for the remainder of our argument, we condition on510

the almost sure event J < 1. Next, consider any subsequence {nk} along which, almost surely,511

⇡̂nk(`)! ⇡
0(`). (Note that in general, this is a random subsequence.) Since ⇡̂nk(`)P̂nk(`) = ⇡̂nk(`)512

for all k, almost sure convergence of P̂n(`) implies that ⇡0(`)P (`) = ⇡
0(`). Thus ⇡

0(`) = ⇡(`)513

almost surely. Since this is almost surely true for every convergent subsequence, we conclude that514

⇡̂n(`)! ⇡(`) almost surely, as required.515
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Algorithm 1 OnlineETI (Online Experimentation with Temporal Interference)
1: procedure EXPERIMENT(initial state x0)
2: Set initial state X0 = x0

3: Initialization: For ` = 1, 2, x, y 2 S, set P̂0(`, x, y) =
1
|S| ; �0(`, x) = 0; �0(`, x, y) = 0;

4: ⇥0(`, x) = 0;  0(`, x) = 0; ⌥0(`, x, y) = 0; r̂0(`, x) = 0; ŝ0(`, x, y) = 0;
5: t̂0(`, x, y) = 0; ⇡̂0(`, x) = 0; p̂0(`, x) = 0.5
6: for n = 1, 2, . . . do

7: Set An�1 = ` with probability p̂n�1(`, x), i.e.:
8: An�1 = 1 if Un�1  p̂n�1(1, x), and An�1 = 2 otherwise
9: Run chain An�1, and obtain reward Rn and new state Xn

10: For all ` = 1, 2, x, y 2 S:
11: �n(`, x) �n�1(`, x) + I(Xn�1 = x,An�1 = `)
12: �n(`, x, y) �n�1(`, x, y) + I(Xn�1 = x,Xn = y,An�1 = `)
13: ⇥n(`, x) ⇥n�1(`, x) + I(Xn�1 = x,An�1 = `)Rn

14:  n(`, x, y) =  n�1(`, x, y) + I(Xn�1 = x,Xn = y,An�1 = `)Rn

15: ⌥n(`, x, y) ⌥n�1(`, x, y) + I(Xn�1 = x,Xn = y,An�1 = `)R2
n

16: P̂n(`, x, y) 
�n(`,x,y)

max{�n(`,x),1}

17: if for both ` = 1, 2, P̂n(`) is irreducible then

18: Set ⇡̂n(`) to be the unique steady state distribution of P̂n(`)
19: For ` = 1, 2 and x, y 2 S:
20: ⇧̂n(`) e⇡̂n(`)

21: ˆ̃gn(`, x) 
�
I � P̂n(`) + ⇧̂n(`)

��1
r̂n(`)

22: r̂n(`, x) 
P

y2S  n(`,x,y)

max{�n(`,x),1}

23: ŝn(`, x, y) 
 n(`,x,y)

max{�n(`,x,y),1}

24: t̂n(`, x, y) 
⌥n(`,x,y)

max{�n(`,x,y),1}

25: �̂
2
n(`, x) 

P
y2S P̂n(`, x, y)[ˆ̃gn(`, y) �

P
z2S P̂n(`, x, z)ˆ̃gn(`, z)]2

26: +
P

y2S P̂n(`, x, y)
�
t̂n(`, x, y)� ŝn(`, x, y)2

�

27: Choose any ̂n in arg inf ̂2K
P2

`=1

P
x2S

⇡̂2
n(`,x)�̂

2
n(`,x)

̂n(`,x)

28: For all x 2 S, Mn(x) �n(1, x) + �n(2, x)
29: if ̂n(1, x) + ̂n(2, x) > 0 and Mn(x) > 0 then

30: p̂n(`, x) (1�Mn(x)�1/2)
⇣

̂n(`,x)
̂n(1,x)+̂n(2,x)

⌘

31: + 1
2Mn(x)�1/2 for ` = 1, 2, x 2 S

32: else

33: p̂n(`, x) = 0.5 for ` = 1, 2, x 2 S

34: ↵̂n  ⇡̂n(2)r̂n(2)� ⇡̂n(1)r̂n(1)
35: else

36: p̂n(`, x) 0.5
37: ↵̂n  0

Because rewards are bounded, and thus in particular have finite moments, an argument analogous to516

that above for P̂n establishes that almost surely we have:517

r̂n(`, x)! r(`, x)

and518

t̂n(`, x, y)� ŝ
2
n(`, x, y)

2
! Var(R1|A0 = `, X0 = x,X1 = y).

When J < 1, since each P̂n(`) is irreducible, it follows that
�
I � P̂n(`) + ⇧̂n(`)

��1 exists. By519

continuity, conditioning on J <1, we have:520

ˆ̃g(`, x)! g̃(`, x)

almost surely as well, and thus:521

�̂
2(`, x)! �

2(`, x)
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almost surely.522

We now establish almost sure convergence of ̂n to 
⇤. To do this, for a distribution ⇡̃ on the state523

space S and a nonnegative vector �̃, define the correspondence K(⇡̃, �̃) to be the set of minimizers of524 P
`=1,2

P
x2S ⇡̃

2(`, x)�̃2(`, x)/(`, x) over  2 K; recall that K is compact so this correspondence525

is nonempty everywhere. Further, observe that if ⇡̃ and �̃ are positive in all coordinates, then the526

minimizer is unique, i.e., K is a function. Then by Lemma 15 below, K is continuous in ⇡̃ and �̃527

when they are both positive in all coordinates. Since ⇡̂n(`)! ⇡(`) and �̂
2
n(`, x)! �

2(`, x) almost528

surely, and both limits are positive in all coordinates, it follows that K(⇡̂n, �̂n) ! K(⇡,�) = 
⇤529

almost surely, and thus ̂n ! 
⇤ almost surely.530

In particular, we thus know that almost surely, ̂n(`, x) > 0 for all sufficiently large n. As a result, it531

follows that p̂n(`, x)! p
⇤(`, x) almost surely, where:532

p
⇤(`, x) =


⇤(`, x)

⇤(1, x) + ⇤(2, x)
.

To complete the proof, we require some additional notation. We define the following stochastic533

matrix:534

Q(x, y) = p
⇤(1, x)P (1, x, y) + p

⇤(2, x)P (2, x, y).

Note that this matrix is irreducible, and because 
⇤
2 K, we can easily see that Q has the unique535

stationary distribution given by:536

⇣
⇤(x) = 

⇤(1, x) + 
⇤(2, x).

(See also the discussion in Remark 5.)537

In addition, we define:538

Q̂n(x, y) =

Pn
j=1 I(Xj�1 = x,Xj = y)

max{Mn(x), 1}
.

Observe that Q̂n is a stochastic matrix.539

We now show that Q̂n
p
�! Q. We rewrite Q̂n(x, y) as follows:540

Q̂n(x, y) =
X

`=1,2

P̂n(`, x, y) ·

Pn
j=1 I(Xj�1 = x,Aj�1 = `)

max{Mn(x), 1}
. (89)

For each x and m, let Sm(x) = inf{n � 0 : Mn(x) = m}; this is the time step at which the m’th541

visit to x takes place. Further, define Ãm = ASm(x); this is the policy sampled at the m’th visit to x.542

Let Hm(x) = �((Xj , Uj , Vj , j < Sm(x);XSm(x))) be the sigma field generated by randomness up543

to the m’th visit to x, but prior to the policy being chosen. Finally, let q̂m(`, x) = p̂Sm(x)(`, x). Now544

observe that when Mn(x) = m � 1, we have:545

Pn
j=1 I(Xj�1 = x,Aj�1 = `)

max{Mn(x), 1}
=

Pm
i=1 I(Ãi = `)

m

=

Pm
i=1 I(Ãi = `)� q̂i(`, x)

m
+

Pm
i=1 q̂i(`, x)

m
.

The terms in the first sum on the right hand side of the previous expression form a martingale546

difference sequence adapted to Hi. Thus using orthogonality of martingale differences, we have:547

1

m2
E

8
<

:

 
mX

i=1

I(Ãi = `)� q̂i(`, x)

!2
9
=

; 
1

4m
,

which approaches zero as m!1. By Chebyshev’s inequality, it follows that:548

Pm
i=1 I(Ãi = `)� q̂i(`, x)

m

p
�! 0
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as m ! 1. On the other hand, note that since Mn(x) ! 1 almost surely, we also know that549

Sm(x)!1 as m!1 almost surely. Thus it follows that:550
Pm

i=1 q̂i(`, x)

m
! p

⇤(`, x)

almost surely as m!1, and thus in probability as well. Combining these insights, we conclude551

that:552 Pn
j=1 I(Xj�1 = x,Aj�1 = `)

max{Mn(x), 1}
p
�! p

⇤(`, x)

as n!1, and so returning to (89), we find that:553

Q̂n(x, y)
p
�!

X

`=1,2

p
⇤(`, x)P (`, x, y) = Q(x, y).

Next, observe that:554

Mn(x)

n
=

Pn
j=1 I(Xj = x)

n
+

I(X0 = x)� I(Xn = x)

n

=

0

@
X

y2S

Q̂n(x, y) ·
max{Mn(y), 1}

n

1

A+Op

✓
1

n

◆
.

Since Mn(x) ! 1 almost surely, in what follows we condition on Mn(x) � 1 for all x and555

thus ignore the “max” on the right hand side in the preceding expression. Note that for all n,556 P
x2S Mn(x) = n. Thus using a compactness argument analogous to that used to establish (23), it557

follows that:558
Mn(n)

n

p
�! ⇣

⇤(x).

We can now complete the proof of the theorem. We have:559

1

n
�n(`, x) =

1

n

n�1X

j=0

I(Xj = x,Aj = `)

=
1

n

n�1X

j=0

I(Xj = x)p⇤(`, x) +
1

n

n�1X

j=0

I(Xj = x)
�
p̂j(`, x)� p

⇤(`, x)
�

+
1

n

n�1X

j=0

I(Xj = x)
�
I(Aj = `)� p̂j(`, x)

�
(90)

Because I(Xj = x)
�
I(Aj = `)� p̂j(`, x)

�
is a martingale difference measurable with respect to Gj ,560

orthogonality of martingale differences implies that561

E

⇢✓
1

n

nX

j=1

I(Xj = x)
�
I(Aj = `)� p̂j(`, x)

�◆2�
(91)

 E

⇢
1

4
·
1

n2
�n(`, x)

�


1

4n
(92)

! 0 (93)

as n!1. Therefore, by Chebyshev’s inequality562

1

n

n�1X

j=0

I(Xj = x)
�
I(Aj = `)� p̂j(`, x)

� p
�! 0 (94)

as n!1. Also, since p̂n(`, x)! p
⇤(`, x) almost surely, we have:563

1

n

n�1X

j=0

I(Xj = x)
�
p̂j(`, x)� p

⇤(`, x)
� p
�! 0. (95)
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Finally,564

1

n

n�1X

j=0

I(Xj = x)p⇤(`, x) =
p
⇤(`, x)Mn(`, x)

n

p
�! p

⇤(`, x)⇣⇤(`, x).

Combining the preceding results, we conclude that as n!1 in (90), we have565

1

n
�n(`, x)

p
�! ⇣

⇤(`, x)p⇤(`, x) = 
⇤(`, x) (96)

as n!1, completing the proof of the theorem.566

Lemma 15 Suppose that the set X is compact, the set⇥ is open, and the real-valued function f(✓, x)567

is continuous on the domain ⇥ ⇥X . Suppose further that for every ✓ 2 ⇥, there exists a unique568

x
⇤(✓) = argminx2X f(✓, x). Then x

⇤(✓) is continuous in ✓.569

Proof. Suppose that ✓(n) ! ✓. For all n we have:570

f(✓(n), x⇤(✓(n)))  f(✓(n), x⇤(✓)). (97)

Since X is compact, let {nk} be a subsequence such that x⇤(✓(nk))! x
0 as k !1. Taking limits571

on both sides of (97) along the sequence {nk}, we obtain:572

f(✓, x0)  f(✓, x⇤(✓)).

Since x
⇤(✓) is unique, this is only possible if x0 = x

⇤(✓). Since every convergent subsequence must573

have the limit x0, we conclude that x⇤(✓(n))! x
⇤(✓) as n!1, as required.574
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