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A Proofs of theoretical guarantees

Here, we present complete proofs for the three results on the convergence of LPG-FTW described in
Section 5.3 of the main paper. First, recall the definitions of the actual objective we want to maximize:

gt(L) =
1

t

t∑
t̂=1

max
s(t̂)

{
‖α(t̂) −Ls(t̂)‖2

H(t̂) + g(t̂)
>

(Ls(t̂) −α(t̂))− µ‖s(t̂)‖1
}
− λ‖L‖2F ,

the surrogate objective we use for optimizing L:

ĝt(L) =−λ‖L‖2F +
1

t

t∑
t̂=1

ˆ̀(L, s(t̂),α(t̂),H(t̂), g(t̂)) ,

and the expected objective:

g(L) =EH(t),g(t),α(t)

[
max
s

ˆ̀(L, s,α(t),H(t), g(t))

]
,

with ˆ̀(L, s,α,H, g) = −µ‖s‖1 + ‖α − Ls‖2H + g>(Ls − α). The convergence results of
LPG-FTW are summarized as: 1) the knowledge base Lt becomes increasingly stable, 2) ĝt, gt, and
g converge to the same value, and 3) Lt converges to a stationary point of g. These results, given
below as Propositions 1, 2, and 3, are based on the following assumptions:

A. The tuples
(
H(t), g(t)

)
are drawn i.i.d. from a distribution with compact support.

B. The sequence {α(t)}∞t=1 is stationary and φ-mixing.
C. The magnitude of J (t)(0) is bounded by B.
D. For all L, H(t), g(t), and α(t), the largest eigenvalue (smallest in magnitude) of
L>γH

(t)Lγ is at most −2κ, with κ > 0, where γ is the set of non-zero indices of
s(t) = arg maxs

ˆ̀(L, s,H(t), g(t),α(t)). The non-zero elements of the unique maximizing

s(t) are given by: s(t)γ =
(
L>γH

(t)Lγ
)−1(

L>
(
H(t)α(t) − g(t)

)
− µ sign

(
s
(t)
γ

))
.

Note that the α(t)’s are not independently obtained, so we cannot assume they are i.i.d. like Ruvolo
and Eaton [32]. Therefore, we use a weaker assumption on the sequence of α(t)’s found by our
algorithm, which enables us to use the Donsker theorem [2] and the Glivenko-Cantelli theorem [1].

Claim 1. ∃ c1, c2, c3 ∈ R such that no element of Lt, s(t), and α(t) has magnitude greater than c1,
c2, and c3, respectively, ∀t ∈ {1, . . . ,∞}.

Proof. We complete this proof by strong induction. In the base case, L1 is given by
arg maxε J (1)(ε)− λ‖ε‖22. If ε = 0, the objective becomes J (1)(0), which is bounded by Assump-
tion C. This implies that if ε grows too large, −λ‖ε‖2 would be too negative, and then it would not
be a maximizer. s(1) = 1 per Algorithm 2, and so α(1) = L1, which we just showed is bounded.

Then, for t ≤ k, we have that s(t) and ε(t) are given by arg maxs,ε J (t)(Lt−1s+ε)−µ‖s‖1−λ‖ε‖22.
If s = 0 and ε = 0, this becomes J (t)(0), which is again bounded, and therefore neither ε nor s
may grow too large. The bound on α(t) follows by induction, since α(t) = Lt−1s

(t). Moreover,
since only the t−th column of L is modified by setting it to ε, Lt is also bounded. For t > k,
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the same argument applies to s(t) and therefore to α(t). Lt is then given by arg maxL−λ‖L‖2F +
1
t

∑t
t̂ ‖Ls(t̂) − α(t̂)‖H(t̂) + g(t̂)

>
(Ls(t̂) − α(t̂)). If Lt = 0, the objective for task Z(t̂) becomes

α(t̂)
>
H(t̂)α(t̂) +g(t̂)

>
α(t̂). By Assumption A and strong induction, this is bounded for all t̂ ≤ t, so

if any element of L is too large, L would not be a maximizer because of the regularization term. �

Proposition 1. Lt −Lt−1 = O( 1
t ) .

Proof. First, we show that ĝt−ĝt−1 is Lipschitz with constant O
(
1
t

)
. To show this, we note that ˆ̀ is

Lipschitz in L with a constant independent of t, since it is a quadratic function over a compact region
with bounded coefficients. Next, we have:

ĝt(L)− ĝt−1(L) =
1

t
ˆ̀
(
L, s(t),α(t),H(t), g(t)

)
+

1

t

t−1∑
t̂=1

ˆ̀
(
L, s(t̂),α(t̂),H(t̂), g(t̂)

)

− 1

t− 1

t−1∑
t̂=1

ˆ̀
(
L, s(t̂),α(t̂),H(t̂), g(t̂)

)

=
1

t
ˆ̀
(
L, s(t),α(t),H(t), g(t)

)
+

1

t(t− 1)

t−1∑
t̂=1

ˆ̀
(
L, s(t̂),α(t̂),H(t̂), g(t̂)

)
.

Therefore, ĝt−ĝt−1 has a Lipschitz constant O
(
1
t

)
, since it is the difference of two terms divided by

t: ˆ̀and an average over t−1 terms, whose Lipschitz constant is bounded by the largest Lipschitz
constant of the terms.

Let ξt be the Lipschitz constant of ĝt − ĝt−1. We have:
ĝt−1(Lt−1)− ĝt−1(Lt) = ĝt−1(Lt−1)− ĝt(Lt−1) + ĝt(Lt−1)− ĝt(Lt) + ĝt(Lt)− ĝt−1(Lt)

≤ ĝt−1(Lt−1)− ĝt(Lt−1) + ĝt(Lt)− ĝt−1(Lt)

=− (ĝt − ĝt−1)(Lt−1) + (ĝt − ĝt−1)(Lt) ≤ ξt‖Lt −Lt−1‖F .

Moreover, since Lt−1 maximizes ĝt−1 and the `2 regularization term ensures that the maximum
eigenvalue of the Hessian of ĝt−1 is upper-bounded by −2λ, we have that ĝt−1(Lt−1)− ĝt−1(Lt) ≥
λ‖Lt −Lt−1‖2F. Combining these two inequalities, we have: ‖Lt −Lt−1‖F ≤ ξt

λ = O
(
1
t

)
. �

The critical step for adapting the proof from Ruvolo and Eaton [32] to LPG-FTW is to introduce the
following lemma, which shows the equality of the maximizers of ` and ˆ̀.

Lemma 1. ˆ̀
(
Lt, s

(t+1),α(t+1),H(t+1), g(t+1)
)

= maxs ˆ̀
(
Lt, s,α

(t+1),H(t+1), g(t+1)
)

.

Proof. To show this, we need the following to hold:

s(t+1) = arg max
s

`(Lt, s) = arg max
s

ˆ̀
(
Lt, s,α

(t+1),H(t+1), g(t+1)
)
.

We first compute the gradient of `, given by:

∇s`(Lt, s) =− µ sign(s) +L>t ∇θJ (t+1)(θ)

∣∣∣∣
θ=Lts

.

Since s(t+1) is the maximizer of `, we have:

∇s`(Lt, s)
∣∣∣∣
s=s(t+1)

=−µ sign
(
s(t+1)

)
+L>t g

(t+1) =0 . (A.1)

We now compute the gradient of ˆ̀and evaluate it at s(t+1):

∇s ˆ̀
(
Lt, s,α

(t+1),H(t+1), g(t+1)
)

= −µ sign
(
s(t+1)

)
+Ltg

(t+1) − 2L>t H
(t+1)

(
α(t+1)−Lts

)
∇s ˆ̀

(
Lt, s,α

(t+1),H(t+1), g(t+1)
)∣∣∣∣
s=s(t+1)

= −µ sign
(
s(t+1)

)
+L>t g

(t+1) = 0 ,

since it matches Equation A.1. By Assumption D, ˆ̀has a unique maximizer s(t+1). �
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Before stating our next lemma, we define:

s∗ =β
(
L,α(t),H(t), g(t)

)
= arg max

s

ˆ̀
(
L, s,α(t),H(t), g(t)

)
.

Lemma 2.

A. maxs ˆ̀(L, s,α(t),H(t), g(t)) is continuously differentiable in L with

∇Lmaxs ˆ̀(L, s,α(t),H(t), g(t)) =
[
− 2H(t)s∗ + g(t)

]
s∗>.

B. g is continuously differentiable and∇Lg(L)=−2λI+E
[
∇Lmaxs ˆ̀(L, s,α(t),H(t), g(t))

]
.

C. ∇Lg(L) is Lipschitz in the space of latent components L that obey Claim 1.

Proof. To prove Part A, we apply a corollary to Theorem 4.1 in [3]. This corollary states that
if ˆ̀ is continuously differentiable in L (which it clearly is) and has a unique maximizer s(t)

(which is guaranteed by Assumption D), then∇Lmins ˆ̀(L, s,α(t),H(t), g(t)) exists and is equal
to∇L ˆ̀(L, s∗,α(t),H(t), g(t)), given by

[
− 2H(t)s∗ + g(t)

]
s∗>. Part B follows since by Assump-

tion A and Claim 1 the tuple
(
H(t), g(t),α(t)

)
is drawn from a distribution with compact support.

To prove Part C, we first show that β is Lipschitz in L with constant independent of α(t),H(t), and
g(t). Part C will follow due to the form of the gradient of g with respect to L. The function β is
continuous in its arguments since ˆ̀ is continuous in its arguments and by Assumption D has a unique
maximizer. Next, we define ρ

(
L,H(t), g(t),α(t), j

)
= l>j

[
2H(t)

(
Ls∗ −α(t)

)
+ g(t)

]
, where lj

is the j−th column of L. Following the argument of Fuchs [13], we reach the following conditions:∣∣∣ρ(L,H(t), g(t),α(t), j
)∣∣∣ =µ⇐⇒ s∗j 6= 0∣∣∣ρ(L,H(t), g(t),α(t), j
)∣∣∣ <µ⇐⇒ s∗j = 0 . (A.2)

Let γ be the set of indices j such that
∣∣∣ρ(L,H(t), g(t),α(t), j

)∣∣∣ = µ. Since ρ is continuous in

L, H(t), g(t), and α(t), there must exist an open neighborhood V around
(
L,H(t), g(t),α(t)

)
such that for all

(
L′,H(t)′, g(t)

′
,α(t)′

)
∈ V and j /∈ γ,

∣∣∣ρ(L′,H(t)′, g(t)
′
,α(t)′, j

)∣∣∣ < µ. By

Equation A.2, we conclude that β
(
L′,H(t)′, g(t)

′
,α(t)′

)
j

= 0,∀j /∈ γ.

Next, we define a new objective:
¯̀(Lγ , sγ ,α,H, g) =‖α−Lγsγ‖2H + g>(Lγsγ −α)− µ‖sγ‖1 .

By Assumption D, ¯̀ is strictly concave with a Hessian upper-bounded by −2κ. We can conclude that:

¯̀
(
Lγ , β

(
L,α(t),H(t), g(t)

)
γ
,α(t),H(t), g(t)

)
− ¯̀
(
Lγ , β

(
L′,α(t)′,H(t)′, g(t)

′)
γ
,α(t),H(t), g(t)

)
≥κ
∥∥∥β(L′,α(t)′,H(t)′, g(t)

′)
γ
− β

(
L,α(t),H(t), g(t)

)
γ

∥∥∥2
2
. (A.3)

On the other hand, by Assumption A and Claim 1, ¯̀ is Lipschitz in its second argument with
constant e1‖Lγ −L′γ‖F+e2‖α−α′‖2+e3‖H −H ′‖F+e4‖g − g′‖2, where e1–4 are all constants
independent of any of the arguments. Combining this with Equation A.3, we obtain:∥∥∥β(L′,α(t)′,H(t)′, g(t)

′)
− β

(
L,α(t),H(t), g(t)

)∥∥∥ =∥∥∥β(L′,α(t)′,H(t)′, g(t)
′)
γ
− β

(
L,α(t),H(t), g(t)

)
γ

∥∥∥
≤
e1‖Lγ −L′γ‖F + e2‖α(t) −α(t)′‖2

κ
+
e3‖H(t) −H(t)′‖F + e4‖g(t) − g(t)

′‖2
κ

.

Therefore, β is locally Lipschitz. Since the domain of β is compact by Assumption A and Claim 1,
this implies that β is uniformly Lipschitz, and we can conclude that∇g is Lipschitz as well. �
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Proposition 2. 1. ĝt(Lt) converges a.s.
2. gt(Lt)− ĝt(Lt) converges a.s. to 0

3. gt(Lt)− ĝ(Lt) converges a.s. to 0
4. g(Lt) converges a.s.

Proof. We begin by defining the stochastic process ut = ĝt(L). The outline of the proof is to show
that this process is a quasi-martingale and by a theorem by Fisk [12], it converges almost surely.

ut+1 − ut =ĝt+1(Lt+1)− ĝt(Lt) = ĝt+1(Lt+1)− ĝt+1(Lt) + ĝt+1(Lt)− ĝt(Lt)

=(ĝt+1(Lt+1)− ĝt+1(Lt)) +
gt(Lt)− ĝt(Lt)

t+ 1

+
maxs ˆ̀(Lt, s,α

(t+1),H(t+1), g(t+1))

t+ 1
− gt(Lt)

t+ 1
, (A.4)

where we made use of the fact that:

ĝt+1(Lt) =

ˆ̀
(
Lt, s

(t+1),α(t+1),H(t+1), g(t+1)
)

t+ 1
+

t

t+ 1
ĝt(Lt)

=
maxs ˆ̀

(
Lt, s,α

(t+1),H(t+1), g(t+1)
)

t+ 1
+

t

t+ 1
ĝt(Lt) ,

where the second equality holds by Lemma 1.

We now need to show that the sum of positive and negative variations in Equation A.4 are bounded.
By an argument similar to a lemma by Bottou [4], the sum of positive variations of ut is bounded,
since ĝ is upper-bounded by Assumption C. Therefore, it suffices to show that the sum of negative
variations is bounded. The first term on the first line of Equation A.4 is guaranteed to be positive
since Lt+1 maximizes ĝt+1. Additionally, since gt is always at least as large as ĝt, the second term
on the first line is also guaranteed to be positive. Therefore, we focus on the second line.

E[ut+1 − ut | It] ≥
E
[

maxs ˆ̀
(
Lt, s,α

(t+1),H(t+1), g(t+1)
)
| It
]

t+ 1
− gt(Lt)

t+ 1

=
g(Lt)− gt(Lt)

t+ 1
≥ −‖g − gt‖∞

t+ 1
,

where It represents all the α(t̂)’s, H(t̂)’s, and g(t̂)’s up to time t. Hence, showing that∑∞
t=1

‖g−gt‖∞
t+1 <∞ will prove that ut is a quasi-martingale that converges almost surely.

In order to prove this, we apply the following corollary of the Donsker theorem [39]:

Let F = {fθ : X 7→ R,θ ∈ Θ} be a set of measurable functions indexed by a
bounded subset Θ of Rd. Suppose that there exists a constant K such that:

|fθ1(x)− fθ2(x)| ≤ K‖θ1 − θ2‖2
for every θ1,θ2 ∈ Θ and x ∈ X . Then, F is P-Donsker and for any f ∈ F , we define:

Pnf =
1

n

n∑
i=1

f(Xi)

Pf =EX [f(X)]

Gnf =
√
n(Pnf − Pf) .

If Pf2 ≤ δ2 and ‖f‖∞ < B and the random elements are Borel measurable, then:

E[sup
f∈F
|Gnf |] = O(1) .

In order to apply this corollary to our analysis, consider a set of functions F indexed by L, given
by fL

(
H(t), g(t),α(t)

)
= maxs ˆ̀

(
L, s,α(t),H(t), g(t)

)
, whose domain is all possible tuples(

H(t), g(t),α(t)
)
. The expected value of f2 is bounded for all f ∈ F since ˆ̀ is bounded by
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Claim 1. Second, ‖f‖∞ is bounded given Claim 1 and Assumption A. Finally, by Assumptions A
and B, the corollary applies to the tuples

(
H(t), g(t),α(t)

)
[2]. Therefore, we can state that:

E

[
√
t

∥∥∥∥∥
(

1

t

t∑
t̂=1

max
s

ˆ̀
(
L, s,α(t̂),H(t̂), g(t̂)

))
−E

[
max
s

ˆ̀
(
L, s,α(t̂),H(t̂), g(t̂)

)]∥∥∥∥∥
∞

]
= O(1)

=⇒E[‖gt(L)− g(L)‖∞] = O

(
1√
t

)
.

Therefore, ∃ c3 ∈ R such that E[‖gt − g‖∞] < c3√
t
:

∞∑
t=1

E
[
E[ut+1 − ut | It]−

]
≥
∞∑
t=1

−E[‖gt − g‖∞]

t+ 1
>

∞∑
t=1

− c3
t
3
2

= −O(1) ,

where i−= min(i, 0). This shows that the sum of negative variations of ut is bounded, so ut is a
quasi-martingale and thus converges almost surely [12]. This proves Part 1 of Proposition 2.

Next, we show that ut being a quasi-martingale implies the almost sure convergence of the fourth
line of Equation A.4. To see this, we note that since ut is a quasi-martingale and the sum of its
positive variations is bounded, and since the term on the fourth line of Equation A.4, gt(Lt)−ĝt(Lt)

t+1 ,
is guaranteed to be positive, the sum of that term from 1 to infinity must be bounded:

∞∑
t=1

gt(Lt)− ĝt(Lt)
t+ 1

<∞ . (A.5)

To complete the proof of Part 2 of Proposition 2, consider the following lemma: Let an, bn be two real
sequences such that for all n, an ≥ 0, bn ≥ 0,

∑∞
j=1 aj =∞,

∑∞
j=1 ajbj <∞,∃K > 0 such that

|bn+1 − bn| < Kan. Then, limn→∞ bn = 0. If we define at = 1
t+1 and bt = gt(Lt)− ĝt(Lt), then

clearly these are both positive sequences and
∑∞
t=1 at = ∞. By Equation A.5,

∑∞
t=1 anbn < ∞.

Finally, since gt and ĝt are bounded and Lipschitz with constant independent of t and Lt+1 −Lt =
O
(
1
t

)
, we have all of the assumptions verified, which implies that gt − ĝt converges a.s. to 0.

By Part 2 and the Glivenko-Cantelli theorem, limt→∞ ‖g − gt‖∞ = 0, which implies that g must
converge almost surely. By transitivity, limt→∞ g(Lt)− ĝt(Lt) = 0, showing Parts 3 and 4. �

Proposition 3. The distance between Lt and the set of all stationary points of g converges a.s. to 0.

Proof. First, ∇Lĝt is Lipschitz with a constant independent of t, since the gradient of ĝt is linear,
s(t),H(t), g(t), and α(t) are bounded, and the summation in ĝt is normalized by t. Next, we define
an arbitrary non-zero matrix U of the same dimensionality as L. Since gt upper-bounds ĝt, we have:

gt(Lt +U) ≥ĝt(Lt +U) =⇒ lim
t→∞

g(Lt +U) ≥ lim
t→∞

ĝt(Lt +U) ,

where we used the fact that limt→∞ gt = limt→∞ g. Let ht > 0 be a sequence of positive real
numbers that converges to 0. If we take the first-order Taylor expansion on both sides of the inequality
and use the fact that∇g and∇ĝ are both Lipschitz with constant independent of t, we get:

limt→∞gt(Lt) + Tr
(
htU

>∇gt(Lt)
)

+O(htU) ≥ lim
t→∞

ĝt(Lt) + Tr
(
htU

>∇ĝt(Lt)
)

+O(htU) .

Since limt→∞ g(Lt)− ĝ(Lt) = 0 a.s. and limt→∞ ht = 0, we have:

lim
t→∞

(
1

‖U‖F
U>∇g(Lt)

)
≥ lim
t→∞

(
1

‖U‖F
U>∇ĝ(Lt)

)
.

Since this inequality has to hold for every U , we require that limt→∞∇g(Lt) = limt→∞∇ĝt(Lt).
Since Lt minimizes ĝt, we require that ∇ĝt(Lt) = 0. This implies that ∇g(Lt) = 0, which is a
sufficient first-order condition for Lt to be stationary point of g. �

B Experimental setting

This section provides additional details of the experimental setting used to arrive at the results
presented in Sections 6.1 and 6.2 in the main paper. Table B.1 summarizes the hyper-parameters of
all algorithms used for our experiments.
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Table B.1: Summary of hyper-parameters. The first digit in EWC versions differentiates variants with
shared σ (1) and task-specific σ (2), and the second digit differentiates between Huszár regularization
(1), EWC regularization scaled by 1

t−1 (2), and the original EWC regularization (3). The boldfaced
version of EWC was used for our experiments in the paper.

Hyper-parameter HC-G HC-BP Ho-G Ho-BP W-G W-B MT10/50

NPG

# iterations 50 50 100 100 200 200 200
# trajectories / iter 10 10 50 50 50 50 50

step size 0.5 0.5 0.005 0.005 0.05 0.05 0.005
λ (GAE) 0.97 0.97 0.97 0.97 0.97 0.97 0.97
γ (MDP) 0.995 0.995 0.995 0.995 0.995 0.995 0.995

LPG-FTW
λ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
µ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
k 5 5 5 5 5 10 3

PG-ELLA
λ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
µ 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5
k 5 5 5 5 5 10 3

EWC 1, 1 λ 1e−3 1e−6 1e−7 1e−7 1e−4 1e−5 —
EWC 1, 2 λ 1e−3 1e−4 1e−7 1e−3 1e−3 1e−7 —
EWC 1, 3 λ 1e−6 1e−6 1e−7 1e−4 1e−7 1e−7 —
EWC 2, 1 λ 1e−6 1e−5 1e−6 1e−7 1e−4 1e−4 —
EWC 2, 2 λ 1e−4 1e−3 1e−5 1e−7 1e−4 1e−6 —
EWC 2, 3 λ 1e−4 1e−4 1e−6 1e−7 1e−4 1e−4 1e−7

OpenAI Gym MuJoCo domains The hyper-parameters for NPG were manually selected by run-
ning an evaluation on the nominal task for each domain (without gravity or body part modifications).
We tried various combinations of the number of iterations, number of trajectories per iteration, and
step size, until we reached a learning curve that was fast and reached proficiency. Once these hyper-
parameters were found, they were used for all lifelong learning algorithms. For LPG-FTW, we chose
typical hyper-parameters and held them fixed through all experiments, forgoing potential additional
benefits from a hyper-parameter search. The only exception was the number of latent components
used for the Walker-2D body-parts domain, as we found empirically that k = 5 led to saturation
of the learning process early on. For PG-ELLA, we kept the same hyper-parameters as used for
LPG-FTW, since they are used in exactly the same way for both methods. Finally, for EWC, we ran
a grid search over the value of the regularization term, λ, among {1e−7, 1e−6, 1e−5, 1e−4, 1e−3}.
The search was done by running five consecutive tasks for fifty iterations over five trials with different
random seeds. We chose λ independently for each domain to maximize the average performance
after all tasks had been trained. We also tried various versions of EWC, as described in Appendix D,
modifying the regularization term and selecting whether to share the policy’s variance across tasks.
The only version that worked in all domains was the original EWC penalty with a shared variance
across tasks, so results in the main paper are based on that version. To make comparisons fair, EWC
used the full Hessian instead of the diagonal Hessian proposed by the authors.

Meta-World domains In this case, we manually tuned the hyper-parameters for NPG on the reach
task, which we considered to be the easiest to solve in the benchmark, and again kept those fixed
for all lifelong learners. We chose typical values for LPG-FTW for k, λ, and µ, and reused those
for PG-ELLA. We used fewer latent components (k = 3), since MT10 contains only Tmax = 10
tasks and we considered that using more than three policy factors would give our algorithm an unfair
advantage over single-model methods. For EWC and EWC_h, we ran a grid search for λ in the same
way as for the previous experiments. For ER, we used a 50-50 ratio of experience replay as suggested
by Rolnick et al. [30], and ensured that each batch sampled from the replay buffer had the same
number of trajectories from each previous task. LPG-FTW, PG-ELLA, and EWC all had access to
the full Hessian, and we chose for EWC not to share the variance across tasks since the outputs of
the policies were task-specific. We ran all Meta-World tasks on version 1.5 of the MuJoCo physics
simulator, to match the remainder of our experimental setting [38]. We used the robot hand and the
object location (6-D) as the observation space for all tasks. Note that the goal, which was kept fixed
for each task, was not given to the agent. For this reason, we removed 2 tasks from MT50 that use at
least 9-D observations—stick pull and stick push—for a total of Tmax = 48 tasks.
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C Diversity of simple domains

Figure C.1: Performance with the true policy vs
other policies. Percent gap (∆) indicates task
diversity. Body parts (BP) domains are more
diverse than gravity (G) domains, and Walker-2D
(W) and Hopper (Ho) domains are more varied
than HalfCheetah (HC) domains.

One important question in the study of lifelong
RL is how diverse the tasks used for evalua-
tion are. To measure this in the OpenAI Gym
MuJoCo domains, we evaluated each task’s
performance using the final policy trained by
LPG-FTW on the correct task and compared it
to the average performance using the policies
trained on all other tasks. Figure C.1 shows
that the policies do not work well across dif-
ferent tasks, demonstrating that the tasks are
diverse. Moreover, the most highly-varying do-
mains, Hopper and Walker-2D body-parts, are
precisely those for which EWC struggled the
most, suffering from catastrophic forgetting, as
shown in Figure 2 in the paper. This is con-
sistent with the fact that a single policy does
not work across various tasks. In those do-
mains, LPG-FTW reached the performance of
STL with a high speedup while retaining knowl-
edge from early tasks.

D EWC additional results

Table D.1: Results with different versions of
EWC. EWC regularization with σ shared across
tasks (boldfaced) was the most consistent, so we
chose this for our experiments in the main paper.
NaN’s indicate that the learned policies became
unstable, leading to failures in the simulator.
Domain Algorithm Start Tune Final

HC_G

EWC 1, 1 −1245 −2917 −3.97e4
EWC 1, 2 1796 2409 2603
EWC 1, 3 1666 2225 2254
EWC 2, 1 −778 1384 1797
EWC 2, 2 −762 1565 2238
EWC 2, 3 −6.58e5 −7e5 −1.05e7

HC_BP

EWC 1, 1 1029 1748 1522
EWC 1, 2 1132 1769 1588
EWC 1, 3 1077 1716 1571
EWC 2, 1 −892 1308 1521
EWC 2, 2 −1.79e5 −2.16e5 −1.53e6
EWC 2, 3 −1.1e6 −1.01e6 −5.23e6

Ho_G

EWC 1, 1 1301 2252 1522
EWC 1, 2 1339 2322 1836
EWC 1, 3 1434 2488 1732
EWC 2, 1 872 2616 2089
EWC 2, 2 930 2582 1900
EWC 2, 3 939 2520 2029

Ho_BP

EWC 1, 1 613 1508 793
EWC 1, 2 385 920 43
EWC 1, 3 424 936 31
EWC 2, 1 615 2142 1011
EWC 2, 2 620 2119 1120
EWC 2, 3 613 2138 928

W_G

EWC 1, 1 1293 2052 303
EWC 1, 2 −2132 −2181 NaN
EWC 1, 3 2192 3901 2325
EWC 2, 1 −2269 −1915 −2490
EWC 2, 2 −3.12e4 −3.23e4 −1.15e5
EWC 2, 3 −8.98e4 −9.65e4 −1.59e5

W_BP

EWC 1, 1 1237 3055 1382
EWC 1, 2 1148 2800 1306
EWC 1, 3 744 2000 −128
EWC 2, 1 NaN NaN NaN
EWC 2, 2 1027 3687 1416
EWC 2, 3 NaN NaN NaN

While testing on OpenAI MuJoCo domains,
we experimented with six different variants of
EWC, by varying two different choices. The first
choice was whether to share the variance of the
Gaussian policies across the different tasks or
not. Sharing the variance enables the algorithm
to start from a more deterministic policy, thereby
achieving higher initial performance, at the cost
of reducing task-specific exploration. The sec-
ond choice was the exact form of the regulariza-
tion penalty. In the original EWC formulation,
the regularization term applied to the PG objec-
tive was−λ

∑t−1
t̂=1
‖θ−α(t̂)‖2

H(t̂) . Huszár [17]
noted that this does not correspond to the correct
Bayesian formulation, and proposed to instead
use −λ‖θ −α(t−1)‖2

H(t−1) , where α(t−1) and
H(t−1) capture all the information from tasks 1
through t−1 in the Bayesian setting. We experi-
mented with these two choices of regularization,
plus an additional one where λ is scaled by 1

t−1
in order for the penalty not to increase linearly
with the number of tasks. For all versions, we
independently tuned the hyper-parameters as de-
scribed in Appendix B.

Table D.1 summarizes the results obtained for
each variant of EWC. The only version that
consistently learned each task’s policy (tune)
was the original EWC regularization with the
variance shared across tasks. This was also the
only variant for which the final performance was
never unreasonably low. Therefore, we used this
version for all experiments in the main paper.
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