
A Technical Results and Proofs

In the setting of Proposition 1, both the exact posterior and the coreset posterior are multivariate
Gaussian distributions, denoted asN (µ1,Σ1) andN (µw,Σw) respectively. The mean and covariance
are

Σ1 =
1

1 +N
Id, µ1 = Σ1

(
N∑
n=1

Xn

)
, (7)

and

Σw=
Id

1 +
(∑N

n=1 wn

) , µw=Σw

(
N∑
n=1

wnXn

)
. (8)

Proof of Proposition 1. By Eqs. (7) and (8),

DKL (πw||π) =
1

2

[
log
|Σ1|
|Σw|

− d+ tr
(
Σ−11 Σw

)
+ (µ1 − µw)TΣ−11 (µ1 − µw)

]
=

1

2

[
−d log

(
1 +N

1 +
∑N
n=1 wn

)
− d+ d

(
1 +N

1 +
∑N
n=1 wn

)
+ (µ1 − µw)TΣ−11 (µ1 − µw)

]
.

Note that ∀x > 0, x− 1 ≥ log x, implying that

−d log

(
1 +N

1 +
∑N
n=1 wn

)
− d+ d

(
1 +N

1 +
∑N
n=1 wn

)
≥ 0.

Thus,

DKL (πw||π) ≥ 1

2
(µ1 − µw)TΣ−11 (µ1 − µw).

Suppose we pick a set I ⊆ [N ], |I| = M of active indices n where the optimal wn ≥ 0, and enforce
that all others n /∈ I satisfy wn = 0. Then denoting

Y = [Xn : n /∈ I] ∈ Rd×(N−M), X = [Xn : n ∈ I] ∈ Rd×M ,
we have that for any w ∈ RM+ for those indices I,

DKL (πw||π) ≥ 1

2(N + 1)
1TY TY 1 + 1TY TX

(
1

N + 1
− w

1 + 1Tw

)
+
N + 1

2

(
1

N + 1
− w

1 + 1Tw

)T
XTX

(
1

N + 1
− w

1 + 1Tw

)
.

Relaxing the nonnegativity constraint, replacing w/(1 + 1Tw) with a generic x ∈ RM , and noting
that XTX is invertible almost surely when M < d, we can optimize this expression yielding a lower
bound on the optimal KL divergence using active index set I,

DKL

(
πw?

I
||π
)
≥

1TY T
(
I −X(XTX)−1XT

)
Y 1

2(N + 1)
.

The numerator is the squared norm of Y 1 minus its projection onto the subspace spanned by the M
columns of X . Since Y 1 ∼ N (0, (N −M)I), Y 1 ∈ Rd is an isotropic Gaussian, then its projection
onto the orthogonal complement of any fixed subspace of dimension M is also an isotropic Gaussian
of dimension d −M with the same variance. Since the columns of X are also independent and
isotropic, its column subspace is uniformly distributed. So therefore, for each possible choice of I

DKL

(
πw?

I
||π
)
≥ N −M

2(N + 1)
ZI , ZI ∼ χ2(d−M).

Note that the ZI will have dependence across the
(
N
M

)
different choices of index subset I. Thus, the

probability that all ZI are large is

P
(

min
I⊆[N ],|I|=M

ZI > ε

)
≥1−

(
N

M

)
P (ZI ≤ ε)

=1−
(
N

M

)
Fd−M (ε),

where Fk is the CDF for the χ2 distribution with k degrees of freedom. The result follows.

1



B Gradient Derivations

Throughout, expectations and covariances over the random parameter θ with no explicit subscripts
are taken under pseudocoreset posterior πu,w. We also interchange differentiation and integration
without explicitly verifying that sufficient conditions to do so hold.

B.1 Weights gradient

First, we compute the gradient with respect to weights vector w ∈ RM+ , which is written as

∇wDKL = −∇w logZ(u,w)−∇wE[f(θ)T 1] +∇wE[f̃(θ)Tw].

For any function a : Θ→ R, we have that

∇wE [a(θ)] =

∫
∇w

(
exp

(
wT f̃(θ)− logZ(u,w)

))
a(θ)π0(θ)dθ

=E
[(
f̃(θ)−∇w logZ(u,w)

)
a(θ)

]
.

Next, we compute the gradient of the log normalization constant via

∇w logZ(u,w) =

∫
1

Z(u,w)
∇w

(
exp

(
wT f̃(θ)

))
π0(θ)dθ

=E
[
f̃(θ)

]
.

Combining, we have

∇wE [a(θ)] =E
[(
f̃(θ)− E

[
f̃(θ)

])
a(θ)

]
.

Subtracting 0 = E [a(θ)]E
[
f̃(θ)− E

[
f̃(θ)

]]
yields

∇wE [a(θ)] = Cov
[
f̃(θ), a(θ)

]
.

The gradient with respect to w in Eq. (5) follows by substituting 1T f(θ) and wT f̃(θ) for a(θ) and
using the product rule.

B.2 Location gradients

Here we take the gradient with respect to a single pseudopoint ui ∈ Rd. First note that

∇ui
DKL = −∇ui

logZ(u,w)−∇ui
E[f(θ)T 1] +∇ui

E[f̃(θ)Tw].

For any function a(u, θ) : Rd×M ×Θ→ R, we have

∇uiE [a(u, θ)] =

∫
∇ui

(
exp

(
wT f̃(θ)− logZ(u,w)

)
a(u, θ)

)
π0(θ)dθ.

Using the product rule and recalling from the main text that h(·, θ) := ∇uf(·, θ),

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + E [a(u, θ) (wih(ui, θ)−∇ui
logZ(u,w))] .

Taking the gradient of the log normalization constant using similar techniques,

∇ui logZ(u,w) = wiE [h(ui, θ)] .

Combining,

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + wiE [a(u, θ) (h(ui, θ)− E [h(ui, θ)])] .

2



Subtracting 0 = E [a(u, θ)]E [(h(ui, θ)− E [h(ui, θ)])] yields

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + wi Cov [a(u, θ), h(ui, θ)] .

The gradient with respect to ui in Eq. (5) follows by substituting f(θ)T 1 and f̃(θ)Tw for a(u, θ).

C Details on Experiments

C.1 Gaussian mean inference

Let the coreset posterior have mean µu,w and covariance matrix Σu,w. Throughout, expectations and
covariances over the random parameter θ with no explicit subscripts are taken under pseudocoreset
posterior πu,w. Define Ψ := Q−1Σu,wQ

−T , vn := Q−1(xn − µu,w), ṽn := Q−1(un − µu,w), and
Q to be the lower triangular matrix of the Cholesky decomposition of Σ, i.e. Σ := QQT . In order to
compute the gradients in Eq. (5), we need expressions for Cov[fn, fm], Cov[f̃n, fm], Cov[h(ui), fn],
and Cov[h(ui), f̃n].

Following [1], we have that

Cov[fn, fm] = vTnΨvm +
1

2
tr ΨTΨ

Cov[f̃n, fm] = ṽTnΨvm +
1

2
tr ΨTΨ.

We now evaluate the remaining covariance Cov[h(ui), fm]; the derivation of Cov[h(ui), f̃m] follows
similarly. We begin by explicitly evaluating the log-likelihood gradient and its expectation,

h(ui) = −Σ−1(ui − θ)
E [h(ui)] = −Σ−1(ui − µu,w),

and again following [1], we have (up to a constant) that

fn = −1

2
(xn − θ)TΣ−1(xn − θ)

E [fn] = −1

2
tr Ψ− 1

2
‖vn‖2.

Thus using the above definitions,

E [h(ui)]E [fn] =

(
tr Ψ + ‖vn‖2

)
2

Q−T ṽi.

Next,

E [h(ui)fn] =
1

2
Σ−1E

[
(ui − θ)(xn − θ)TΣ−1(xn − θ)

]
.

Defining z ∼ N (0,Ψ), and using the above definitions,

E [h(ui)fn] =
1

2
Q−TE

[
(ṽi − z)(vn − z)T (vn − z)

]
.

Evaluating the expectation, noting that odd order moments of z are equal to 0,

E [h(ui)fn] =
‖vn‖2 + tr Ψ

2
Q−T ṽi +Q−TΨvn.

Therefore,

Cov[h(ui), fn] = Q−TΨvn,

3



(a) project. dim. = 200 (b) project. dim. = 2, 000 (c) project. dim. = 10, 000

Figure 5: Comparison of Hilbert coresets performance on Bayesian linear regression experiment for
increasing projection dimension (over 10 trials).

and likewise,

Cov[h(ui), f̃n] = Q−TΨṽn.

C.2 Bayesian linear regression

C.2.1 Model and gradients details

Here we present the terms involving pseudodata points—the corresponding expressions for original
datapoints are the same, after replacing um with xm.

For individual points, dropping normalization constants, we get log-likelihood terms of the form

fm(θ) = − 1

2σ2

(
ym − θTum

)2
.

Hence, we obtain for the pseudocoreset posterior

πu,w = N (µu,w,Σu,w), where

Σu,w = (σ−20 I + σ−2
M∑
m=1

wmumu
T
m)−1, µu,w = Σu,w(σ−20 Iµ0 + σ−2

M∑
m=1

wmymum).

To scale up computation on large datasets, in our experiment we made use of stochastic gradients for
black-box construction of PSVI and SparseVI. Beyond the expressions for individual log-likelihood
and (pseudo)coreset posteriors presented above, for pseudocoreset construction we also need the
expression for log-likelihood gradient with respect to the pseudodata points, for which we can
immediately see that ∇umf(um, θ) = 1

σ2 (ym − θTum)θ. Over our experiment, we optimized initial
learning rates for SparseVI and PSVI via a grid search over {0.1, 1, 10}.

C.2.2 Additional plots

Here we present some more plots demonstrating the dependence of Hilbert coresets approximation
quality on the dimension of random projections in the Bayesian linear regression setting presented
in Fig. 2c. We remind that the dimension used at this experiment and throughout the entire experiments
section was set to 100. Increasing this number is typically expensive to obtain in practice. As
demonstrated in Fig. 5, getting higher projection dimension enables better posterior approximation
in the problem, for both GIGA (Optimal) and GIGA (Realistic). However, PSVI remains
competitive in the small coreset regime even for Hilbert coresets with extremely large projection
dimensionality, demonstrating the information-geometric limitations that Hilbert coreset constructions
are known to face [1].

4



C.3 Bayesian Logistic Regression

C.3.1 Model

In logistic regression we have a set of datapoints (xn, yn)Nn=1 each corresponding to a feature
vector xn ∈ Rd and a label yn ∈ {−1, 1}. Datapoints are assumed to be generated according to the
following statistical model

yn|xn, θ ∼ Bern

(
1

1 + e−z
T
n θ

)
zn :=

[
xn
1

]
.

The aim of inference is to compute the posterior over the latent parameter θ = [θ0 . . . θd]
T ∈ Rd+1.

The log-likelihood of each datapoint can be expressed as

fn(xn, yn|θ) =1[yn = −1] log

(
1− 1

1 + e−z
T
n θ

)
− 1[yn = 1] log

(
1 + e−z

T
n θ
)

=− log
(
1 + exp(−ynzTn θ)

)
.

Hence in pseudocoreset construction we can optimize pseudodata point locations with respect to
continuous variable xn, using the gradient

∇xnfn =
e−ynz

T
n θ

1 + e−ynz
T
n θ
yn

θ1...
θd

 .
C.3.2 Datasets description

For logistic regression experiments, we used subsampled and full versions of datasets presented
in Table 1: a synthetic dataset with x ∈ R2 sampled i.i.d. from a N (0, I) and y ∈ {−1, 1} sampled
from respective logistic likelihood with θ = [3, 3, 0]T (SYNTHETIC); a phishing websites dataset
reduced to D = 10 via PCA (PHISHING); a chemical reactivity dataset with real-valued features
corresponding to its first 10 and 100 principal components (CHEMREACT and CHEMREACT100
respectively); a dataset with 50 real-valued features associated with whether each of 100K customers
of a bank will make a specific transaction (TRANSACTIONS); and a dataset for music analysis,
where we consider the "classical vs all" genre classification task (MUSIC). Original versions of
the four latter datasets are available online respectively at https://www.csie.ntu.edu.tw/˜cjlin/libsvm
tools/datasets/binary.html, http://komarix.org/ac/ds, https://www.kaggle.com/c/santander-customer-
transaction-prediction/data, and https://github.com/mdeff/fma.

Dataset name N D
SYNTHETIC 500 2
PHISHING 500 10
CHEMREACT 500 10
TRANSACTIONS 100,000 50
CHEMREACT100 26,733 100
MUSIC 8,419 237

Table 1: Details for datasets used in logistic regression experiments.

C.3.3 Small-scale experiments

In the small-scale experiment, the number of overall gradient updates was set to T = 1, 500, while
minibatch size was set to B = 400. Learning rate schedule for SparseVI and PSVI was γt = 0.1t−1.
Results presented in Fig. 6 indicate that PSVI achieves superior quality to SparseVI for small coreset
sizes, and is competitive to GIGA (Optimal), while the latter unrealistically uses true posterior
samples to tune a weighting function required over construction.

5

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds/
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://github.com/mdeff/fma


SYNTHETIC PHISHING CHEMREACT

Figure 6: Comparison of (pseudo)coreset approximate posterior quality vs coreset size for logistic
regression over 10 trials.

C.3.4 Reproducibility of Bayesian Logistic Regression experiment

In this subsection we provide additional details for reproducibility of the experimental setup for the
Bayesian Logistic Regression experiment presented in Section 4.

Posterior approximation metrics, coreset gradients and learning rates Posterior approximation
quality was estimated via computing KL divergence between Gaussian distributions fitted on coreset
and full data posteriors via Laplace approximation. For both SparseVI and PSVI, gradients were
estimated using samples drawn from a Laplace approximation fitted on current coreset weights
and points. To optimize initial learning rates for SparseVI and PSVI, we did a grid search over
{0.1, 1, 10}.

Differential privacy loss accounting and hyperparameter selection In the differential privacy
experiment, we were not concerned with the extra privacy cost of hyperparameter optimization task.
Estimation of differential privacy cost at all experiments was based on TensorFlow privacy imple-
mentation of moments accountant for the subsampled Gaussian mechanism.1 For DP-PSVI we used
the best learning hyperparameters found for PSVI on the corresponding dataset. The demonstrated
range of privacy budgets was generated by decreasing the variance σ of additive Gaussian noise and
keeping the rest of hyperparameters involved in privacy accounting fixed. Regarding DP-VI, over
our experiments we also kept subsampling ratio fixed. We based our implementation of DP-VI on
authors code,2 adapting noise calibration according to the adjacency relation used in Section 3.3, and
the standard differential privacy definition [3]. In our experiment, we used AdaGrad optimizer [2],
with learning rate 0.01, number of iterations 2, 000, and minibatch size 200. Gradient clipping values
for DP-VI results presented in Fig. 4, for TRANSACTIONS, CHEMREACT100, and MUSIC datasets
were tuned via grid search over {1, 5, 10, 50}. The values of gradient clipping constant giving best
privacy profiles for each dataset, used in Fig. 4, were 10, 5, and 5 respectively.

C.3.5 Additional Plots

Evaluation of CPU time requirements Experiments were performed on a CPU cluster node with a
2x Intel Xeon Gold 6142 and 12GB RAM. In the case of PSVI the computation of coreset sizes from 1
to 100 was parallelized per single size over 32 cores in total. Fig. 7 shows the posterior approximation
error vs required CPU time for all coreset construction algorithms over logistic regression on the
small-scale and large-scale datasets. As opposed to existing incremental coreset construction schemes,
batch construction of PSVI reduces the dependence between coreset size and processing cost: for
SparseVI Θ(M2) gradient computations are required, as this method builds up a coreset one point
at a time; in contrast, PSVI requires Θ(M) gradients since it learns all pseudodata points jointly.
Although each gradient step of PSVI is more expensive, practically this implies a steeper decrease
in approximation error over processing time compared to SparseVI. In the case of differentially
private PSVI, some extra CPU requirements are added due to the subsampled Gaussian mechanism
computations.

1https://github.com/tensorflow/privacy
2https://github.com/DPBayes/DPVI-code

6

https://github.com/tensorflow/privacy
https://github.com/DPBayes/DPVI-code


SYNTHETIC PHISHING CHEMREACT

TRANSACTIONS CHEMREACT100 MUSIC

Figure 7: Comparison of (pseudo)coreset approximate posterior quality vs CPU time requirements
for the logistic regression experiment of Section 4.

SYNTHETIC

PHISHING

CHEMREACT

Figure 8: Comparison of incremental PSVI and existing coresets approximate posterior quality vs
iterations of incremental construction (left) and coreset size (right), for the small-scale datasets
logistic regression experiment. With dashed lines is displayed the posterior quality achieved by
incremental PSVI and SparseVI constructions using gradients computed on data subsets of size 256.

Incremental scheme for pseudocoreset construction We also experimented with an incremental
scheme for pseudocoreset construction. According to this scheme, pseudodata points are added
sequentially to the pseudocoreset. Similarly to SparseVI, in the beginning of each coreset iteration,
we initialize a new pseudodata point at the true datapoint which maximizes correlation with current
residual approximation error vector. Next, we jointly optimize the most recently added pseudodata
point location, along with the pseudocoreset weights vector, over a gradient descent loop. As opposed
to batch construction, for large coreset sizes the incremental scheme for PSVI does not achieve
savings in CPU time compared to SparseVI.

7



We evaluated coreset construction methods on Bayesian logistic regression. We used M = 100
iterations for construction, S = 100 Monte Carlo samples per gradient estimation, T = 100 iterations
for optimization, and learning rate γt ∝ 0.5t−1. Coreset posterior samples over the course of
construction for SparseVI and incremental PSVI were drawn from a Laplace approximation using
current coreset weights and points. We implemented SparseVI and incremental PSVI via computing
gradients on the full dataset, as well as using stochastic gradients on subsets of size B = 256 for
lowering computational cost.

Results presented in Fig. 8 demonstrate that incremental PSVI achieves consistently the smallest pos-
terior approximation error, offering improvement compared to SparseVI and even achieving better
performance than GIGA (Optimal). We observe that stochastic gradients implementation (dashed
lines) reaches a plateau at higher values of KL compared to full gradients (solid lines), but still
achieves performance comparable with GIGA (Optimal).

References
[1] T. Campbell and B. Beronov. Sparse variational inference: Bayesian coresets from scratch. In

Advances in Neural Information Processing Systems, 2019.

[2] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

[3] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3–4), 2014.

8


	Technical Results and Proofs
	Gradient Derivations
	Weights gradient
	Location gradients

	Details on Experiments
	 Gaussian mean inference
	Bayesian linear regression
	Model and gradients details
	Additional plots

	Bayesian Logistic Regression
	Model
	Datasets description
	Small-scale experiments
	Reproducibility of Bayesian Logistic Regression experiment
	Additional Plots



