
A Detailed Proofs

A.1 Theorem 1

Theorem 1 Given a data set B of N items, loss functions L1 and L2, and priority scheme pr, the
expected gradient of L1(δ(i)), where i ∈ B is sampled uniformly, is equal to the expected gradient
of L2(δ(i)), where i is sampled with priority pr, if ∇QL1(δ(i)) = 1

λpr(i)∇QL2(δ(i)) for all i,

where λ =
∑
j pr(j)

N .

Proof.

Ei∼B [∇QL1(δ(i))] =
1

N

∑
i

∇QL1(δ(i))

=
1

N

∑
i

N∑
j pr(j)

pr(i)∇QL2(δ(i))

=
∑
i

pr(i)∑
j pr(j)

∇QL2(δ(i))

= Ei∼pr [∇QL2(δ(i))] .

(1)

�

Corollary 1 Theorem 1 is satisfied by any two loss functions L1, where i ∈ B is sampled uniformly,
and L2, where i is sampled with respect to priority pr, if L1(δ(i)) =

1
λ |pr(i)|×L2(δ(i)) for all i,

where λ =
∑
j pr(j)

N and | · |× is the stop-gradient operation.

Proof.

∇QL1(δ(i)) = ∇Q
1

λ
|pr(i)|×L2(δ(i))

=
1

λ
pr(i)∇QL2(δ(i)).

(2)

Then L1 and L2 have the same expected gradient by Theorem 1.

�

Corollary 2 Theorem 1 is satisfied by any two loss functions L1, where i ∈ B is sampled uniformly,
and λL2, where i is sampled with respect to priority pr and λ =

∑
j pr(j)

N , if sign(∇QL1(δ(i))) =

sign(∇QL2(δ(i))) and pr(i) = ∇QL1(δ(i))
∇QL2(δ(i))

for all i.

Proof. Given sign(∇QL1(δ(i))) = sign(∇QL2(δ(i))), we have sign(pr(i)) = 1, as we cannot
sample with negative priority. Theorem 1 is satisfied as:

1

λ
pr(i)∇QλL2(δ(i)) =

λ

λ
· ∇QL1(δ(i))

∇QL2(δ(i))
∇QL2(δ(i))

= ∇QL1(δ(i)).

(3)

�

A.2 Theorem 2

Theorem 2 Given a data set B ofN items and loss function L1, consider the loss function λL2(δ(i)),

where i ∈ B is sampled with priority pr and λ =
∑
j pr(j)

N , such that Theorem 1 is satisfied. The
variance of∇QλL2(δ(i)) is minimized when L2 = LL1 and pr(i) = |∇QL1(δ(i))|.

1

Proof.

Consider the variance of the gradient with prioritized sampling. Note Var(x) = E[x2]− E[x]2.

Var (∇QλL2(δ(i))) = Ei∼pr
[
(∇QλL2(δ(i)))

2
]
− Ei∼pr [∇QλL2(δ(i))]

2

=
∑
i

pr(i)∑
j pr(j)

(∑
j pr(j)

)2
N2

(∇QL2(δ(i)))
2 −X

=

∑
j pr(j)

N2

∑
i

∇QL1(δ(i))∇QL2(δ(i))−X,

(4)

where we define X = Ei∼B [∇QL1(δ(i))]
2
= Ei∼pr [λ∇QL2(δ(i))]

2, the square of the unbiased
expected gradient.

For L1 loss, noting sign(∇QL1(δ(i))) = sign(∇QL2(δ(i))), then setting L2 = LL1, we have
pr(i) = |∇QL1(δ(i))| and ∇QL1(δ(i))∇QL2(δ(i)) = |∇QL1(δ(i))|, and we can simplify the
expression:

=

∑
j |∇QL1(δ(j))|

N2

∑
i

∇QL1(δ(i))−X

=

(∑
j |∇QL1(δ(j))|

N

)2

−X.

(5)

Now consider a generic prioritization scheme where ∇QL2(δ(i)) = f(δ(i)). To give the same
expected gradient, by Theorem 1 we must have pr(i) = ∇QL1(δ(i))/f(δ(i)). To compute the
variance, we can insert these terms into Equation (4):

=

∑
j pr(j)

N2

∑
i

∇QL1(δ(i))∇QL2(δ(i))−X

=

∑
j ∇QL1(δ(j))/f(δ(j))

N2

∑
i

∇QL1(δ(i))f(δ(i))−X.
(6)

Then choosing uj =

√
∇QL1(δ(j))/f(δ(j))√

N
and vj =

√
∇QL1(δ(j))f(δ(j))√

N
, by Cauchy-Schwarz we

have: (∑
j |∇QL1(δ(j))|

N

)2

≤
∑
j ∇QL1(δ(j))/f(δ(j))

N2

∑
i

∇QL1(δ(i))f(δ(i)), (7)

with equality if f(δ(j)) = ±c, where c is a constant.

It follows that the variance is minimized when L2 is the L1 loss.

�

Observation 1 Given a data set B of N items and loss function L1, the gradient of the loss function
λLL1(δ(i)), where i ∈ B is sampled with priority pr(i) = |∇QL1(δ(i))| and λ =

∑
j pr(j)

N , will
have lower (or equal) variance than the gradient of L1(δ(i)), where i is sampled uniformly.

Proof.

This is a direct result of Theorem 2, by noting setting L2 = L1, pr(i) = 1
N and λ =

∑
j pr(j)

N = 1.
However, to be comprehensive, consider the variance of L1 with uniform sampling.

Var (∇QL1(δ(i))) = Ei∼B
[
(∇QL1(δ(i)))

2
]
− Ei∼B [∇QL1(δ(i))]

2

=
1

N

∑
i

(∇QL1(δ(i)))
2 −X.

(8)

2

where X is defined as before.

Now by the Cauchy-Schwarz inequality
(∑

j ujvj

)2
≤
∑N
j=1 u

2
j

∑N
j=1 v

2
j where uj = 1√

N
and

vj =
|∇QL1(δ(j))|√

N
we have:(∑

j |∇QL1(δ(j))|
N

)2

≤ 1

N

∑
i

(∇QL1(δ(i)))
2
, (9)

where the LHS is the variance of L1 loss without the X term, Equation (5), and so
Var
(
∇Q 1

λL2(δ(i))
)

is less than Var (∇QL1(δ(i))) for all loss functions L1, when L2 = LL1.

�

A.3 Theorem 3

Theorem 3 The expected gradient of a loss 1
τ |δ(i)|

τ , where τ > 0, when used with PER is equal to
the expected gradient of the following loss when using a uniformly sampled replay buffer:

LτPER(δ(i)) =
ηN

τ + α− αβ
|δ(i)|τ+α−αβ , η =

minj |δ(j)|αβ∑
j |δ(j)|α

. (10)

Proof.

For PER, by definition we have p(i) = |δ(i)|α∑
j2B |δ(j)|α

and w(i) =
(1
N ·

1
p(i))

β

maxj2B(1
N ·

1
p(j))

β .

Now consider the expected gradient of 1
τ |δ(i)|

τ , when used with PER:

Ei∼PER

[
∇Qw(i)

1

τ
|δ(i)|τ

]
=
∑
i∈B

w(i)p(i)∇Q
1

τ
|δ(i)|τ

=
∑
i∈B

(
1
N ·

1
p(i)

)β
maxj∈B

(
1
N ·

1
p(j)

)β |δ(i)|α∑
j∈B |δ(j)|α

sign(δ(i))|δ(i)|τ−1

=
1

maxj∈B
1

|δ(j)|αβ
∑
j∈B |δ(j)|α

∑
i∈B

|δ(i)|τ+α−1sign(δ(i))
|δ(i)|αβ

= η
∑
i∈B

sign(δ(i))|δ(i)|τ+α−αβ−1.

(11)

Now consider the expected gradient of LτPER(δ(i)):

Ei∼B [∇QLτPER(δ(i))] =
1

N

∑
i∈B

ηN

τ + α− αβ
∇Q|δ(i)|τ+α−αβ

= η
∑
i∈B

sign(δ(i))|δ(i)|τ+α−αβ−1.
(12)

�

Corollary 3 The expected gradient of the Huber loss when used with PER is equal to the expected
gradient of the following loss when using a uniformly sampled replay buffer:

LHuber
PER (δ(i)) =

ηN

τ + α− αβ
|δ(i)|τ+α−αβ , τ =

{
2 if |δ(i)| ≤ 1,

1 otherwise,
η =

minj |δ(j)|αβ∑
j |δ(j)|α

.

(13)

3

Proof. Direct application of Theorem 3 with τ = 1 and τ = 2.

�

Observation 2 (MSE) Let B(s, a) ⊂ B be the subset of transitions containing (s, a) and δ(i) =
Q(i)− y(i). If ∇QEi∼B(s,a)[0.5|δ(i)|2] = 0 then Q(s, a) = meani∈B(s,a)y(i).

Proof.
Ei∼B(s,a)[∇Q0.5|δ(i)|2] = 0

⇒ Ei∼B(s,a)[δ(i)] = 0

⇒ 1

N

∑
i∈B(s,a)

Q(s, a)− y(i) = 0

⇒ Q(s, a)− 2c

N

∑
i∈B(s,a)

y(i) = 0

⇒ Q(s, a) =
1

N

∑
i∈B(s,a)

y(i).

(14)

�

Observation 3 (L1 Loss) Let B(s, a) ⊂ B be the subset of transitions containing (s, a) and δ(i) =
Q(i)− y(i). If ∇QEi∼B[|δ(i)|] = 0 then Q(s, a) = mediani∈B(s,a)y(i).

Proof.
Ei∼B(s,a)[∇Q|δ(i)|] = 0

⇒ Ei∼B(s,a)[sign(δ(i))] = 0

⇒
∑

i∈B(s,a)

1{Q(s, a) ≤ y(i)} =
∑

i∈B(s,a)

1{Q(s, a) ≥ y(i)}

⇒ Q(s, a) = mediani∈B(s,a)y(i).

(15)

�

A.4 PAL Derivation

Observation 4 LAP and PAL have the same expected gradient.

Proof. From Corollary 1 we have:

LPAL(δ(i)) =
1

λ
|pr(i)|×LHuber(δ(i))

=
1

λ
|max(|δ(i)|α, 1)|×LHuber(δ(i))

=
1

λ
|max(|δ(i)|α, 1)|×

{
0.5δ(i)2 if |δ(i)| ≤ 1,

|δ(i)| otherwise,

=
1

λ

{
0.5δ(i)2 if |δ(i)| ≤ 1,
|δ(i)|1+α

1+α otherwise,

(16)

where

λ =

∑
j pr(j)

N
=

∑
j max(|δ(j)|α, 1)

N
. (17)

Then by Corollary 1, LAP and PAL have the same expected gradient.

�

4

B Computational Complexity Results

A bottleneck in the usage of prioritized experience replay (PER) [1] is the computational cost induced
by non-uniform sampling. Most implementations of PER use a sum-tree to keep the sampling cost
to O(log (N)) , whereN is the number of elements in the buffer. However, we found common
implementations to have inef�cient aspects, mainly unnecessary for-loops. Since a mini-batch is
sampled every time step, any inef�ciency can add signi�cant costs to the run time of the algorithm.
While our implementation has no algorithmic differences and still relies on a sum-tree, we found it
signi�cantly outperformed previous implementations.

Figure 1: The average run time increase of different implementations of PER in minutes, over 1 million time
steps and averaged over 3 trials. Time increase of SAC is provided to give a better understanding of the
signi�cance. Our implementation only adds a cost of 11 minutes, per million time steps, while the OpenAI
baselines implementation adds over 3 hours.

We compare the run time of our implementation of PER with two standard implementations, OpenAI
baselines [2] and Dopamine [3]. To keep things fair, all components of the experience replay
buffer and algorithm are �xed across all comparisons, and only the sampling of the indices of stored
transitions and the computation of the importance sampling weights is replaced. Both implementations
are taken from the master branch in early February 20201. Each implementation of PER is combined
with TD3. The OpenAI baselines implementation uses an additional sum-tree to compute the
minimum over the entire replay buffer to compute the importance sampling weights. However, to
keep the computational costs comparable, we remove this additional sum-tree and use a per-batch
minimum, similar to Dopamine and our own implementation. Additionally, we compare against
TD3 with a uniform experience replay as well as SAC [4]. All time-based experiments are run
on a single GeForce GTX 1080 GPU and a Intel Core i7-6700K CPU. Our results are presented
in Figure 1 and Table 1.

Table 1: Average run time of different implementations of PER, and their percentage increase over TD3 with
a uniform buffer. Values are computed over 1 million time steps and averaged over 3 trials. Run time of TD3
and SAC with uniform buffers are also provided to give a better understanding of the scale.� captures a 95%
con�dence interval over the run time. Fastest run time implementation of PER is bolded.

TD3 + Uniform TD3 + Ours TD3 + Dopamine TD3 + Baselines SAC

Run Time (mins) 81.62� 1.14 92.78� 0.93 143.02� 1.75 268.80� 7.39 139.70� 2.22
Time Increase (%) +0.00% +13.68% +75.24% +229.35% +71.17%

We �nd our implementation of PER greatly outperforms the other standard implementations in terms
of run time. This means PER can be added to most methods without signi�cant computational costs if
implemented ef�ciently. Additionally, we �nd that TD3 with PER can be run faster than a comparable
and commonly used method, SAC. Our implementation of PER adds less than 50 lines of code to the
standard experience replay buffer code. We hope the additional ef�ciency will enable further research
in non-uniform sampling methods.

1OpenAI baselines https://github.com/openai/baselines , commit:
ea25b9e8b234e6ee1bca43083f8f3cf974143998, Dopaminehttps://github.com/google/dopamine ,
commit: e7d780d7c80954b7c396d984325002d60557f7d1.

5

https://github.com/openai/baselines
https://github.com/google/dopamine

C Additional Experiments

In this section we perform additional experiments and visualizations, covering ablation studies,
additional baselines and display the learning curves for the Atari results.

C.1 Ablation Study

To better understand the contributions of each component in PAL, we perform an ablation study.
We aim to understand the importance of the scaling factor1

� = NP
j max(j � (j) j � ;1) as well as the

differences between the proposed loss and the comparable Huber loss [5], by considering all possible
combinations. Notably, when� = 0 , PAL equals the Huber loss with the scaling factor. As discussed
in the Experimental Details, Appendix D, PAL uses� = 0 :4. The results are reported in Figure 2 and
Table 2.

We �nd the complete loss of PAL achieves the highest performance, and PAL without the1
� scale

factor to be the second highest. Interestingly, while TD3 with the Huber loss performs poorly, scaling
by 1

� adds fairly signi�cant gains in performance.

Figure 2: Learning curves for the ablation study on the suite of OpenAI gym continuous control tasks in MuJoCo.
Curves are averaged over 10 trials, where the shaded area represents a 95% con�dence interval over the trials.

Table 2: Average performance over the last 10 evaluations and 10 trials.� captures a 95% con�dence interval.
Scores are bold if the con�dence interval intersects with the con�dence interval of the highest performance,
except for HalfCheetah and Walker2d where all scores satisfy this condition.

TD3 TD3 + Huber TD3 + Huber +1
� TD3 + PAL - 1

� TD3 + PAL

HalfCheetah 13570.9� 794.2 14820.5� 785.5 13772.2� 685.7 14404� 642.2 15012.2� 885.4
Hopper 3393.2� 381.9 2125.7� 596.9 3442.2� 319.4 3135.8� 479.5 3129.1� 473.5
Walker2d 4692.4� 423.6 4311.3� 1219.2 4707.3� 435.3 5313.7� 368.2 5218.7� 422.6
Ant 6469.9� 200.3 4952.6� 1204.2 6499.2� 162.7 6322.7� 564.3 6476.2� 640.2
Humanoid 6437.5� 349.3 5039.1� 1631.5 6163.2� 331.7 7493.4� 645.3 8265.9� 519.0

C.2 Additional Baselines

To better compare our algorithm against other recent adjustments to replay buffers and non-uniform
sampling, we compare LAP and PAL against the Emphasizing Recent Experience (ERE) replay
buffer [6] combined with TD3. To implement ERE we modify our training procedure slightly, such
thatX training iterations are the applied at the end of each episode, whereX is the length of the
episode. ERE works by limiting the transitions sampled to only theN most recent transitions, where
N changes over theX training iterations. Additionally, we add a baseline of the simplest version
of LAP which uses the L1 loss, rather than the Huber loss and samples transitions with priority
pr(i) = j� (i)j � , denoted TD3+L1+� . Results are reported in Figure 3 and Table 3.

We �nd that LAP and PAL with TD3 outperform ERE. The addition of ERE outperforms vanilla
TD3 and improves early learning performance in several tasks. We remark that the addition of ERE
does not directly con�ict with LAP and PAL. PAL can be directly combined with ERE with no
other modi�cations. LAP can be combined by only performing the non-uniform sampling on the
corresponding subset of transitions determined by ERE. We leave these combinations to future work.
We also �nd that LAP and PAL outperform the simplest version of LAP with the L1 loss. This
demonstrates the importance of the Huber loss in LAP.

6

	Detailed Proofs
	Theorem 1
	Theorem 2
	Theorem 3
	PAL Derivation

	Computational Complexity Results
	Additional Experiments
	Ablation Study
	Additional Baselines
	Full Atari Results

	Experimental Details
	MuJoCo Experimental Details
	Atari Experimental Details

