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1 Modified Picard’s Iteration:

Let the differential equation be

dφ

dt
= f(t, φ(t)), φ(t0) = z0. (1)

The modified Picard’s iteration can be formulated as

φ0(t) = z0, (2a)

φk+1(t) = z0 +

∫ t+δk+1

t0

f(s, φk(s))ds, (2b)

δk+1 ∼ Uniform(−b, b). (2c)

Although the modified Picard’s iteration is very close to our technique, it is not the exact same
process that is simulated by our proposed technique. There are subtle differences which make the
proposed technique different to the one simulated by the modified Picard’s iteration. Picard’s iteration
constructs a sequence of approximate functions {φk(t)} which eventually converge to the desired
solution. Equation 2a defines the initial approximation φ0(t) as the initial condition z0 of the ODE.
Equation 2b describes the recurrence relation that relates φk+1(t) to φk(t). The recurrence relation
adds a δk+1 (Equation 2c) term which is randomly sampled.

It can be seen that the right-hand side Equation 2b defines an operator that maps a function φ to a
function T [φ] as

T [φk](t) = φ0 +

∫ t+δ

t0

f(s, φk)ds, δ ∼ Uniform(−b, b). (3)

The following theorem shows the existence of a unique solution for the modified Picard’s iteration
for our method.

Theorem 1.1. Suppose that f : R2 → R satisfies the Lipschitz condition |f(t, x2) − f(t, x1)| ≤
L|x2 − x1| where 0 ≤ L < ∞. Suppose that f is continuous and ∃ M such that 0 ≤
M < ∞, |f(t, x)| ≤ M, ∀(t, x). Then the sequence {φk} generated by the iteration
φk+1 = T [φk], φ0(t) = z0 is a contraction in expectation.

The sequence {φk(t)} converges to a unique fixed point φ∗(t).
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Figure 1: Conditions of the proof.

Proof. Let the starting range of t for the analysis be (t0 − σ, t0 + σ). Let c be such that ∀i, |φi(t)−
φ0| ≤ c. The solution only exists in the range t ∈ (t0 − a

2 , t0 + a
2 ) where a < min( c

M , 1
2L ). The

parameter b for STEER is chosen as b ≤ a
2 to ensure that the final effective time after sampling δ

t+ δ ∈ (t0 − a, t0 + a).

Let φk+1(t) = T [φk] = φ0 +
∫ t+δ
t0

f(s, φk)ds, δ ∼ Uniform(−b, b) is well defined on [t0−a, t0 +

a]. φk+1(t) is continuous since both φk(t) and f are continuous.

φk+1(t) ∈ R since |φk+1(t)−φ0| = |
∫ t1
t0
f(s, φk(s))ds| ≤M |t− t0| ≤Ma < c. This is by choice

of a.

Let the metric on the space of solutions Φ be defined such that if ∆(φk, φk+1) =
max[t0−a,t0+a]|φk(t) − φk+1(t)|. Φ is a complete metric space which implies that all Cauchy
sequences converge. We show using Lemma 1.2 that the operator T is a contraction in expectation.
Lemma 1.4 shows the convergence of the sequence of functions {φk}. Finally Lemma 1.5 shows
why the fixed point is unique with high probability.

Lemma 1.2. E|δ2|−|δ1|∆(Tφ1, Tφ2) ≤ 1
2∆(φ1, φ2)
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Proof.

|Tφ2(t)− Tφ1(t)|

= |
∫ t+δ2

t0

(f(s, φ2(s))ds−
∫ t+δ1

t0

(f(s, φ1(s)))ds|

= |
∫ t

t0

(f(s, φ2(s)− f(s, φ1(s)))ds+

∫ t+δ2

t

(f(s, φ2(s)))ds−
∫ t+δ1

t

(f(s, φ1(s)))ds|

≤ |
∫ t

t0

(f(s, φ2(s)− f(s, φ1(s)))ds+

∫ t+δ2

t

(f(s, φ2(s)))ds−
∫ t+δ1

t

(f(s, φ1(s)))ds|

≤ |L
∫ t

t0

|φ2(s)− φ1(s)|ds+M |δ2| −M |δ1||

≤ |L∆(φ2, φ1)

∫ t

t0

ds+M(|δ2| − |δ1|)|

≤ |L∆(φ2, φ1)(t− t0) +M(|δ2| − |δ1|)|
≤ |∆(φ2, φ1)La+M(|δ2| − |δ1|)|

≤ |1
2

∆(φ2, φ1) +M(|δ2| − |δ1|)|

(4)

Since a is chosen such that a < min( c
M , 1

2L ), hence La < 1
2 . If δi ∼ U(−b, b) then |δi| ∼

U(0, b). Further E|δ2|−|δ1|(|δ2| − |δ1|) = 0 using Lemma 1.3. Thus E|δ2|−|δ1|∆(Tφ1, Tφ2) ≤
1
2∆(φ1, φ2)

Lemma 1.3. E|δi+1|−|δi|(|δi+1| − |δi|) = 0 since |δi|, |δi+1| ∼ Uniform(0, b) . The difference of 2
uniform random variables U(0, b) follows the standard triangular distribution.

Proof. Let X1 = |δi+1|, X2 = |δi| are independent U(0, b) random variables. Let Y = X1 −X2.
The joint probability density of X1 and X2 is fX1,X2(x1, x2) = 1 , 0 < x1 < b, 0 < x2 < b Using
the cumulative distribution technique, the c.d.f of Y is

FY (y) = P (Y ≤ y)

= P (X1 −X2 ≤ y)

=

{∫ b+y
0

∫ b
x1−y 1dx2dx1 −B < y < 0

1−
∫ b
y

∫ x1−y
0

1dx2dx1 0 ≤ y < b

=

{
b2

2 + by + y2

2 − b < y < 0

1− b2

2 + by − y2

2 0 ≤ y < b

(5)

Differentiating w.r.t y yields the probability distribution function :

fY (y) =

{
y + b − b < y < 0

y − b 0 ≤ y < b
(6)

From the properties of standard triangular distribution, EY [Y ] = 0

Lemma 1.4. The sequence of functions {φk} obtained using the transformation T as φ0(t) =
φ0, φk+1 = Tφk converges.

Proof. ∆(φ2, φ1) = ∆(Tφ1, Tφ0) ≤ 1
2∆(φ1, φ0).

Similarly, ∆(φ3, φ2) = ∆(Tφ2, Tφ1) ≤ 1
2∆(φ2, φ1) ≤ 1

4∆(φ1, φ0).
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In general ∆(Tφn+1, Tφn) ≤
(
1
2

)n
∆(φ1, φ0)

=⇒ Σ∞n=0∆(Tφn+1, Tφn) ≤ ∆(φ1, φ0)Σ∞n=0

(
1
2

)n
Since the above sum converges and the completeness of Φ proves that the sequence {φk} converges.

Lemma 1.5. T has at most one fixed point with high probability.

Proof. Suppose there were 2 distinct fixed points φ1 and φ2. By the definition of a fixed point
Tφk = φk, hence we obtain ∆(Tφ1, Tφ2) = ∆(φ1, φ2) which contradicts Lemma 1.2 with high
probability as Lemma 1.2 shows that |Tφ2(t) − Tφ1(t)| ≤ 1

2∆(φ2, φ1) + M(|δ2| − |δ1|). Hence
∆(Tφ1, Tφ2) would not be equal to ∆(φ1, φ2) with high probability.

2 Stiff ODE: Ablation Studies

As discussed in the experiments section of the paper, we use the same setting as the one described in
[1].

The ODE is given by
dy

dt
= −1000y + 3000− 2000e−t, (7)

with the initial condition of y(0) = 0. We use the generalized version of the above equation which is
dy
dt = −ry + 3r− 2re−t. The generalized equation has the same asymptotic behavior as the original.
It also reaches a steady state at y = 3. Varying r effectively varies the stiffness ratio of the underlying
ODE. It thus allows us to analyze the behavior of the various hyperparameters across a wide range of
underlying problem difficulty. The experiments were performed using the dormand-prince [2] ODE
solver.

Since the experimental setting of the stiff ODE converges in minutes rather than hours, we test out
a variety of settings for b. We try to identify strategies for choosing the hyperparameter b for the
proposed STEER regularization. We also consider the use of a Gaussian distribution in place of the
Uniform distribution. We further test out the effect of the capacity on the regularization. We perform
experiments to observe the behavior by varying the number of units in the hidden layer of the neural
network.

Figure 2: Comparison of the losses for the various choices
of b across varying stiffness ratios.

Effect of varying b: As we observe
from Fig. 2 as the parameter b varies,
we obtain a range of behavior in terms
of the MSE error across a wide va-
riety of stiffness ratios. The general
trend indicates that larger b such as
b = 0.124, 0.115, 0.085 have similar
behavior and achieve the minimum
error in general. Smaller b on the
other hand shows behavior similar to
standard Neural ODE as is evident
from the plots of b = 0.025, 0.045.
An intermediate value of b = 0.065
shows behavior which is better than
very small values of b while worse be-
havior than the large values of b. This
indicates that higher values of b are
better for the proposed STEER regu-
larization as long as b is less than the
length of the original interval.

Effect of varying distributions: In the proposed STEER regularization we use the Uniform distri-
bution to sample the end point of the integration. The simplicity of the Uniform distribution adds an
elegance to the proposed technique. We want to analyze whether it is the inherent stochasticity that
makes the technique effective or the particular choice of the Uniform distribution. As we see from
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STEER(b = 0.124) Standard Neural ODE

Figure 5: Comparison of the losses for the various number of units in the hidden layer for the case of
STEER with b = 0.124 and a stanard Neural ODE across varying stiffness ratios.

Fig. 3 we observe a similar trend as we had seen in Fig. 2. Greater the stochasticity in the end time
the better the performance in terms of MSE.

Figure 3: Comparison of the losses for
the various choices of standard devia-
tion (std) of the Gaussian across varying
stiffness ratios.

Delving deeper into the experimental setting of the Gaus-
sian distribution, we sample an end time t ∼ N(t1, std),
where t1 was the original end time of the integration and
std is the parameter controlling the standard deviation
of the Gaussian distribution. Fig. 3 indicates that higher
standard deviations std = 0.124, 0.05 lead to better per-
formance in terms of MSE. Very small standard devia-
tions start approaching a behavior that is similar to the
one shown by standard Neural ODE as exemplified by
std = 0.01, 0.02, 0.03. It is interesting to note that the
transition from std = 0.03 to std = 0.04 is rather abrupt
and shows an intermediate behavior between the smaller
and larger values of std.

As we observe from Fig. 3 we see the effective behavior
of the best approaches with the Uniform distribution and the Gaussian distribution respectively
compared alongside a standard Neural ODE. This plot indicates that the high stochasticity in the cases
of the Uniform and Gaussian distributions leads to lower losses in terms of the MSE. We observe a
slight advantage of using Uniform distribution rather than the Gaussian distribution.

Figure 4: Comparison of a standard Neu-
ral ODE along with the Gaussian and
Uniform distributions from which the
end time t1 can be sampled.

Although we observe in this case that the Gaussian distribu-
tion leads to similar behavior as the Uniform distribution,
it comes along with its own implementation challenges.
We observe from Fig. 3 that better performance is obtained
when std is high. On the flipside when std is high, there
might be some sampled values of t which might be less
than the initial time t0. To avoid such scenarios, we would
have to employ clipping on one side. Clipping on only
one side would skew the resulting distribution. Clipping
on both sides would add another parameter clip. It would
decide how much to clip on either side of t1. To simplify
the technique and reducing the number of hyperparameters
we chose to use the Uniform distribution. While Gaus-
sian distribution with intelligent clipping could be a viable
alternative we leave its analysis for future work.

Effect of varying the network capacity: To complete our ablation study, we also compare the effect
of varying the number of units in the hidden layer of the network. In case of STEER regularization,
the reduction of the number of units generally hurts as shown in Fig. 5. The worst performance is
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dy
dt = −1000y + 3000− 2000(e−t + e−10t) dy

dt = −1000y + 3000− 2000(e−t + e−10000t)

Figure 6: We experiment with 2 cases which have multiple e−kt in the dy
dt function to be estimated.

STEER regularization doesn’t totally fail in these scenarios although the performance reduces.

dy
dt = −1000y + 3000− 2000e−t + 1000sin(t) dy

dt = −1000y + 7000− 2000e−t

Figure 7: Failure cases of the proposed STEER regularization. Adding a periodic term to the equation
dy
dt makes it harder to learn. Changing the behavior of the steady state from y = 3 to y = 7 causes
STEER to not reach a viable steady state solution. Note that a standard Neural ODE also fails in
these cases

obtained with 250 hidden units. The performance in terms of MSE keeps getting better by increasing
the number of hidden units till 500. Increasing further to 700 leads to similar behavior but slight
reduction in performance. In case of a standard Neural ODE on the other hand, the behavior is quite
erratic as seen in Fig. 5 . Increasing the number of units in the hidden layer doesn’t consistently
decrease the MSE error.

Other forms and failure cases: We analyze other instances of the equation to delve deeper into the
effective behavior. When additional terms in form of e−kt are added to the differential equation, our
proposed STEER regularization is able to reasonably reach steady state solutions as shown in Fig. 6.
We analyze some failure cases in Fig. 7. We observe that when a sin(t) term is added our proposed
STEER regularization struggles to fit the periodic behavior. Smaller changes such as changing the
steady state from y = 3 to y = 7, causes our regularization to fail to reach the steady state solution.
This indicates that stiff ODEs need further analysis. Alternative techniques or regularizations may be
required to deal with harder instances of stiff ODEs.

3 Generative Models: Ablation Studies

We analyze the effect of varying b in case of continuous normalizing flow based generative models.
We conduct ablation studies on the setting of RNODE [3] since it converges much faster. Multiple
possible values of b could be experimented, since convergence is fast. As we observe from Table 1
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MNIST
BITS/DIM TIME

t1 : t1 + b = toriginal1 = 1
FFJORD RNODE + STEER (b = 0.5) 0.971 16.32
FFJORD RNODE + STEER (b = 0.375) 0.973 17.13
FFJORD RNODE + STEER (b = 0.25) 0.972 19.71
FFJORD RNODE + STEER (b = 0.125) 0.973 22.32

t1 : t1 = toriginal1 = 1
FFJORD RNODE + STEER (b = 0.5) 0.974 25.81
FFJORD RNODE + STEER (b = 0.375) 0.98 25.72
FFJORD RNODE + STEER (b = 0.25) 0.971 25.23
FFJORD RNODE + STEER (b = 0.125) 0.976 24.32

Table 1: Comparison of b in case of Continuous Normalizing Flows. Greater values of b lead to faster
convergence. Altering t1 such that t1 + b = toriginal1 leads to faster convergence times.

there is a general trend which is similar to the one we observed in the case of stiff ODEs. The greater
the stochasticity due to a larger value of b, the faster the convergence time. The best results were
obtained by using b = 0.5. In case of generative modeling, to obtain faster convergence, the end time
t1 had to be constrained such that t1 + b = toriginal1 . The original ending time was toriginal1 = 1 for
the experiments in Table 1. The bottom half of Table 1 demonstrates that if the t1 is not altered i.e.
t1 = toriginal1 , faster convergence is not observed.
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