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Abstract

The optimization problems associated with training generative adversarial neural
networks can be largely reduced to certain non-monotone variational inequality
problems (VIPs), whereas existing convergence results are mostly based on mono-
tone or strongly monotone assumptions. In this paper, we propose optimistic dual
extrapolation (OptDE), a method that only performs one gradient evaluation per
iteration. We show that OptDE is provably convergent to a strong solution under
different coherent non-monotone assumptions. In particular, when a weak solution
exists, the convergence rate of our method is O(1/✏2), which matches the best
existing result of the methods with two gradient evaluations. Further, when a
�-weak solution exists, the convergence guarantee is improved to the linear rate
O(log 1

✏ ). Along the way–as a byproduct of our inquiries into non-monotone varia-
tional inequalities–we provide the near-optimal O

�
1
✏ log

1
✏

�
convergence guarantee

in terms of restricted strong merit function for monotone variational inequalities.
We also show how our results can be naturally generalized to the stochastic setting,
and obtain corresponding new convergence results. Taken together, our results
contribute to the broad landscape of variational inequality–both non-monotone
and monotone alike–by providing a novel and more practical algorithm with the
state-of-the-art convergence guarantees.

1 Introduction

Variational inequality (VI) provides a principled framework for minimax problems via their first-order
optimality conditions. Given a closed convex set W ⇢ Rd and an operator F : W ! Rd, the
variational inequality problem VIP(F,W) aims to find a solution w⇤ 2 W such that:

8w 2 W, hF (w⇤),w �w⇤i � 0, (1)

where w⇤ is called a strong solution of VIP(F,W). For the minimax problem

min
x2X

max
y2Y

f(x,y), (2)

let W ⌘ X ⇥ Y ,w ⌘ [ xy ] , F (w) ⌘
h

rxf(x,y)
�ryf(x,y)

i
. Then solving (1) is equivalent to finding a

first-order Nash equilibrium of the minimax problem (2) [32].
⇤This work was conducted during Chaobing Song’s visit to Professor Yi Ma’s group at UC Berkeley.
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Convex-Concave Minimax Problems. The operator F (w) will be monotone if

8w,v 2 W, hF (w)� F (v),w � vi � 0. (3)

VI with monotone operators has been well studied, which provides a concise and optimal framework
for convex-concave minimax problems [29]. For monotone VIP(F,W), it is well known that the
strong solution satisfying (1) is also equivalent to the solution w⇤ 2 W satisfying:

8w 2 W, hF (w),w �w⇤i � 0, (4)

where w⇤ is called a weak solution of VIP(F,W). A classical result [29] under the monotone
and Lipschitz continuous assumptions is that the Mirror-Prox algorithm [29] can converge to an
✏-accurate weak solution in terms of ergodic averaging in O(1/✏) iterations, which is optimal for
first-order methods in solving monotone VIPs [30, 33]. Nemirovski’s Mirror-Prox is a non-Euclidean
extension of the extragradient method [22] from the perspective of mirror descent. Another important
non-Euclidean extension is Nesterov’s dual extrapolation [31] from the perspective of dual averaging,
which also has the optimal O(1/✏) convergence rate. The main difference between mirror descent
and dual averaging is the way of combining the constraint (or the regularization term if exists) into
the projection (or the proximal) step [31].

Despite obtaining the optimal convergence rate, both Mirror-Prox and dual extrapolation are two-call
extragradient methods that need to evaluate gradients twice per iteration. In some contexts such as
training deep neural networks, evaluating gradients can be expensive. Thus it will have significant
practical benefits if we only need one gradient evaluation per iteration and still maintain the same
convergence rate. In terms of single-call methods for minimax problems, vanilla gradient descent
ascent (and its mirror descent generalizations) might be a natural choice. Unfortunately, it is not
guaranteed and it can diverge even in simple monotone settings [24]. Consequently, after the (two-
call) extragradient method [22], several single-call extragradient methods [35, 3, 6, 27] have been
analyzed under the monotone setting and share the same convergence rates with Mirror-Prox and dual
extrapolation [17]. However, there is an increasing trend in applying these single-call extragradient
methods to stabilize the training of generative adversarial networks (GAN) [8, 12, 34], which is
nonconvex-nonconcave in general and hence has remained underexplored.

Nonconvex-Nonconcave Minimax Problems. Despite the well-developed convergence theory for
monotone VIPs and thus for convex-concave minimax problems, many minimax problems arising in
modern machine learning are nevertheless nonconvex-nonconcave, such as GAN [14], adversarial
training [15], gradient reversal for domain adaption [11], and multi-agent reinforcement learning [38].
As a result, the corresponding VI is not monotone and the aforementioned theoretical guarantees for
monotone VIPs no longer apply. First, for non-monotone VIPs, it is nontrivial to obtain the rate of
convergence to a weak solution, thus one may explore the rate of convergence to a strong solution
instead. Second, without the monotone property, the ergodic averaging technique [22] will no longer
have theoretical guarantees, thus we might need to choose the last iterate or best iterate. However,
the classical convergence result [29] said little about the rate of convergence to a weak solution or the
convergence of last iterate or best iterate.2

To obtain theoretical guarantees beyond the monotone setting, a common approach is to relax
the lower bound (3) in the monotone assumption. Along this research line, several more general
assumptions have been proposed, such as the pseudo-monotone assumption [20, 16] and its variants
[19], and the generalized monotone assumption [7]. In the machine learning community, similar
concepts have also been proposed, such as variational coherence [41, 42]. For simplicity, we coin the
problem class along this research line as coherent non-monotone variational inequalities. Among
them, [7] is the first to provide explicit global convergence results such that the best iterate of the
N-EG method [7] can converge to an ✏-accurate strong solution in O(1/✏2) iterations under the
generalized monotone and Lipschitz continuous assumptions. However, N-EG needs to evaluate
gradient twice per iteration, which is less desirable when gradient evaluation is expensive. For the
single-call extragradient method [4], under a second-order condition3, very recently [17] has provided
local linear convergence results in certain non-monotone setting, while the constants in these results
remain implicit. The following problem remains open: Can single-call extragradient methods have
explicit global convergence results beyond the monotone setting?

2Recently, [13] shows the first tight last iterate result for general smooth convex-concave minimax problems
with Lipschitz derivatives of operators.

3As we will see, it is a localized version of our assumption.
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Table 1: Iteration complexity for finding an ✏-accurate solution in the deterministic setting. (In
both Tables 1 and 2, “—” denotes the corresponding results are not known or can not be obtained.)

Convergence measure Merit function (Definition 1) Distance k ·�w⇤k2

Algorithm N-EG OptDE OptDE
[7] (this Paper) (this Paper)

Weak solution exists O(1/✏2) O(1/✏2) —
�-weak solution exists — O(log 1

✏ ) O(log 1
✏ )

No. of gradient calls 2 1 1

Table 2: Stochastic oracle complexity for finding an expected ✏-accurate solution in the stochas-

tic setting.

Convergence measure Merit function (Definition 1) Distance E[k ·�w⇤k2]
Algorithm SEG SOptDE ESA SOptDE

[18] (this paper) [19] (this paper)
Weak solution exists O(1/✏4) O(1/✏4) — —
�-weak solution exists — O(1/✏2 log 1

✏ ) O(1/✏) O(1/✏)
No. of gradient calls 2 1 2 1

Contributions of This Paper. In this paper we develop an Optimistic Dual Extrapolation (OptDE)
method that provably converges to a strong solution for coherent non-monotone VIPs. The OptDE
method can be viewed as a single-call variant of Nesterov’s dual extrapolation that maintains its
“anticipatory” properties. We characterize convergence rates of the best iterate4 of OptDE under
two coherent non-monotone assumptions, where the merit function is given in Definition 1 and
k · k is the natural norm used in algorithms. As shown in Table 1, when the problem has a weak
solution w⇤, our method matches the best known rate O(1/✏2) of N-EG [7]. Further strengthening
the assumption to that a �-weak solution w⇤ exists with � > 0 – nevertheless a weaker condition
than the strongly monotone assumption required in previous work, we are able to obtain a linear
convergence rate of O(log 1

✏ ). For this setting, we can also use the distance k ·�w⇤k2 to measure
the progress and obtain a linear convergence result; meanwhile, despite not shown in Table 1, we
also obtain a linear convergence result of the last iterate. Our result shows that even under the two
coherent non-monotone assumptions, the convergence rate of single-call extragradient methods can
be comparable to that of the N-EG method with two gradient evaluations per iteration.

Our coherent non-monotone analysis for the setting that a �-weak solution exists has two mean-
ingful corollaries about best iterate and last iterate in the monotone setting, respectively: With a
regularization trick, both the best iterate and last iterate5 of OptDE can be an ✏-accurate solution in
O( 1✏ log

1
✏ ) number of iterations. To our knowledge, the near-optimal result O( 1✏ log

1
✏ ) for attaining

an ✏-accurate strong solution was only appeared in [9] very recently with a two-loop Halpern iteration
method, while our result is obtained by the simpler single-loop single-call OptDE method.
Meanwhile, we extend the OptDE algorithm to the stochastic setting as Stochastic OptDE (SOptDE)
and show that our results in the deterministic setting can be naturally generalized to the stochastic
setting. This allows us to characterize the stochastic oracle complexity (i.e., the number of stochastic
oracles we access) of SOptDE under the coherent non-monotone assumptions. The results under the
stochastic setting are summarized in Table 2.6 As we see, the results match the best-known results
of SEG 7 [18] and ESA [19] respectively, while both SEG and ESA need two gradient evaluations
per iteration. Meanwhile, under the assumption that a �-weak solution exists, we obtain the first
theoretical guarantee in terms of the merit function in Definition 1.
Last but not least, different from N-EG [7] and ESA [19], the proposed OptDE and SOptDE
algorithms only need the norm square k · k2 being strongly convex but not necessarily globally
Lipschitz continuous, which will be significant if k · k is a non-Euclidean norm: k · k2 can not be
strongly convex and globally Lipschitz continuous simultaneously in general.

4For given a number of iterations, the best iterate can be explicitly found and happen before the last iterate.
5Here the last iterate is not in the classical sense, which will be explained in Section 3.
6The results of the SEG [18], ESA [19] algorithms are given under pseudomonotone and strongly pseu-

domonotone assumptions respectively, which are slightly stronger than our assumptions.
7The original result of SEG is given by “square natural residual”, which can be used to derive the strong

solution guarantee in Table 2 (see the supplementary material for detail).

3



2 Technical Assumptions

Notations: For K 2 Z+, let [K] := {1, 2, . . . ,K}. Let lower case boldface alphabets denote vectors,
such as x 2 Rd and lower case alphabets with subscript denote elements, such as x1, x2, . . . , xd.
Let k · k denote a general norm. Let k · k⇤ denote the dual norm of k · k defined by kyk⇤ :=

maxkxk1hx,yi. For x 2 Rd and p � 1, let kxkp :=
�Pd

i=1 |xi|p
� 1

p
.

To measure the accuracy of iterates to a strong solution, we consider the following “restricted strong
merit function”.

Definition 1 (Restricted strong merit function) w̃ 2 W is an ✏-accurate strong solution of the
VIP(F,W) with a fixed parameter D > 0 if

sup
w2W,kw�w̃k2D

hF (w̃), w̃ �wi  ✏. (5)

With ✏ ! 0 and D ! +1, Definition 1 becomes the definition of the strong solution in (1). In
the nonconvex-nonconcave minimax setting, Definition 1 has been proposed as the definition of the
✏-accurate first-order Nash equilibrium [32]. If W is a bounded set, then we still have an effective
measure even if D ! +1; if W is unbounded, then D needs to be a finite positive parameter. To
give a unified measure for both bounded and unbounded settings, we set D to be a finite positive
parameter.

Throughout this paper, we make the following standard Lipschitz continuous assumption.

Assumption 1 For the VIP(F,W) in (1), 8w,v 2 W , kF (w) � F (v)k⇤  Lkw � vk, where
L > 0 is the Lipschitz constant.

Meanwhile, we assume that the (possible non-Euclidean) norm k · k satisfies Assumption 2.

Assumption 2
1
2kwk2 is �-strongly convex (0 < �  1) with respect to (w.r.t.) k · k and the dual

norm of gradient r 1
2kwk2 is bounded by �kwk(� > 0):

1

2
kwk2 � 1

2
kvk2 + hr1

2
kvk2,w � vi+ �

2
kw � vk2, (6)

���r
1

2
kwk2

���
⇤

 �kwk. (7)

From [1], 1
2k · k

2
p(1 < p  2) is (p� 1)-strongly convex w.r.t. k · kp. Without loss of generality, in

Assumption 2, we assume 0 < �  1. For all the norm setting 1
2k · k

2
p(1 < p  2), we have � = 1.

For the norm k · k, we define the prox-mapping as

Pv(w) := argmin
z2W

n
hw, zi+ 1

2�
kz � vk2

o
, (8)

and assume that it can be solved efficiently. Meanwhile, we also define the corresponding Bregman
divergence of 1

2k · k
2: 8w,v 2 W,

Vv(w) :=
1

2
kwk2 � 1

2
kvk2 �

⌦
r1

2
kvk2,w � v

↵
. (9)

Obviously we have Vv(w) � �
2 kw � vk2.

Then we make Assumptions 3 and 4 for the coherent non-monotone VIP(F,W) we study.

Assumption 3 (Existence of a weak solution) For the VIP(F,W) in (1), there exists a weak solu-
tion w⇤ 2 W such that 8w 2 W, hF (w),w �w⇤i � 0.

Assumption 4 (Existence of a �-weak solution) For the VIP(F,W) in (1), given w0 2 W, there
exists a �-weak solution w⇤ 2 W with parameter � > 0 such that 8w 2 W, hF (w),w �w⇤i �
�
� (Vw�w0(w

⇤ �w0) + Vw⇤�w0(w �w0)).
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Algorithm 1 Optimistic Dual Extrapolation
1: Input: Lipschitz constant L > 0 from Assumption 1, �, � > 0 from Assumption 2. The

VIP(F,W) satisfying Assumption 3 (� = 0) or Assumption 4 (� > 0).
2: A0 = 0, 0 < ↵  min

n
1

4
p
2
,

p
3

4
p
�

o
.

3: w0 = z0 2 W, g0 = 0.
4: for k = 1, 2, 3, . . . ,K do

5: ak = ↵�(1+�Ak�1)
L , Ak = Ak�1 + ak.

6: wk = Pzk�1

�
↵
LF (wk�1)

�
.

7: gk = gk�1 + ak

�
F (wk)� �

�rwk
1
2kwk �w0k2

�
.

8: zk = Pw0

�
1

1+�Ak
gk

�
.

9: end for

10: w̃K = argminwk:k2[K](kwk � zk�1k+ kwk�1 � zk�1k).
11: return w̃K .

Assumption 3 assumes the existence of weak solutions, which is also adopted in [25]. Assumption 3
is slightly weaker than the variational coherence assumption [41, 42] or the generalized monotone
assumption [7]. Some nontrivial examples satisfying the generalized monotone assumption can
be found in [7, 44, 28]. The generalized monotone assumption is in turn weaker than the pseudo-
monotone assumption [20, 16], which is weaker than the monotone assumption (3).

Remark 1 In the monotone setting, the weak solution set and strong solution set are equivalent to
each other; meanwhile, an approximate strong solution is also an approximate weak solution, while
the reverse does not hold in general (which can explain the terms “weak” and “strong”). However,
in the non-monotone setting, if the operator F is continuous, a weak solution is a strong solution,
while the reverse is not true in general [21, Chapter 3]. For instance, consider the minimax problem
minx2R maxy2R x

2
y
2 and let F (x, y) = (2xy2,�2yx2)T with (x, y) 2 R2. Then we can verify

that (0, 0) is the only weak solution of VIP(F,R2), while the set of strong solution is the x-axis or
the y-axis, and the set of Nash equilibrium is the y-axis.

Assumption 4 further assumes a stronger variant of Assumption 3, which is also called as strongly
variational stability in [41]. For the Euclidean setting where k · k := k · k2 and thus � = 1, the
inequality is simplified to hF (w),w � w⇤i � �kw � w⇤k22. Assumption 4 is weaker than the
strongly pseudo-monotone [19] and strongly monotone assumptions, but as we will see, is already
sufficient to ensure a linear convergence rate for our method.
Remark 2 Our main motivation in making Assumptions 3 and 4 is to prove explicit global conver-
gence results for VIP(F,W) under conditions as weak as possible. However, the non-monotone
subsets of Assumptions 3 and 4, a.k.a., pseudomonotone and strongly pseudomonotone respectively,
also have many real applications in competitive exchange economy [2], fractional programming
[10, 37], and product pricing [5]. Meanwhile, the restriction of Assumption 4 in minimization
problems such as one-point convexity [23] is also used in analyzing neural networks.

3 Optimistic Dual Extrapolation

In this section, we present the optimistic dual extrapolation (OptDE) algorithm for solving the
VIP(F,W) in (1). The method is a single-call variant of Nesterov’s dual extrapolation [31]. The
overall algorithm is summarized as Algorithm 1. The algorithm works under either Assumption 3 by
setting � = 0 or Assumption 4 with � > 0.

For Algorithm 1, we define two constants A0 and ↵ in Step 2. Then we initialize three vectors w0, z0
and g0 in Step 3. In the main loop, we update the two positive numbers ak and Ak in Step 5. Then
we perform an “extrapolation” step in Step 6 and then “dual averaging” steps in Steps 7 and 8. As we
see, as Algorithm 1 only performs one new gradient evaluation in Step 8, it is “optimistic” [36] hence
the name “optimistic dual extrapolation”. Once Algorithm 1 runs K iterations, we return the best
iterate measured by the sum of residual norms kwk � zk�1k+ kwk�1 � zk�1k8.

8This return value is given according to our convergence analysis.
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Compared with Nesterov’s dual extrapolation, the main difference is that the extrapolation Step 6
is a prox-mapping on F (wk�1), not on F (zk�1). Compared with past extra-gradient [17, 36], the
main difference is that we perform dual averaging by Steps 7 and 8, instead of a “mirror descent”
step. Compared with N-EG which is claimed to be a non-Euclidean extragradient method [7], not
only we perform just one gradient evaluation per iteration but also do not require 1

2k · k
2 to have

bounded Lipschitz continuous gradients, which is significant in the non-Euclidean setting since the
norm square 1

2k · k
2
p for p 2 (1, 2) may not have globally bounded Lipschitz continuous gradients.

In the following, we assume w⇤ is a solution that satisfies Assumption 3 if � = 0 or satisfies
Assumption 4 if � > 0.

Theorem 1 Let Assumptions 1 and 2 hold. For both settings � = 0 (i.e., Assumption 3 holds) and
� > 0 (i.e., Assumption 4 holds), after K iterations, Algorithm 1 returns a w̃K such that

sup
w2W,kw̃K�wkD

hF (w̃K), w̃K �wi  C0Dkw0 �w⇤k

s
L

AK�1 + a1
, (10)

with C0 =
�
1 + �

↵�

�q
8↵
� , a1 = ↵�

L , and

AK�1 =

8
<

:

↵�(K�1)
L if � = 0,

1
�

⇣
1 + ↵��

L

⌘K�1
� 1

� if � > 0.
(11)

Particularly if � > 0, we also have

kw̃K �w⇤k  C0

�
kw0 �w⇤k

s
L

AK�1 + a1
. (12)

Proof. See Section C.4.

Theorem 1 implies our main result in Table 1. As we see, for � = 0, except for constants, our
result is the same with the two-call extragradient method N-EG [7]. However, to analyze single-call
methods, particularly for the setting � = 0, the analysis is much more involved and leads to an
interesting criterion of return value in Step 10 of Algorithm 1. For the setting � > 0, then linear
convergence rates can be obtained in terms of both restricted strong merit solution and solution
distance. Meanwhile, for the setting � > 0, our result in terms of restricted strong merit solution
(10) can not be implied by the result of the solution distance (12), while the reverse side is true.
Furthermore, when � > 0, the result (10) is also used in deriving Corollary 1 for the monotone
setting. Finally, to simplify our analysis, we did not yet optimize the constants in (10) and (12), which
probably can be further improved.

In Theorem 1, we provide a unified result for the two settings � = 0 and � > 0 in terms of the best
iterate. However, when � > 0, we can also prove linear convergence rates in terms of last iterate,
which is given in Proposition 1 below.

Proposition 1 Let Assumptions 1 and 2 hold. For the setting � > 0 (i.e., Assumption 4 holds),
8K � 1, after K iterations, Algorithm 1 returns a wK such that

sup
w2W,kwK�wkD

hF (wK),wK �wi  C0Dkw0 �w⇤k

s
L

aK�1
, (13)

with C0 defined in Theorem 1, a0 = a1 and 8K � 1,

aK =
↵�

L

⇣
1 +

↵��

L

⌘K�1
. (14)

Meanwhile, we also have

kwK �w⇤k  C0

�
kw0 �w⇤k

s
L

aK�1
. (15)
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Proof. See Section C.5.

By Proposition 1, to prove the linear convergence of the last iterate, we do not need the strongly
monotone assumption, but only Assumption 4. Despite the last iterate also has a linear convergence
rate, it is slower than the rate of best iterate in Theorem 1. As we will see, Proposition 1 will also be
used to prove the last iterate convergence for the monotone setting in a non-classical sense.

Remark 3 The motivation behind OptDE is that by generalizing Nesterov’s estimation sequence, we
can perform a unified convergence analysis under Assumptions 3 and 4. However, as shown in [40],
if a regularizer exists, the (regularized) dual averaging steps (Steps 7 and 8 of Algorithm 1) can help
us better explore the structure of regularizers such as sparsity when it exists.

Remark 4 [17] has given local convergence analysis in terms of solution distance by assuming that
Assumption 4 holds in a neighbourhood of the optimal solution. The analysis in [17] needs extra
techniques, while the constants in the rates of [17] are implicit. Our solution distance result in (12)
can be viewed as a global and explicit version of [17] by assuming Assumption 4 holds globally.
Meanwhile, [17] does not give any result under Assumption 3 or in terms of restricted strong solution
under Assumption 4 whereas our analysis does.

Our results are mainly given under the coherent non-monotone Assumptions 3 and 4. As shown in
Theorem 1, under Assumption 3 that includes the monotone assumption, we can obtain an ✏-accurate
strong solution in O(✏�2) iterations. However, in the following we show that with a regularization
trick, the rate can be much better in the monotone setting by using our results in Theorem 1 and
Proposition 1.

First, to give our results in the monotone setting, we have Lemma 1.

Lemma 1 If the VIP(F,W) is monotone, then the regularized problem VIP(F+✏r 1
2� k·�w0k2,W)

satisfies Assumption 4 with � = ✏.

Proof. See Section C.6.

Due to Lemma 1, we can apply Theorem 1 and Proposition 1 to the regularized problem VIP(F +
✏r 1

2� k ·�w0k2,W), and then obtain Corollaries 1 and 2 for the VIP(F,W), respectively.

Corollary 1 (Best iterate convergence in the monotone setting) Given w0 2 W , let Assumptions
1 and 2 hold for the regularized problem VIP(F +✏r 1

2� k ·�w0k2,W). By optimizing the regularized
problem by Algorithm 4, then the best iterate returned by Algorithm 4 satisfies

sup
w2W,kw̃K�wkD,kw�w0kD

hF (w̃K), w̃K �wi

 D✏+DC0kw0 �w⇤k
vuut

L✏
⇣
1 + ↵�✏

L

⌘K�1
� 1 + ↵�

L

,

where C0 is defined in Theorem 1.

Proof. See Section C.7.

Compared with Theorem 1 and Proposition 1, we need an extra condition kw � w0k  D in
Corollary 1, which can be satisfied by choosing a large enough D. By Corollary 1, by choosing
K = O

�
1
✏ log

1
✏

�
, we will obtain an O(D✏)-accurate solution. Note that D does not appear in our

algorithm and is not relevant to the choice of ✏.

Corollary 2 (Last iterate convergence in the monotone setting) Given w0 2 W , let Assumptions
1 and 2 hold for the regularized problem VIP(F +✏r 1

2� k ·�w0k2,W). By optimizing the regularized
problem by Algorithm 4, the last iterate of Algorithm 4 satisfies

sup
w2W,kwK�wkD,kw�w0kD

hF (wK),wK �wi  D✏+DC0Lkw0 �w⇤k
vuut

1

↵�

⇣
1 + ↵�✏

L

⌘K�1 ,

where C0 is defined in Theorem 1.
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Algorithm 2 Stochastic Optimistic Dual Extrapolation
1: Input: Lipschitz constant L > 0 from Assumption 1, �, � > 0 from Assumption 2. The

VIP(F,W) satisfying Assumption 3 (� = 0) or Assumption 4 (� > 0).
2: A0 = 0,↵ = min{ �

32 ,
1
16}.

3: w0 = z0 2 W, g0 = 0.
4: for k = 1, 2, 3, . . . ,K do

5: ak =
↵�
p

1+�Ak�1

L , Ak = Ak�1 + ak.
6: wk = Pzk�1

� ↵2�
L2ak

F (wk�1; ⇠k�1)
�
.

7: gk = gk�1 + ak

�
F (wk; ⇠k)� �

�rwk
1
2kwk �w0k2

�
.

8: zk = Pw0

�
1

1+�Ak
gk

�
.

9: end for

10: w̃K = wk, where k is chosen at random with probability distribution { a1
AK

,
a2
AK

, . . . ,
aK
AK

}.
11: return w̃K .

Proof. See Section C.8.

Similar to Corollary 1 for best iterate, in Corollary 2, by choosing K = O
�
1
✏ log

1
✏

�
, the last iterate

will be an O(D✏)-accurate strong solution, which is significantly better than the tight bound O(1/✏2)
for last iterate [13]. Nevertheless, it should be noted that Corollary 2 is in a non-classical sense:
we do not guarantee last iterate convergence for all K � 1, but only after K = O

�
1
✏ log

1
✏

�
with a

prescribed accuracy parameter ✏. Thus our result does not contradict with the lower bound of last
iterate [13].

Meanwhile, our proof only relies on the regularized problem VIP(F +✏r 1
2� k ·�w0k2,W) satisfying

Assumption 4 with � = ✏, which holds if the VIP(F,W) is monotone. However, it is not necessary
for the VIP(F,W) to be monotone. For instance, if the VIP(F,W) satisfies Assumption 3 and
w0 = w⇤

, then the VIP(F + ✏r 1
2� k ·�w0k2,W) also satisfies Assumption 4 with � = ✏. Of course,

letting w0 = w⇤ is impractical and we leave the more general setting of w0 under non-monotone
settings for further research.

Remark 5 Recently, [9] has proposed a different Halpern iteration method under the monotone and
Lipschitz assumptions. The Halpern iteration method does not need to know the Lipschitz constant
and thus is parameter-free, and also attains the O

�
1
✏ log

1
✏

�
convergence rate. Nevertheless, there

are two major differences: The Halpern iteration method has two-loop, while our OptDE method is a
single-loop single-call method; now the Halpern iteration method is limited to the Euclidean setting,
while ours can have theoretical guarantees in the non-Euclidean setting.

4 Stochastic Optimistic Dual Extrapolation

In this section, we present a stochastic version of the above OptDE method, a.k.a., stochastic optimistic
dual extrapolation (SOptDE), which is given in Algorithm 2. Compared with the OptDE method
in Algorithm 1, the main difference is that Algorithm 2 approximates {F (wk)} by the unbiased
stochastic estimations {F (wk; ⇠k)}, where the randomness is from the i.i.d random variables {⇠k}.
For simplicity, in this section, we use E⇠[·] to denote the expectation w.r.t. ⇠ while fixing the previous
randomness; meanwhile, we use E[·] to denote the expectation w.r.t. the randomness of all the history.
Formally, we make Assumption 5.

Assumption 5 8w 2 W, F (w; ⇠) is an unbiased estimation of F (w) such that E⇠[F (w; ⇠)] =
F (w); meanwhile the variance of F (w; ⇠) is bounded by s2 such that E⇠[kF (w; ⇠)�F (w)k2⇤]  s

2
.

Meanwhile, to cancel the error from randomness, in Algorithm 2, when � > 0, we consider a more

conservative parameter setting ak =
↵�
p

1+�Ak�1

L rather than ak = ↵�(1+�Ak�1)
L of Algorithm 1.

Furthermore, because of the randomness, choosing the exact best iterate as in the deterministic case
is no longer meaningful as its expectation is impossible to compute. In this case, we choose w̃K at
random according to the distribution { a1

AK
,

a2
AK

, . . . ,
aK
AK

}, which also facilitates theoretical analysis9.

9In practice, nevertheless, one may often consider choosing the last iterate for simplicity.
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Theorem 2 For the setting � = 0 (i.e., Assumption 3 holds), after K iterations, Algorithm 5 returns
a w̃K such that

E
h

sup
w2W,kw̃K�wkD

hF (w̃K), w̃K �wi
i


p
2(1 + �)LD

s
kw⇤ �w0k2

8↵�K
+

s2

L2
+ L

2
⇣kw⇤ �w0k2

8↵�K
+

s
2

L2

⌘
+

s
2

2L2
. (16)

For � > 0, (i.e., Assumption 4 holds), we have

E[kw̃K �w⇤k2]  32L2

�2(↵�)2(K + 1)2

⇣8↵s2K
L2

+
1

2�
kw⇤ �w0k2

⌘
. (17)

Proof. See Section D.4.

As show in (16), for the setting � = 0 (a.k.a., Assumption 3) even if the number of iterations K ! 1,
the expected restricted strong merit function can only be upper bounded by O

�
s
L

�
. Thus to guarantee

the convergence of SOptDE, the variance should be o(1), such as s
2 = O

�
1
K

�
. In the Euclidean

setting that k ·k := k ·k2, by the concentration inequality [39], to attain a variance of O
�

1
K

�
, we need

O(K) samples. Thus combining the setting s
2 = O( 1

K ) and the result in (16), it can be verified that
the single-call SOptDE method needs O(1/✏4) number of samples to obtain an ✏-accurate solution in
terms of the expected restricted strong merit function.

To develop the two-call stochastic extragradient method SEG [18] under the pseudomonotone
assumption10, [18] has also considered variance reduction with a large batch size and used a “quadratic
natural residual” (in our notation, it is E[kwk � zk�1k2]) to measure the accuracy, which in turns
can be used to derive the same complexity result O(1/✏4) as SOptDE in terms of expected restricted
strong merit function (see the supplementary material). OSG [26] is a single-call version of SEG,
which also uses quadratic natural residual as a convergence measure. However in the general
constrained setting, it is not know how to convert the guarantee of quadratic natural residual of
the single-call OSG into the guarantee of expected restricted strong merit function. In fact, in our
single-call setting, the “(quadratic) natural residual” E[kwk � zk�1k2] is no longer useful in deriving
the theoretical guarantee by expected restricted strong merit function. As a result, we consider the
term E[kwk � zk�1k2 + kwk�1 � zk�1k2], which makes our proof quite different from that in [18].

Under the stronger Assumption 4, our result is given in terms of the expected solution distance. As
shown in (17), under Assumption 4, SOptDE can converge provably even when the variance s

2 is
constant. In fact, the O

�
1
K

�
is optimal and has been obtained by the two-call extragradient method

ESA [19] under the pseudomonotone assumption. Meanwhile, [43] used the plain stochastic gradient
descent algorithm and obtained the O

�
1
K

�
result for strongly monotone variational inequalities, which

can also be extended to the setting that �-weak solution exists.

With the aggressive parameter setting ak = ↵�(1+�Ak�1)
L and a large batch size strategy, we also

obtain the first convergence guarantee O(1/✏2 log 1
✏ ) in terms of restricted strong merit function as

shown in Table 2 (see details in the supplementary material).

5 Concluding Remarks

In this paper, we proposed a single-call extragradient method optimistic dual extrapolation (OptDE)
beyond the monotone setting and also extended it to the stochastic setting as stochastic optimistic dual
extrapolation (SOptDE). We systematically proved the convergence results of OptDE and SOptDE
under the Assumption 3 that a weak solution exists and Assumption 4 that a strongly weak solution
exists. We also show beneficial implications of our analysis in both non-monotone and monotone
settings. In the future, we will further study how the proposed new methods may lead to improved
computational efficiency and performance guarantees in a wide range of machine learning problems
such as the training of adversarial deep neural networks.

10We can verify that the result in [18] can be extended under our Assumption 3.
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Broader Impact

In this paper, we discuss a systematic theoretical analysis for single-call extragradient methods, which
has been widely used for modern machine learning applications. The theoretical results in this paper
can bring in meaningful insight and understanding for practical algorithms.
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