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Abstract

Biological systems face dynamic environments that require continual learning. It
is not well understood how these systems balance the tension between flexibility
for learning and robustness for memory of previous behaviors. Continual learning
without catastrophic interference also remains a challenging problem in machine
learning. Here, we develop a novel learning rule designed to minimize interfer-
ence between sequentially learned tasks in recurrent networks. Our learning rule
preserves network dynamics within activity-defined subspaces used for previously
learned tasks. It encourages dynamics associated with new tasks that might other-
wise interfere to instead explore orthogonal subspaces, and it allows for reuse of
previously established dynamical motifs where possible. Employing a set of tasks
used in neuroscience, we demonstrate that our approach successfully eliminates
catastrophic interference and offers a substantial improvement over previous contin-
ual learning algorithms. Using dynamical systems analysis, we show that networks
trained using our approach can reuse similar dynamical structures across similar
tasks. This possibility for shared computation allows for faster learning during
sequential training. Finally, we identify organizational differences that emerge
when training tasks sequentially versus simultaneously.

1 Introduction

Computations in the brain are thought to be implemented via the dynamical evolution of activity within
large populations of neurons. This dynamical systems view has offered insight into computational
mechanisms underlying motor control [1]], decision making [2H4] and timing tasks [S)]. In these
studies, animals are trained to perform a single task and neural population activity is typically recorded
only after learning. Little is known about how a single neural population can learn to perform multiple
computations without interference or forgetting, as new tasks are learned in sequence.

Based on recent experimental results on neural population subspace structure [[6-8]], we hypothesize
that a careful organization of population dynamics into either orthogonal or shared subspaces may
provide a robust implementation of multi-task computations that could also prove beneficial for se-
quential task learning. Similar tasks could evolve under similar dynamics in a shared subspace, while
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dissimilar tasks, or dissimilar components of tasks, could be confined to orthogonal subspaces. This
organization would limit interference across unrelated computations and could allow for dynamics
within each subspace to be learned independently.

To test and refine these ideas, we turn to training and analysis of recurrent neural networks (RNNs).
Guided by the biological solution, we develop a novel algorithm for continual multi-task learning in
RNNSs. Our approach is based on a modification of the stochastic gradient descent (SGD) update to
the network weights. Our learning rule aims to preserve network dynamics within subspaces used for
previously learned tasks, and encourages interfering dynamics to explore orthogonal subspaces when
learning new tasks.

We demonstrate our approach on networks trained to perform multiple tasks akin to those studied
by neuroscientists in animal models [9]. Our proposed learning algorithm outperforms previous
weight-regularization-based continual learning approaches on these tasks. We show that our learning
rule encourages networks to utilize nearly orthogonal subspaces across tasks with opposite stimulus-
response relationships that would otherwise interfere, but share subspaces for computations on similar
tasks. Shared structure across similar tasks facilitates faster learning during sequential training.
We highlight key differences in task alignment for networks trained under our sequential approach
compared with those trained simultaneously on all tasks.

Ultimately, developing better approaches for continual learning in RNNs will provide new tools to
investigate the organization of dynamics across tasks, and will aid the development of hypotheses
about and comparisons with multi-task computation in the brain.

2 Background

2.1 Multi-task learning and catastrophic interference

Multi-task learning requires a single system to learn from example input/output pairs that reflect
different task-specific relationships. In the simultaneous training setting, data from all tasks are
interleaved within each minibatch used for training. In the sequential training setting, in contrast,
tasks are introduced one at a time and are not repeated. Thus, once learning moves on to a new task,
training data from earlier tasks become inaccessible. The key difficulty with sequential training is
the problem of catastrophic interference or forgetting across tasks [10H12]]. When data related to
different tasks arrive sequentially, the weight updates required to improve performance on a new task
can lead to changes in the network that impair performance on previously learned tasks. Since older
tasks are never revisited, the network fails to achieve performance comparable to that attained during
simultaneous training. Furthermore, the order in which tasks are presented may affect how well
networks learn. Overcoming these challenges has been the subject of continual learning [[11H13]).

2.2 Related work

Previous work on continual learning in neural networks has predominantly focused on feedforward
architecture. Previous approaches in this setting include regularisation of weight changes [[13[14],
modification to the learning signal [[15H17]], network architecture modification [18.[19] or memory
replay [20422]. The algorithm for feedforward networks in [[16] is most similar to our novel RNN
proposal, and allows network weight changes only in directions orthogonal to the space spanned by
previously seen inputs.

The problem of continual learning is less well-studied in recurrently connected networks [11]], where
unique challenges arise associated with continual learning in dynamical systems. Recurrent activity
may feed back into the network over time possibly interfering in interactions with external inputs, or
activity patterns of previously encountered tasks. Small individual weight changes can therefore have
large effects on the evolution of the hidden state over time in the trial. Consequently, the approach in
[L6] does not directly extend to RNNs and [[13]] achieved only limited success in the RNN setting
[9]. Recently, approaches to continual learning based on dynamical network architectures have also
been developed in the RNN setting [23| 24]]. For later comparisons, we focus on the approaches in
[13} 14], which penalize changes in network weights deemed important for previous tasks, without
modifying the network architecture during training. In both approaches, an importance measure for
each network parameter is used as the weight of a quadratic regularisation term that limits changes
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Figure 1: Multi-task computation via independent low-rank dynamics. A: Schematic of using
orthogonal subspaces to implement different network computations. Tasks of the same class share
computations (A or B) and therefore evolve in shared subspaces, while tasks across interfering task
classes evolve in orthogonal subspaces. B: W is composed of different low-rank components Wy.
Non-interference depends on the orientation of singular vectors of each low-rank component.

to that parameter. These regularization terms are added to the overall objective function to limit
interference.

3 Multi-task computation in recurrent networks

We consider an RNN, where hidden-state activity h evolves in time according to
hyp1 = ¢(W™h, + W"x, + &) (1)

with external input x;, uncorrelated Gaussian noise &;, and activation function ¢. The network
activity is read out via the linear mapping

y: = Weh,. )

Given the external input, and starting from an initial state, the network is trained to produce a target
output timeseries y;.

Evidence from neural population data suggests that dynamical rules confined to orthogonal subspaces
could serve as structures akin to independent modules, allowing a single network to perform different
computations depending on contextual information or variable task demands [2} [25] (Figure[TJA). In
RNNS, an analogous solution could be implemented through structure in the network connectivity
W = [W"< W'"]. W could be composed as a sum of low-rank dynamics matrices (Figure ),
each structured to only produce output, or be sensitive to inputs along specific directions in high-
dimensional space. Such low-rank dynamical components have been shown to successfully implement
complex cognitive tasks [26, [27]]. Within this framework, orthogonal structure across the input/output
space of the different components could be used to limit interference along dimensions implementing
unrelated computations. This would allow for network computations to be performed independently
and be reused across tasks. Orthogonality across different dynamical components may also aid
continual learning, since dynamics in orthogonal subspaces could be learned independently.

This organization of the network dynamics is desirable, yet arriving at it through sequential training is
challenging. There is no reason to expect this structure to emerge without a constraint on the learning
rule or network connectivity. At the same time, explicit parameterization would require constraints on
the eigenstructure of the connectivity matrices, as well as setting the number and rank of the different
dynamical components a priori — all of which is difficult in practice.

4 Continual learning through dynamical noninterference

We propose a novel continual learning algorithm that encourages networks to organize dissimilar

dynamics into orthogonal subspaces. Consider activity patterns zf "= [hftC . xf” T]T at time ¢, on

trial 7 of task k. The zf " span the space of (external and recurrent) inputs processed by the network,
while sz ' span the space of recurrent output activations (prior to nonlinearity ¢) that the network
has generated. In the standard SGD update, each change AW in the weights is proportional to the
gradient of the loss function, Vw L. Interference from updates based on a new task arises when the
singular vectors of AW project significantly into the relevant input/output space of the previously
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learnt W. Conversely, interference may be attenuated by reducing this overlap in input and output
spaces. Thus, we propose a modification of the weight update that removes directions in the row
and column spaces of AW that align with the spaces spanned by Z.;, (input) and WZ.;, (output),
respectively, where Z., = [z%’l, e z?’R]. Specifically, we project orthogonally to the relevant
spaces using right- and left- multiplication by matrices

P =1 Zyp (2w Zok + o) ' Zo " = (0 ' 2y Zyy’ +1)77 3)
Pl =T—-WZy4(Z1g W WZig + od) 2y W' = (a7 ' WZyZog W HT)71 (4)

The small constant a ensures regularisation and invertibility; and the matrix inversion lemma yields
the final expressions in terms of the covariance 1., = Z1.xZ;. kT. This activity covariance matrix
may be stored and incremented online after each task is learnt, allowing the corresponding projection
matrices to be computed without access to previous activity patterns. When learning the (k + 1)th
task, we use the modified learning updates

AWc o« PE (VwL) PLF, AW o Py (Ve L) PJ* 5)

where we have followed analogous definitions for the readout weights update.

Applying the projection matrices on both sides of the learning update prevents interfering weight
changes along directions that span the activity space of previous tasks. Specifically, P1** projects
away interfering directions in the input space of the weight update, while P:* removes interfering
directions of the output space. This means that large changes can now only occur in directions
orthogonal to subspaces already used for computation, preserving the dynamics of previously learned
tasks. In this way, our learning algorithm ensures that activity patterns generated in response to
inputs on previous tasks are largely preserved throughout learning of new tasks. Computations that
require dissimilar dynamics to those that were previously learned explore new, orthogonal subspaces.
However, it is important to note that this learning approach does not automatically force all tasks
to explore only orthogonal subspaces. If the new task dynamics don’t interfere with a previously
learned task (i.e. both task computations require similar dynamics), both tasks may evolve in shared
activity-subspaces. Further details may be found in the supplementary material.

5 Results

We demonstrate our continual learning approach on a set of tasks previously used for studying
multi-task representations in RNNs [9]. We chose four tasks to highlight how our proposed learning
rule works on tasks with similar or opposed stimulus-response relationships. A delayed response
task, DelayPro, can be divided into three periods, fixation, stimulus and go. The network receives
a noisy fixation input and rule input at the beginning of the fixation period and throughout the trial.
During the stimulus period, the network receives an angle input through two channels (sin 6 and
cos #) with added noise. The go period begins when the fixation input goes to zero, signaling the
network to reproduce the input signal on the output channels. Figure [2|illustrates this task structure
for an example DelayPro trial. In a related task, MemoryPro, the input stimulus disappears during an
additional memory period before the go cue. In both Pro tasks, the network must respond in the same
direction as the stimulus. In two tasks with the opposite stimulus-response relationship, DelayAnti
and MemoryAnti, the network must respond in the opposite direction as the stimulus input.
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Figure 3: A: Left: log cost on test trials for each task throughout simultaneous training on all tasks.
Right: performance on each task at the end of training. B: same as A but for separate networks
trained on single tasks. C: Left: log cost on test trials throughout sequential training. Right: mean
performance on each task at the end of each task’s training sequence. Color shading indicates which
task was trained for each epoch. D, E, F: Same as C using the continual learning approaches of [14]
(D), [13] (E), and our approach (F). Loss curves in A-F are shown for 5 networks (different seeds).

Networks with rectified-linear activation functions were trained on these tasks to minimize the squared
error between readouts and target outputs under added Ls-norm regularization of network weights
and activity. Further details and results are provided in the supplementary material.

5.1 Comparisons with other continual learning approaches

We investigated whether our continual learning algorithm allows RNNs to learn multiple tasks
in sequence, and how this compares to other methods. Figure [3] shows the log cost on test trials
and task performance (following [9]) of networks trained with different learning approaches. In
Figure 3]A,B networks were trained either simultaneously on all tasks or separately on single tasks,
providing an upper bound on the performance of any continual learning approach. Figure3IC shows
the performance of networks trained sequentially on multiple tasks using unmodified SGD. The
performance on previous tasks quickly degraded after new tasks with opposite stimulus-response
relationships were introduced, illustrating the problem of catastrophic interference. Both Elastic
Weight Consolidation (EWC) [14]] and the synaptic intelligence algorithm [13]] failed to maintain
high performance on all tasks during learning (Figure 3D,E). By contrast, networks trained using our
proposed continual learning algorithm maintained high performance on all previously learned tasks
throughout training on later tasks (Figure [3F).

5.2 Training order effects on learning

We next investigated effects of training order on learning. The rate of decrease in the test error over
learning was faster when networks were previously trained on a task with the same stimulus-response
relationship (i.e. both Pro tasks or both Anti tasks) (Figure[d). This suggests that transfer learning
across tasks with the same stimulus-response relationships may occur during sequential training. To
better understand these training order effects, in the following sections we analyze the dynamics in
trained networks.

5.3 Revealing task computations through fixed point structures

To better understand how learning similar tasks contributes to faster learning (Figure @), we study
how each task computation is performed. This is done by analyzing linearized dynamics around fixed
points of the network for each task-period [[28H30]. We examine dynamics in task specific subspaces
identified through Targeted Dimensionality Reduction (TDR), a method to identify dimensions that
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Figure 5: Fixed points(black) and hidden state activity(red) for a single trial, § = 7. Activity from
other trials of the same task are faded (colored by #) emanating from ’x’. Axes identified through
targeted dimensionality reduction (TDR) or using vectors of W°! (Output). Insets are overlaid
eigenspectra of all period specific fixed points. A-B: DelayPro stimulus, go period. C: MemoryPro
stimulus period. D-E: MemoryPro memory period ring attractor in two subspaces. F-G: MemoryPro
go period ring attractor in two subspaces. D-G: Unstable right eigenvectors of linearized dynamics
around each fixed point are projected into activity subspace (black lines).

capture maximal variance in relation to a variable of interest [2]. We identify x and y axes that
capture maximal variance of the hidden state across the two stimulus input variables cos 6 and sin
respectively (Figure[S). We also visualize go period dynamics in output space, vectors of WUt

On Delay tasks, a stimulus dependent stable fixed point emerges at stimulus onset. The hidden state
evolves toward this fixed point in a subspace that is orthogonal to the readout (output null [6]]). The
go period starts when the fixation input goes to zero. Continued presence of the stimulus sets up
another stable stimulus dependent fixed point in an output potent [6] subspace (Figure PB).

Memory task stimulus period dynamics are equivalent to Delay tasks (Figure [5IC). However, the
stimulus eventually disappears and the network must retain information about the stimulus in the
absence of input. To achieve this, a ring attractor emerges during the memory period (Figure[5D). The
hidden state approaches the ring along stable dimensions and does not drift along unstable dimensions
tangent to the ring. Without the stimulus input, go period dynamics rely solely on information in the
hidden state to produce the appropriate readout. The network achieves this by setting up another ring
attractor, oriented in an output potent subspace. The hidden state evolves toward this go period ring,
maintaining the stimulus representation (Figure [5F-G). Fixed point structures across Pro/Anti tasks
were similar, but with rotated relationships to output dimensions.

Once fixed point structures were learned for a particular task, there was minimal change to those
structures during subsequent learning. All examined subspace angles between fixed point structures
before and after learning subsequent tasks were less than 0.1 radians. Such minimal change is
consistent with our learning rule limiting change of dynamics within previously explored subspaces.



5.4 Orthogonal and shared dynamics across tasks

We next identified the relationship between fixed-point structures across tasks to determine whether
shared task representations could contribute to faster learning. We found stimulus-period fixed-point
structures were mostly aligned across pairs of tasks with the same stimulus-response relationship
and nearly orthogonal across Pro vs. Anti tasks (Figure [6/A,B). Figure [6C shows the two ring
attractors for go period dynamics in MemoryPro and MemoryAnti tasks are not aligned. Both rings
are oriented such that they have a large projection onto readout axes, but are not aligned with each
other. Initial conditions for MemoryPro go period dynamics (designated as ‘x’) are oriented nearly
orthogonal to the ring of go period fixed points for the MemoryAnti task (Figure[6C). Our learning
rule organized these orthogonal subspaces for go period dynamics across tasks with the opposite
stimulus-response relationship to prevent interference across tasks. At the same time, tasks with the
same stimulus-response relationship were evolved in the same subspace because their dynamics did
not interfere with each other. Subspaces capturing stimulus-related variance are more aligned for
tasks with the same stimulus-response relationships than those with the opposite relationship (Figure
[6D). These results suggest that Delay and Memory tasks evolved in an aligned subspaces when
they shared the same stimulus-response relationship. In these shared subspaces, reuse of dynamical
structures that we identified in Figure[5|could explain transfer learning results from Figure 4]
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Figure 6: Subspace alignment after sequential training. Stimulus period fixed points for 10 trials
spanning [0,27) colored by 6 A: Delay- B: -Pro tasks. C: MemoryAnti go period fixed points
overlaid with MemoryPro go period fixed points and hidden state activity. D: Subspace angles (rad)
between TDR axes for tasks with same (blue) or opposite (orange) stimulus-response relationships
during stimulus (left) and go period (right). Each dot represents the angle between sin 6 or cos § TDR
axis for a pair of tasks in one network (repeated for 9 task orders and 5 seeds).

5.5 Testing shared dynamics using input and hidden-state perturbations

We use perturbation experiments to further explore the possibility that similar tasks reuse dynamical
structures in shared subspaces. First, we asked whether shared structure between DelayPro and
MemoryPro tasks would enable them to perform similar computations even when inputs are incon-
sistent with those shown during training. Figure [7]A shows the performance on the MemoryPro task
when the network expected a memory period (MemoryPro rule input) or not (DelayPro rule input).
Networks are able to perform memory-period dynamics even when the rule input did not instruct
them to do so. Networks trained to perform the MemoryPro task first performed better, suggesting
secondary learning of DelayPro might be reusing structure already present in the network. This
phenomenon could explain faster learning apparent in Figure [d} Second, we ask whether the hidden
state of Pro tasks contains information about Anti tasks and vice versa. Figure shows task
performance for networks where dimensions capturing 95% variance of a different task are projected
out from the hidden state as the activity evolves in time. This more severely impaired the performance
for tasks with the same stimulus-response relationship than with the opposite. These results show that
computations rely on network activity patterns in subspaces that are shared between similar tasks.

5.6 Simultaneously trained tasks share output structure

We have shown that arranging network dynamics into computation-related subspaces minimizes
interference during sequential training and allows transfer learning across similar tasks through
reuse of dynamical structures. Yet, we found networks that were trained simultaneously on all tasks
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Figure 7: Input and hidden-state perturbations. A: Performance on MemoryPro given DelayPro
or MemoryPro rule input under different training orders. B: Performance on one task when the
dimensions capturing 95% of variance on another task have been projected out of the hidden state
evolution either with the same or opposite stimulus-response relationship, plotted for 5 networks
under an example training task order, and 10 simultaneously trained networks (see section 5.6).

achieved slightly better performance (Figure[3]A). We therefore investigated organizational differences
between sequentially and simultaneously trained networks.

Perturbation results from section 5.3 provide initial evidence that more features are shared across
tasks in simultaneously trained networks. DelayPro trials could more successfully maintain stimulus
information during a memory period (Figure[7]A) and performance was more impaired when hidden-
state activity in one task subspace was projected out from activity during another task (Figure
7B).

Indeed, fixed-point structures across tasks with opposite stimulus-response relationships were more
aligned in simultaneously trained networks (Figure [§). Pro and Anti tasks shared a subspace
for the memory-period stimulus representation. In contrast to mostly orthogonal subspaces in our
sequentially trained networks (Figure E]A), simultaneously trained networks’ memory-period activity
was arranged such that trials with the same output had similar initial conditions during the go period
(Figure[8B). Given this relationship between initial conditions, tasks with different stimulus-response
relationships could share aligned go-period fixed-point structures (Figure [§C). We quantify the extent
to which axes that capture the maximal stimulus variance are aligned during the go period in Figure
[8D. These results verify that go-period activity across tasks with the opposite stimulus response
is more aligned when networks are simultaneously trained compared to our sequentially trained
networks.

Our learning rule restricts adjustments to dynamics within subspaces explored by previously learned
tasks. This limits the network’s ability to create trajectories that converge in state space after starting
from different initial conditions. Simultaneously trained networks were able to produce convergent
hidden-state trajectories into a shared subspace despite different stimulus-response relationships.
This allowed the network to reuse output-related dynamical structures across all tasks. This shared
organization could contribute to improved task performance in simultaneously trained networks

(Figure 3A).

6 Discussion

We have introduced a novel approach for continual learning in RNNs to solve multiple tasks. Our
approach is inspired by structure in cortical neural populations [2,6H8]] and encourages the network to
organize task dynamics such that more (less) similar tasks evolve in aligned (orthogonal) subspaces.

We have shown that our approach significantly improved retention of previously learned tasks
compared to weight change regularization-based approaches. The favorable performance of our
method illustrates that continual learning in RNNs is better addressed by preventing interfering
changes in the network’s dynamics, rather than penalizing individual weight changes.

Our learning approach can also be viewed in terms of adaptive learning rates. Preconditioning
methods [[31H33]] and FORCE learning [34] use within-batch correlational structure to adaptively
change learning rates in order to speed up learning and convergence. In contrast, we use the
correlational structure on previous tasks to slow down learning rates along specific directions in
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Figure 8: Simultaneously trained networks share output structure. Orientation of hidden state at start
of go period (end of memory) colored by 6 for A: sequentially B: simultaneously trained networks.
C: Same as Figure[6[C for simultaneously trained networks. D: Average of 2D subspace angle (rad)
between network dimensions capturing maximum stimulus-related variance for tasks with same
(blue) or opposite (orange) stimulus-response relationships during go period for sequentially and
simultaneously trained networks. Means across all networks indicated in black.

weight space. Directions in parameter space that are well explored on previous tasks are modified
more slowly, hinting towards a potential connection with uncertainty-based approaches towards
adaptive learning rates [35]].

We identified key differences between task organization in networks trained using our continual
learning approach and those that arise in simultaneously trained networks. The effects of learning
algorithms on network dynamics and learnt representations is an active area of research [see e.g.|36].
The results we presented here suggest that orthogonal representations may be favorable for retaining
information that becomes inaccessible during later stages of learning, while other, more efficient,
representations may arise when information about each task is accessible throughout learning. Our
analyses reveal a potential explanation for the value of simultaneous review of related tasks or
concepts (Figure[8). It will be interesting to investigate how our sequential training approach could
be extended to better integrate dynamics across subspaces to share fixed point structures across
more tasks. We could achieve this by including some form of consolidation of previously learned
tasks using replay. Assessing whether neural population dynamics in humans or other animals may
similarly be affected by different training paradigms is an interesting direction of future research.

We focus on toy examples so that we may analyze solutions the network obtains under different
training regimes. We are interested in expanding this work to more complex applications, such as
multi-task brain machine interface control and to more biologically plausible learning conditions
without task boundaries.

Broader Impact

This work proposes a novel continual learning algorithm which will contribute to the advance of
related methods. Continual learning of dynamic tasks has not been well-explored in machine learning
so far, but will likely be important for fields such as robotics and developing artificial intelligent
agents more generally. Furthermore, we utilize the framework of recurrent networks to test and refine
hypotheses about computation in biological systems. Advances in this area will contribute to the
design of new experiments and aid the analyses of recorded data in the field of neuroscience.
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