
We thank reviewers for their constructive feedback on our work. We are happy to see that the problem of data summa-1

rization for scalable and privacy-preserving Bayesian inference in high-dimensions is recognized as important for the2

community, and our approach was found technically sound and usable in real-world applications.3

R2 (novelty): Although pseudodata-based sparsifications for VI are not new in ML, this idea is novel and nontrivial in4

the context of summarization. It also provides three key benefits that are specific to this setting, namely: it enables (1)5

summarization in high-dimensions, (2) private release of summarizations, and (3) batch construction (reducing complex-6

ity). Further, our derivations take advantage of the particular form of our objective/gradients for efficient computation.7

R3 (connections with GP literature): Sparse methods in GPs have been indeed inspiring for delevoping PSVI. Simi-8

larly to (Titsias, 09) and in contrast to (Seeger et al., 03; Snelson and Ghahramani, 06), (1) we learn pseudopoints via9

continuous optimization on the KL between the exact and approximate posterior, avoiding overfitting by construction,10

and (2) do not modify the model prior, but introduce pseudopoints as variational parameters. Note that our method is11

applicable in both supervised and unsupervised learning settings. We will expand on these connections in our revision.12

R3 (applications to broader likelihood functions): Our method is agnostic to the particular form of data likelihood13

functions and can be readily applied to classification problems (see e.g. the Bayesian logistic regression experiment14

in Section 4 and Supplement C.3.1). We will emphasize that PSVI maintains the unifying sparse exponential family15

interpretation for any statistical model it is applied to, with pseudopoints weights and likelihood terms corresponding16

respectively to the natural parameters and sufficient statistics for the family of pseudocoreset posterior approximations.17

R2 (clarity of Proposition 1): In Gaussian mean inference, under the standard coresets formulation, for fixed dataset18

size and data dimensionality, the minimum required coreset size to reduce KL below a given threshold is bounded per19

Proposition 1. This bound depends on the dimension and increases when summarising a dataset of larger dimensionality,20

as empirically demonstrated in the difference between the KL plots of baseline methods in 200 and 500 dimen-21

sions (Fig. 2(a) and (b) of the paper)—implying impractical summary sizes for good KL. Pseudocoresets are not con-22

strained by this bound and can achieve arbitrary KL reduction by a single pseudopoint, regardless of data dimensionality.23

R5 (pseudodata and posterior quality): Learned pseudodata are explicitly optimized to approximate (in the KL24

sense) the exact posterior for a given statistical model, forming "approximate sufficient statistics" of the full data.25

Ongoing experiments showed us that pseudocoreset posteriors can be successfully26

applied in predictive analysis offering improvements in test accuracy/rmse. Though27

Hilbert coresets and uniform sampling might eventually achieve higher KL reduction28

for (often prohibitively) large coreset sizes, we are primarily interested in small29

coresets, where PSVI is outperfoming baselines in the tradeoff of KL reduction,30

coreset size and CPU time (required for both summary construction and subsequent31

inference); in contrast, Hilbert coresets are fundamentally constrained in this regime32

both due to data dimensionality (as is SparseVI as well), and information-geometric33

limitations (see (Campbell & Beronov, 19) and plot shown on the right).34

R3 (pseudodata weights): The varational parameters size in PSVI is dominated by pseudopoints in high-dimensions.35

Weights seem to be a natural ingredient for data summarization, that can account for coreset points multiplicity, hence36

enabling more expressive sparse posteriors, without having a significant bearing on the computational cost and the37

robustness of optimization. Importantly weights can differentiate posterior approximations among datasets of different38

size. For example, removing the variational parameters w in the Gaussian mean inference experiment (Section 4), won’t39

allow correctly adjusting the covariance of the pseudocoreset posterior, which is not a function of pseudopoints location.40

R2,3,5 (private scheme): A major desideratum in Bayesian coresets is maximising the automation of inference. Using41

the subsampled Gaussian mechanism is a decisive step towards pursuing this goal in DP extensions of coresets: our42

privatisation method removes requirements on computing sensitivies for noise calibration, enables adaptive clipping of43

gradients guided by private statistics on pseudopoints potentials, and gives tight estimates of the accumulated privacy44

cost via moments accounting—the latter allows many gradient steps under DP leading to good convergence in KL in45

practice, even when pseudodata are initialised from an uninformed prior, potentially far from true observations (Section46

4). On the other hand, privatising via noise addition in the first place requires strong public knowledge/assumptions47

on the (typically infinite) data likelihood sensitivities. Moreover, exponential mechanism based private selection for48

incremental schemes of summarization would not allow tight composition of privacy over a large number of iterations.49

R4 (privacy evaluation and related work): We kept δ parameter fixed to 1/N over all experiments on private50

inference, as this allows reasonable relaxations of pure DP quarantees. Fig. 4 of the paper presents the achieved51

posterior approximation quality over a range of values for the ε parameter for both our method and the baseline, profiling52

methods behavior over the regime of strong and weak privacy guarantees. DP schemes for coresets applicable in53

computational geometry already exist (Feldman et al., 09; 17), whilst the idea of releasing private dataset compressions54

has been also pursued in kernel methods (Balog et al., 18), sparse regression (Zhou et al., 07), and compressive55

learning (Schellekens et al.19); however, none of these approaches is directly applicable to summarising for general-56

purpose Bayesian inference, which led us to the decision of comparing against a standard private VI method.57

R2,3 (clarity of presentation, minor comments): We will address all typos, fix inconsistent notation, adapt sections58

length and clarity according to your suggestions, and expand on the noted references. Thank you for pointing these out.59


