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Abstract

In this paper, we consider an online optimization problem in which the reward
functions are DR-submodular, and in addition to maximizing the total reward, the
sequence of decisions must satisfy some convex constraints on average. Specifically,
at each round t ∈ {1, . . . , T}, upon committing to an action xt, a DR-submodular
utility function ft(·) and a convex constraint function gt(·) are revealed, and the
goal is to maximize the overall utility while ensuring the average of the constraint
functions 1

T

∑T
t=1 gt(xt) is non-positive. Such cumulative constraints arise natu-

rally in applications where the average resource consumption is required to remain
below a prespecified threshold. We study this problem under an adversarial model
and a stochastic model for the convex constraints, where the functions gt can vary
arbitrarily or according to an i.i.d. process over time slots t ∈ {1, . . . , T}, respec-
tively. We propose a single algorithm which achieves sub-linear (with respect to T )
regret as well as sub-linear constraint violation bounds in both settings, without
prior knowledge of the regime. Prior works have studied this problem in the special
case of linear constraint functions. Our results not only improve upon the existing
bounds under linear cumulative constraints, but also give the first sub-linear bounds
for general convex long-term constraints.

1 Introduction

Online optimization covers a large number of problems in which information is revealed incrementally
(i.e., online) and irrevocable decisions should be made at each step in face of uncertainty about the
future arriving information [1–5]. Such problems could be formulated as a repeated game between
the decision maker (i.e., the learner) and the adversary (i.e., the nature or environment). At each
iteration of this game, the learner chooses an action from a fixed domain set and then, it receives
feedback in the form of utility or reward for her selected action. In the non-stochastic feedback model,
no assumptions are made on the sequence of arriving rewards except their boundedness. As time goes
by, the learner aims to observe the past and make better decisions to maximize the overall reward.
The performance of online algorithms are usually measured through the regret or the competitive
ratio of the algorithm. In the regret analysis framework, at each round, the learner has to commit to
an action before observing the corresponding reward function and the goal is to design algorithms
whose total accumulated reward differs sub-linearly (in the time horizon T ) from the reward of the
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best fixed benchmark action (or sequence) with hindsight information [4, 6–8]. On the other hand, in
the competitive analysis setting, the decision maker is allowed to first observe the reward function at
each step and then, choose her action accordingly (i.e., the 1-lookahead setting). In this setting, the
goal is to obtain bounds for the ratio of the total reward of the algorithm and the offline optimum (i.e.,
the competitive ratio) [9, 10]. In this work, we focus on the regret analysis setting.
In most of the prior work on online learning, there are no constraints on the sequence of decisions
made by the learner and maximizing the overall reward is the sole objective [4, 5]. However, in many
applications, there indeed exist some constraints on the decisions of the algorithm which need to be
satisfied on average [11–14]. For instance, in an online task assignment problem in crowdsourcing
markets, the requester needs to balance her total payment to workers against a prespecified allotted
budget [15]. The advertiser in an online ad placement problem has a limited budget to invest on
buying ads on different websites [16–18]. Note that in both of these problems, the resource (budget)
consumption at each round is not known ahead of time. In crowdsourcing, the consumed resource
depends on the workers’ overall cost for performing the task, and even if a worker’s hourly rate is
known, the length of time required may not be known beforehand; in the online ad allocation problem,
resource use depends on the number of clicks on the ads.

1.1 Related work

Online submodular maximization. Consider an online unconstrained optimization problem in
which the reward functions are monotone DR-submodular. [19] proposed the Meta-Frank-Wolfe
algorithm for this problem and obtained O(

√
T ) regret bound against the (1− 1

e ) approximation to
the best fixed decision in hindsight where (1− 1

e ) is the best polynomial-time approximation ratio
in the offline setting. The Meta-Frank-Wolfe algorithm requires access to the full gradient of the
reward functions and performs O(

√
T ) gradient evaluations per step. More recently, [20] generalized

this algorithm to the setting where only stochastic gradient estimates are available. Moreover, [21]
proposed the Mono-Frank-Wolfe algorithm which performs only one gradient evaluation per round
and requires only unbiased estimates of the gradient.
Online optimization with adversarial constraints. Online convex optimization with constraints,
where both the convex objective functions {ft}Tt=1 and the convex constraint functions {gt}Tt=1
can vary arbitrarily, was first studied by [22]. They provided a surprisingly simple counterexample
which showed that it is not always possible to achieve a sub-linear regret against the best fixed
benchmark action in hindsight while the total constraint violation is sub-linear. Therefore, subsequent
works added more assumptions to the problem setting to be able to obtain meaningful results. In
particular, not only did they require the fixed benchmark action to satisfy the long-term constraint
(i.e.,

∑T
t=1 gt(x

∗) ≤ 0), but they also restricted the benchmark to satisfy the constraint proportionally
over any window of size W ∈ [1, T ]. In other words, the fixed comparator action was required to
be chosen from the set XW = {x ∈ X :

∑t+W−1
τ=t gτ (x) ≤ 0, 1 ≤ t ≤ T −W + 1}. Note that if

W = T , we recover the usual definition of the benchmark and the smaller W is, the comparator
action is more restricted. See Table 1 for an overview of results under different choices of window
length. Note that the setting in [17] is different, the objective functions are monotone DR-submodular
(and generally non-concave) and the constraint functions are linear.

Paper Cost (utility) Constraint Window size Regret Constraint violation
[23] convex convex 1 O(

√
T ) O(T

3
4 )

[24] convex convex 1 O(
√
T ) O(

√
T )

[16](a) convex convex W O(
√
T + WT

V ) O(
√
V T )

[17] DR-submodular linear W O(
√
WT ) O(W

1
4T

3
4 )

Table 1: Prior results for online problems with adversarial cumulative constraints in various settings.
Note that in (a), V ∈ (W,T ) is a tunable parameter.

The performance of online convex optimization with adversarial convex constraints has also been
analyzed against a dynamic benchmark sequence (i.e., dynamic regret) and sub-linear regret and
constraint violation bounds have been derived under full and bandit feedback settings [25, 26].
Online optimization with stochastic constraints. In light of the aforementioned impossibility result
of [22], many subsequent works focused on stochastically time-varying constraints in which the
constraint functions over t ∈ [T ] are assumed to be an i.i.d. process. In this setting, the benchmark

2



action is required to satisfy the constraint in expectation, i.e., E[gt(x
∗)] ≤ 0 ∀t ∈ [T ]. In this

framework, [24, 27, 28] obtained O(
√
T ) regret and constraint violation bounds simultaneously, both

in expectation and with high probability. Outside of the convex setting, [18] analyzed this problem
for monotone DR-submodular utility functions and linear constraint functions. They managed to
obtain O(

√
T ) constraint violation bound in expectation and with high probability. In addition, they

derived O(T
3
4 ) and O(

√
T ) regret bounds, in expectation and with high probability respectively.

1.2 Contributions

In this paper, we focus on a general class of online optimization problems where the reward functions
{ft}Tt=1 are monotone DR-submodular and are chosen adversarially. Moreover, the constraint
functions {gt}Tt=1 are monotone and convex. We study this problem in two settings. In the first
setting, the constraint functions are assumed to vary arbitrarily. In the second model, we further
restrict the sequence of constraint functions to be an i.i.d. process over time slots t ∈ [T ]. We make
the following contributions:
• Inspired by the Meta-Frank-Wolfe algorithm of [19] and the algorithm of [24], we propose
Algorithm 1 in Section 4 for both adversarial or stochastic constraints without prior knowledge of the
regime. In particular, for the adversarial setting, we obtain an O(T 1− ε2 ) static regret bound against
the benchmark with window length W = T 1−ε, and an O(T 1− ε2 ) total constraint violation bound.
Moreover, if we consider dynamic regret as the utility performance metric, we obtain O(

√
TP ∗T )

bounds for both the dynamic regret and the total constraint violation where P ∗T :=
∑T−1
t=1 ‖x∗t−1−x∗t ‖.

In the setting with stochastic constraints, using the same algorithm (Algorithm 1), we obtain O(
√
T )

regret and total constraint violation bounds, both in expectation and with high probability.
• In Section 5, we propose Algorithm 2 which is based on the Mono-Frank-Wolfe algorithm of [21].
Compared to Algorithm 1, Algorithm 2 is computationally more efficient, but it achieves slightly
worse performance guarantees. In particular, Algorithm 2 obtains an O(T

2
3 ) static regret against the

benchmark with window size W ∈ [1, T
1
3 ] and an O(T

2
3 ) total constraint violation bound. Similar

bounds can also be derived in the stochastic setting, both in expectation and with high probability.
Lastly, we validate our theoretical findings and demonstrate the advantages of our proposed algorithms
over prior work in a series of numerical experiments in Section 6.
Proofs for all the claims and results in the paper are provided in the appendix.

1.3 Notations

We use [T ] to denote the set {1, 2, . . . , T}. For a vector x ∈ Rn, we use xi to denote the i-th entry of x.
For u ∈ R, the notation [u]+ denotes the application of function max{x, 0}, i.e., [u]+ = max{u, 0}.
The inner product of two vectors x, y ∈ Rn is denoted by either 〈x, y〉 or xT y. Also, for two vectors
x, y ∈ Rn, we write x � y if xi ≤ yi holds for every i ∈ [n]. A function f : Rn → R is called
monotone if for all x, y such that x � y, f(x) ≤ f(y) holds. For a vector x ∈ Rn, we use ‖x‖
to denote the Euclidean norm of x. A differentiable function f : X → R is β-Lipschitz if for all
x, y ∈ X , we have |f(y)− f(x)| ≤ β‖y − x‖, or equivalently, ‖∇f(x)‖ ≤ β holds. For a convex
set X , we will use PX (y) = arg minx∈X ‖x − y‖ to denote the projection of y onto set X . The
diameter of a set X is defined as maxx,y∈X ‖y − x‖.

2 DR-submodular functions

We say that a differentiable function f : X → R, X ⊂ Rn+, is DR-submodular if its gradient is an
order-reversing mapping, i.e., we have:

x � y ⇒ ∇f(x) � ∇f(y).

For a twice differentiable function f , it is DR-submodular if and only if its Hessian matrix ∇2f is
entry-wise non-positive. It is noteworthy that although DR-submodularity and concavity are equiva-
lent for the special case of n = 1, DR-submodular functions are generally non-concave. Nonetheless,
an important consequence of DR-submodularity is concavity along non-negative directions [29, 30],
i.e., for all x, y such that x � y, we have f(y) ≤ f(x) + 〈∇f(x), y − x〉.
For a DR-submodular function f , we say that f is L-smooth over non-negative directions if:

f(y)− f(x) ≥ 〈∇f(x), y − x〉 − L

2
‖y − x‖2 ∀x, y;x � y.
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There are many functions which satisfy the DR-submodularity property. In particular, we mention a
number of them in Appendix A which have been used for the experiments in Section 6.

3 Problem formulation

We consider the following protocol for online DR-submodular maximization with long-term convex
constraints. At each iteration t ∈ [T ], the online algorithm chooses an action xt ∈ X where X
is the fixed domain set. Upon committing to this action, (i) a monotone DR-submodular utility
function ft : X → R is revealed and the algorithm obtains the reward ft(xt) and (ii) a monotone
convex constraint function ht : X → R is revealed and ht(xt) amount of resource is consumed. The
total available resource is denoted by BT which is given offline. Also, we assume the horizon T
is known in advance, however, if T is not available offline, we can use the well-known doubling
trick to obtain the same performance guarantees with slightly worse constants. The goal is to
maximize the overall obtained reward while ensuring the resource constraint is satisfied on average,
i.e., limT→∞

1
T

(∑T
t=1 ht(xt) − BT

)
≤ 0. Denoting gt(·) = ht(·) − BT

T , the resource constraint
could be written as limT→∞

1
T

∑T
t=1 gt(xt) ≤ 0. In other words, we aim to maximize the overall

utility while ensuring the total constraint violation
∑T
t=1 gt(xt) grows sub-linearly in T . The offline

optimization problem is as follows:

maximize
∑T
t=1 ft(xt)

subject to
∑T
t=1 gt(xt) ≤ 0

xt ∈ X ∀t ∈ [T ].

(1)

We study this problem under two settings. In the first online model, we assume that for all t ∈ [T ],
both the utility function ft and the constraint function ht are chosen adversarially. In other words, we
do not make any assumptions on the arriving functions ft and ht. In the second model, while the
utility function ft is still assumed to be arbitrary, the constraint function ht is a random i.i.d. sample
drawn from some unknown underlying distribution over a classH of monotone convex functions.
Note that our proposed algorithms can easily handle multiple online convex constraints with the same
performance guarantees. However, for ease of notation, we focus on the special case of a single
resource constraint.
To analyze this online optimization problem, we will make a number of assumptions that are common
for online submodular problems.
Assumption 1. X is a convex and compact set with diameter R, and 0 ∈ X .
Assumption 2. For all t ∈ [T ], the reward function ft is monotone, DR-submodular, βf -Lipschitz,
L-smooth along non-negative directions and normalized (i.e., ft(0) = 0).
Assumption 3. For all t ∈ [T ], the constraint function ht is monotone, convex, βh-Lipschitz and
normalized (i.e., ht(0) = 0). In the stochastic setting, we assume that these assumptions hold for all
h ∈ H. Note that since gt was defined as gt(·) = ht(·)− BT

T , these assumptions apply to gt as well.
Since X is compact and ft, ht ∀t ∈ [T ] are β-Lipschitz, where β = max{βf , βh}, ft(·) and
gt(·) = ht(·)− BT

T are both bounded, i.e., |ft(x)| ≤ F and |gt(x)| ≤ G for all x ∈ X and t ∈ [T ].

3.1 Motivating Applications

There are a number of interesting applications that could be cast in our framework. In particular,
we have described three examples below which have been used in Section 6 for the numerical
experiments. See [17, 18] for more examples. In all the following applications, if the utility function
is a submodular set function, we apply our algorithms to the DR-submodular continuous extension of
the set function, and use the lossless pipage rounding technique of [30] to make integral allocations.
Online joke recommendation. In this problem, we aim to design a joke recommendation algorithm
to assign jokes to a sequence of users arriving online such that the overall impression of the jokes
are maximized in a fixed time horizon BT . At each step t ∈ [T ], a user arrives and the algorithm
should assign a bundle of at most m jokes, xt ∈ {x ∈ {0, 1}n : 1Tx ≤ m}, to her. If joke
i is assigned to user t, she spends [pt]i amount of time to read the joke and submit her rating
[rt]i. In other words, ht(x) = 〈pt, x〉. The overall impression is the submodular set function
Ft(x) = rTt x +

∑
i,j:i<j θ

(t)
ij xixj where θ(t)ij ≤ 0 penalizes the similarity of jokes i and j. This

function has been extensively used in the literature to encourage diversity [31].
Online task assignment in crowdsourcing markets. In this problem, there exists a requester with
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a limited budget BT that submit jobs and benefits from them being completed. There are n types
of jobs available to be assigned to workers arriving online. At each step t ∈ [T ], a worker arrives
and the requester has to assign a bundle xt ∈ X = {x ∈ Rn+ : 0 � x � 1} of the jobs to
the worker. The worker has a private cost [pt]i ∀i ∈ [n] for performing one unit of the assigned
job i, where [pt]i denotes the i-th entry of vector pt. In other words, we have ht(x) = 〈pt, x〉.
The rewards obtained by the requester from this job assignment is a DR-submodular function
ft(x) =

∑n
i=1[ut]ilog(1 + xi) +

∑
i,j:i 6=j [θt]ijxixj , where [ut]i ≥ 0 and [θt]ij ≤ 0. The DR-

submodularity of the utility function captures the diminishing returns of assigning more jobs to
the worker, i.e., as the number of assigned jobs to the worker increases, she has less time, energy
and resource available to devote to each fixed job i ∈ [n] and therefore, the reward (quality of the
completed task) obtained from the worker performing one unit of job i decreases. In other words, if
x � y, ∇if(x) ≥ ∇if(y) ∀i ∈ [n] holds. The goal is to maximize the overall reward obtained by
the requester while the budget constraint is satisfied on average.
Online welfare maximization with production cost. In this problem, there is a seller who has
n types of products for sale that may be produced on demand using a fixed limited budget BT .
At each step t ∈ [T ], an agent (customer) arrives online and the seller has to assign a bundle
xt ∈ X = {x ∈ Rn+ : 0 � x � 1} of products to the agent. The production cost for this assignment
is ht(xt) = xTt Ptxt, where Pt is an entry-wise non-negative positive definite matrix. Quadratic
production cost functions with increasing gradient are commonly used in the literature [32, 33]. The
agent has an unknown private DR-submodular valuation function ft(x) = log det

(
diag(x)(Lt −

I) + I
)

over the items, where Lt is a positive semidefinite matrix and the DR-submodularity property
characterizes the diversity of the assigned bundle. Therefore, the utility obtained by assigning the
bundle xt equals ft(xt). The goal is to maximize the overall valuation of the agents while satisfying
the budget constraint of the seller on average.

3.2 Benchmarks

We measure the performance of our proposed algorithms with the notions of regret and total constraint
violation to quantify the overall utility and total resource consumption of the algorithms respectively.
We define these notions below.
Total constraint violation. The total constraint violation of an online algorithm with outputs {xt}Tt=1
is the following:

CT :=

T∑
t=1

gt(xt) =

T∑
t=1

ht(xt)−BT .

We aim to design algorithms whose total constraint violation is sub-linear in T .
In Online Convex Optimization (OCO), the utility performance of the algorithm is usually compared
against static or dynamic benchmark sequences. Static regret metric has been extensively used in the
literature [7,8,34–37]. However, in problems where the environment is changing (i.e., dynamic), static
regret is no longer a suitable measure and an enhanced measure, i.e., dynamic regret, is used [38–42].
In our setting, the regret metric should also specify how the benchmark actions behave with respect
to the long-term adversarial or stochastic constraint. We thus introduce three notions of regret below.
Adversarial regret. In the adversarial setting, where both the utility and constraint functions are
chosen arbitrarily, the (1− 1

e )-regret of an algorithm with outputs {xt}Tt=1 against a static benchmark
action x∗W with window length W ∈ [1, T ] is defined as:

R
(A,S)
W,T = (1− 1

e
)

T∑
t=1

ft(x
∗
W )−

T∑
t=1

ft(xt),

where:

x∗W = arg max
x∈XW

T∑
t=1

ft(x), XW = {x ∈ X :

t+W−1∑
τ=t

gτ (x) ≤ 0, 1 ≤ t ≤ T −W + 1}.

Furthermore, in this adversarial setting, the (1− 1
e )-regret against a dynamic benchmark sequence

{x∗t }Tt=1 is as follows:

R
(A,D)
T = (1− 1

e
)

T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(xt),
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Algorithm 1
Input: X is the constraint set, T is the horizon, V > 0, α > 0 and K ∈ N.
Output: {xt : 1 ≤ t ≤ T}.
Initialize λ(k)1 = v

(k)
0 = x

(k)
0 = 0 ∀k ∈ [K].

for t = 1 to T do
x
(1)
t = 0.

for k = 1 to K do
v
(k)
t = arg maxx∈X

(
〈V∇ft−1(x

(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1), x〉 − α‖x− v(k)t−1‖2

)
,

x
(k+1)
t = x

(k)
t + 1

K v
(k)
t .

end for
Set xt = x

(K+1)
t and play xt.

Observe the utility function ft and the constraint function gt.
for k = 1 to K do
λ
(k)
t+1 = [λ

(k)
t + gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉]+.

end for
end for

where {x∗t }Tt=1 is any benchmark sequence for which gt(x∗t ) ≤ 0 holds.
Stochastic regret. In the stochastic input model, where the utility functions {ft}Tt=1 are chosen ad-
versarially and the constraint functions {ht}Tt=1 are drawn i.i.d. according to an unknown underlying
distribution over the classH, the (1− 1

e )-regret of an algorithm with outputs {xt}Tt=1 against a static
benchmark action x∗ is the following:

R
(S,S)
T = (1− 1

e
)

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt), x
∗ = arg max

x∈X :E[gt(x)]≤0 ∀t∈[T ]

T∑
t=1

ft(x).

4 One practical algorithm for adversarial or stochastic constraints

In this section, we propose our first algorithm that could be applied to online DR-submodular
maximization problems with both adversarial or stochastic constraints without prior information
about the regime. The algorithm is provided in Algorithm 1. The algorithm generalizes that of [24]
for the convex setting to handle generally non-concave DR-submodular utility functions. In particular,
inspired by the Meta-Frank-Wolfe algorithm of [19], we have changed the primal update of the
algorithm of [24] to be able to obtain regret bounds in this setting. The following lemma provides an
equivalent formulation of the primal update of the algorithm.

Lemma 1. For all t ∈ [T ] and k ∈ [K], the update rule of Algorithm 1 for v(k)t is equivalent to the
following:

v
(k)
t = PX

(
v
(k)
t−1 +

1

2α

(
V∇ft−1(x

(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1)

))
,

where PX denotes the projection onto set X .

Thus, for each k ∈ [K], the algorithm runs an instance of online gradient ascent with step size
1
2α to choose the point v(k)t , ∀t ∈ [T ], and upon committing to this action, it receives a reward
of 〈V∇ft(x(k)t ), v

(k)
t 〉 − λ

(k)
t+1gt(v

(k)
t ). Note that using the average of the output of K online

maximization algorithms to obtain {xt}Tt=1 is common in online submodular maximization [19–21].
The parameter V characterizes the trade-off between maximizing the reward and satisfying the
resource constraint. In other words, choosing a larger V leads to higher overall reward while the
constraint is further violated. The output of the algorithm at each step, xt, ∀t ∈ [T ], is the average of
K vectors v(k)t in the convex domain X ; hence, xt ∈ X also holds.
Furthermore, the algorithm needs to maintain K dual variables at every time step t, λ(k)t k ∈ [K] (as
opposed to a single dual variable in [24]). To better understand the algorithm, we first provide the
following two lemmas.
Lemma 2. The cumulative constraint violation of Algorithm 1 could be bounded as follows:

CT ≤
1

K

K∑
k=1

λ
(k)
T+1 +

β2T

4V
+
V

K

K∑
k=1

T∑
t=1

‖v(k)t − v
(k)
t−1‖2.
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Lemma 3. Let ∆
(k)
t :=

(λ
(k)
t+1)

2

2 − (λ
(k)
t )2

2 for all t ∈ [T ] and k ∈ [k]. We have:

∆
(k)
t ≤ (G+ βR)2

2
+ λ

(k)
t

(
gt−1(v

(k)
t−1) + 〈∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉

)
.

∆
(k)
t has been commonly used in the literature and is called Lyapunov quadratic drift [43].

The result of Lemma 2 suggests that in order to minimize the total constraint violation CT , the
algorithm needs to maintain small dual variables. Equivalently, for all t ∈ [T ] and k ∈ [K], the drift
of the dual variable , ∆

(k)
t , needs to be minimized. Using the result of Lemma 3, we obtain:

∆
(k)
t − 〈V∇ft−1(x

(k)
t−1), v

(k)
t − v

(k)
t−1〉+ α‖v(k)t − v

(k)
t−1‖2

≤ (G+ βR)2

2
− 〈V∇ft−1(x

(k)
t−1)− λ(k)t ∇gt−1(v

(k)
t−1), v

(k)
t − v

(k)
t−1〉+ λ

(k)
t gt−1(v

(k)
t−1) + α‖v(k)t − v

(k)
t−1‖2︸ ︷︷ ︸

(a)

.

In Algorithm 1, v(k)t is chosen to be the minimizer of (a) over X and the update rule for λ(k)t+1
corresponds to moving along the direction of the gradient of (a) with respect to the dual variable.

4.1 Performance guarantees

In this section, we provide the total constraint violation and regret bounds under different settings.
Theorem 1. (Total constraint violation bound) The total constraint violation of Algorithm 1 is
bounded as follows:

CT ≤ θV +
β2T

4V
+
β2(1 + θ)2V 3T

4α2
,

where θ = max{G+ βR,
(G+βR)2

2 +(βR+V β2

4α )V

V BT /T
+ αR2

V (V+1)BT /T
+ (G+βR)(V+2)

2V }. In particular, if
α ≤ O(V 2), we have θ = O(1).

Theorem 1 characterizes the total constraint violation bound of Algorithm 1 in both adversarial and
stochastic settings.
Theorem 2. (Adversarial static regret bound) The regret of Algorithm 1 in the adversarial setting
against a benchmark with window length W is bounded as:

R
(A,S)
W,T ≤ F (W − 1) +

1

2V
min{θ2V 2, (G+ βR)2

(W − 1)(2W − 1)

6
}+

V β2(T −W + 1)

4α

+
(G+ βR)2(T −W + 1)

2V
+
LR2(T −W + 1)

2K
+

(G+ βR)2(W − 1)(T −W + 1)

2V
+
αR2

V
.

Therefore, setting α = V
√
T , the adversarial static regret bound of Algorithm 1 isO(WT

V +
√
T+ T

K ).
In particular, for the adversarial setting with window size W = T 1−ε, if we choose V = O(T 1− ε2 ),
α = V

√
T and K = O(T

ε
2 ) in Theorem 1 and Theorem 2, we have R(A,S)

W,T ≤ O(T 1− ε2 ) and
CT ≤ O(T 1− ε2 ). In comparison, [17] obtains a similarO(T 1− ε2 ) regret bound and a worseO(T 1− ε4 )
total constraint violation bound, and only for the special case of linear constraint functions.
Theorem 3. (Adversarial dynamic regret bound) The adversarial regret of Algorithm 1 against a
dynamic benchmark sequence {x∗t }Tt=1 is bounded as follows:

R
(A,D)
T ≤ V β2T

4α
+

(G+ βR)2T

2V
+
αR2

V
+
LR2T

2K
+

2αRP ∗T
V

,

where P ∗T :=
∑T−1
t=1 ‖x∗t−1 − x∗t ‖.

If we set V = K = O(
√

T
P∗
T

) and α = V 2, we have R(A,D)
T ≤ O(

√
TP ∗T ) and CT ≤ O(

√
TP ∗T ).

However, since P ∗T is not known ahead of time, the parameters of the algorithm cannot be chosen
as mentioned. To remedy this issue, we can extend the adaptive algorithm of [39] to our framework
to obtain O(

√
TP ∗T ) regret and total constraint violation bounds simultaneously without prior

knowledge of P ∗T .
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Theorem 4. (Expected Regret Bound) In the stochastic setting, the expected regret of Algorithm 1
could be bounded as follows:

E[R
(S,S)
T ] ≤ V β2T

4α
+

(G+ βR)2T

2V
+
αR2

V
+
LR2T

2K
.

Theorem 5. (High Probability Regret Bound) The regret of Algorithm 1 satisfies the following with
probability at least 1− δ in the stochastic setting:

R
(S,S)
T ≤ θG

√
2T log(

1

δ
) +

V β2T

4α
+

(G+ βR)2T

2V
+
αR2

V
+
LR2T

2K
.

If we choose V = O(
√
T ), α = V 2 and K = O(

√
T ) in Theorem 1, Theorem 4 and Theorem 5,

we have E[R
(S,S)
T ] ≤ O(

√
T ), R(S,S)

T ≤ Õ(
√
T ) w.h.p. and CT ≤ O(

√
T ). In comparison, for the

special case of linear constraint functions, [18] obtains similar O(
√
T ) bounds for the total constraint

violation, both in expectation and with high probability. However, despite achieving O(
√
T ) high

probability regret bound, their algorithm obtains a worse O(T
3
4 ) regret bound in expectation.

5 Trading performance for efficiency: A faster algorithm

In this section, we propose our second algorithm, presented in Algorithm 2 in the appendix, for online
DR-submodular maximization problems with adversarial or stochastic constraints. Inspired by the
Mono-Frank-Wolfe algorithm of [21], we divide the upcoming online rounds 1, . . . , T to Q equisized
blocks of length K (i.e., T = QK) and for all the rounds t ∈ {(q − 1)K + 1, . . . , qK} in the block
q ∈ Q, we play the same action xq . Using this technique, the computational complexity of Algorithm
2 reduces with a factor of K compared to Algorithm 1. However, efficiency of Algorithm 2 comes at
the price of slightly worse regret and total constraint violation bounds, as presented below.
Theorem 6. The adversarial (static) regret bound of Algorithm 2 against the benchmark with window
length W ∈ [1, T

1
3 ] is as follows:

E[R
(A,S)
W,T ] ≤ V β2QK

4α
+

(G+ βR)2QK

2V
+
αR2K

V
+
LR2Q

2
,

where expectation is taken with respect to randomness of the algorithm.

Theorem 7. The total constraint violation of Algorithm 2 is bounded as below:

E[CT ] ≤ θKV +
β2T

4V
+
β2(1 + θ)2V 3T

4α2
,

where expectation is taken with respect to randomness of the algorithm.

Thus, in the adversarial setting with window length W ∈ [1, T
1
3 ], if we choose V = K = O(T

1
3 )

and α = V 2 in Theorem 6 and Theorem 7, we have E[R
(A,S)
W,T ] ≤ O(T

2
3 ) and E[CT ] ≤ O(T

2
3 ).

Note that similar to the analysis in Section 4, we can extend the above results to a benchmark with
general window length in the adversarial setting. Moreover, we can obtain similar O(T

2
3 ) regret and

total constraint violation bounds in the stochastic setting.

6 Experiments

In order to verify our theoretical findings, we run our algorithms for the three experiments described
in Section 3.1 and we plot the performance in Figure 1.
1) Online joke recommendation. We choose n = 100 jokes, T = 10000 and BT = 1.5T . We vary

the window length W and choose V , α and K according to Section 4. We set X = {x ∈ [0, 1]n :

1Tx ≤ 15}. We consider the utility functions ft(x) = rTt x +
∑
i,j:i<j θ

(t)
ij xixj ∀t ∈ [T ] where

0 ≤ [rt]i ≤ 10 is the rating of user t for joke i in the Jester dataset1, and θ(t)ij is uniformly chosen
from [−0.5, 0]. Also, [pt]i is chosen uniformly from the range [0.3, 6]. We compare the overall utility

1http://eigentaste.berkeley.edu/dataset/
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(a) (b) (c)

Figure 1: (a) Cumulative utility
∑T
t=1 ft(xt) and total budget violation

∑T
t=1 gt(xt) for experi-

ment 1. (b) and (c) Running average of cumulative utility 1
t

∑t
τ=1 fτ (xτ ) and budget violation

1
t

∑t
τ=1 gτ (xτ ) for experiments 2 and 3 respectively.

and total budget violation of Algorithm 1 and the OSPHG algorithm of [17] for different choices of
W . Note that we use the pipage rounding technique of [30] for both algorithms to make integral
allocation of jokes to the users. Figure 1(a) verifies the superiority of Algorithm 1 compared to the
OSPHG algorithm in terms of budget consumption while obtaining similar overall utility.
2) Online task assignment in crowdsourcing markets. We set n = 13, T = 10000 and BT = 0.86T .
We choose V , α and K according to Section 4. We set X = {x : 0 � x � 1}. We consider the
utility functions ft(x) =

∑n
i=1[ut]ilog(1+xi)+

∑
i,j:i<j θ

(t)
ij xixj ∀t ∈ [T ] where [ut]i and θ(t)ij are

uniformly chosen from [1, 13] and [−0.07, 0] respectively. [pt]i is uniformly chosen from [0.05, 1].
We compare the average performance of Algorithm 1, Algorithm 2, the OLFW algorithm of [18] and
the OSPHG algorithm of [17]. Figure 1(b) demonstrates that Algorithm 1 strikes the right balance
between the utility and budget used.
3) Online welfare maximization with production cost. For this experiment, we use the utility function
ft(x) = log det

(
diag(x)(Lt− I) + I

)
and the quadratic convex constraint function ht(x) = xTPtx

for all t ∈ [T ], where Lt and Pt are positive definite matrices whose eigenvalues are uniformly
chosen from [2, 3] and [0.3, 6] respectively. We consider the domain X = {x : 0 � x � 1}. We set
n = 10, T = 1000, K = W =

√
T and BT = 4T . We vary V and choose α = V

√
T to see the

effect of the choice of V in the performance of Algorithm 1. Considering the O(WT
V +

√
T + T

K )

regret bound andO(V + T
V ) total constraint violation bound derived in Section 4, Figure 1(c) verifies

our theoretical analysis that we need to choose V ∈ (W,T ) to obtain sub-linear regret and total
constraint violation bounds simultaneously.

7 Conclusion

We studied an online optimization problem in which the reward functions are monotone DR-
submodular, and in addition, the sequence of decisions of the learner should satisfy some adversarially
or stochastically varying monotone convex constraints on average. We propose a single algorithm
for both adversarial or stochastic constraints without prior knowledge of the regime. In the special
case of linear constraint functions, our proposed algorithm obtains improved regret and constraint
violation bounds in both adversarial and stochastic settings compared to prior work. Moreover, we
derive the first sub-linear bounds for the more general case of convex constraint functions.

9



Broader Impact

This theoretical paper studies online, sequential decision making with rewards and limited re-
sources/budgets, with broad applications. The general idea of our algorithms is to be conservative
enough in their resource use to guard against future unknowns, yet not miss too many opportunities
over time, and to allocate limited resources better. There are many online resource allocation problems
that could be cast in our framework (see Section 3.1), however, we believe that this work does not
raise any potential ethical concerns.
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