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Abstract

Lossy gradient compression has become a practical tool to overcome the communi-1

cation bottleneck in centrally coordinated distributed training of machine learning2

models. However, algorithms for decentralized training with compressed commu-3

nication over arbitrary connected networks have been more complicated, requiring4

additional memory and hyperparameters. We introduce a simple algorithm that5

directly compresses the model differences between neighboring workers using low-6

rank linear compressors applied to model differences. Inspired by the PowerSGD7

algorithm for centralized deep learning (Vogels et al., 2019), this algorithm uses8

power iteration steps to maximize the information transferred per bit. We prove9

that our method requires no additional hyperparameters, converges faster than prior10

methods, and is asymptotically independent of both the network and the compres-11

sion. Out of the box, these compressors perform on par with state-of-the-art tuned12

compression algorithms in a series of deep learning benchmarks.13

1 Introduction14

The major advances in machine learning in the last decade have been made possible by very large15

datasets collected by multifaceted organizations. We live in a society where almost every individual16

owns electronic devices that collect huge amounts of data, which—when used collaboratively—could17

lead to transformative insights (Nedic, 2020). Often this data is bound to the device it is captured on.18

This might be for practical reasons of efficiency, or for more fundamental reasons such as privacy19

constraints. Centralized systems present a single point of failure both for data transfer, as well as for20

information security and privacy (Kairouz et al., 2019).21

The paradigm of decentralized machine learning is key to leveraging the potential of this new kind of22

data. In this model, each connected device (node) has its own data. Each node can only communicate23

with few others, and together, the network of sparsely connected nodes aims to collaboratively train a24

model that minimizes a loss function on their joint dataset. The decentralized approach is not only25

useful in fundamentally decentralized systems, but the sparse communication patterns can sometimes26

even lead to efficiency gains in datacenter settings (Assran et al., 2019).27

In bringing decentralized optimization algorithms into the realm of deep learning, the more-than28

gigabytes large model parameters and gradients (Rajbhandari et al., 2019; Brown et al., 2020) have29

spurred interest in communication compression techniques to reduce the bandwidth requirements of30

training such models. While practical plug-and-play compressors already exist for communication in31

centralized deep learning (Seide et al., 2014; Vogels et al., 2019) that can retain full model quality at32

significant communication reductions, current compression algorithms in decentralized optimization33

require the tuning of additional hyperparameters. This is unfortunate, since running many experiments34

to tune these hyperparameters is especially challenging and costly in a decentralized environment.35
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In this paper, we study a specific class of low-rank compressors for decentralized optimization36

inspired by (Vogels et al., 2019) that are reliable and require no tuning. Our low-rank compressor37

considers model parameters as matrices X, and runs power iterations on the difference of two node’s38

parameters Xi −Xj to obtain a good low-rank approximation. Because these steps are linear, they39

can be executed in a distributed fashion, avoiding the expensive communication of full matrices.40

We validate these plug-and-play compressors on decentralized image classification and language41

modeling tasks, and show that we can achieve competitive performance to other methods that require42

additionally tuned hyperparameters. This allows users to tune a learning rate in a simpler centralized43

setup, and then transition to decentralized learning without extra effort. We prove hyperparameter-44

free convergence on a subclass of random low-rank approximations. For consensus, our method45

converges faster than prior methods (Koloskova et al., 2019b). For stochastic optimization, our rates46

are asymptotically independent of the compression rate.47

2 Related work48

Communication compression in centrally coordinated learning. Communication compression49

is an established approach to alleviate the communication bottleneck in parallel optimization in deep50

learning. While Alistarh et al. (2017); Wen et al. (2017); Seide et al. (2014); Bernstein et al. (2019);51

Karimireddy et al. (2019b) study gradient quantization, it is also possible to only send gradient52

coordinates with the largest absolute values Lin et al. (2018); Stich et al. (2018); Wangni et al. (2018).53

It has become clear that linear compression operators are practical in the centralized setting because54

they enable efficient all-reduce aggregation (Yu et al., 2018; Vogels et al., 2019; Cho et al., 2019).55

Ivkin et al. (2019) use linear sketches to detect which parameter coordinates change most in a dis-56

tributed setting. Wang et al. (2018) observed that gradients in deep learning can be well approximated57

as low-rank matrices. The PowerSGD algorithm (Vogels et al., 2019), on which this work is based, is58

both linear and low-rank and performed well in a recent benchmark (Xu et al., 2020).59

Decentralized optimization. Decentralized, or ‘gossip’-based, optimization has been studied for60

many years (Tsitsiklis, 1984). Popular methods include those based on (stochastic) subgradient61

descent (Nedic & Ozdaglar, 2009) on node’s local objective functions and with averaging between62

sparsely connected neighbors. Lian et al. (2017) evaluated the effectiveness of such schemes in the63

non-convex setting.64

Tang et al. (2018) extend decentralized optimization with compressed communication, but require65

relatively high precision compression to ensure convergence. Koloskova et al. (2019a) and Tang et al.66

(2019) alleviate this constraint, supporting arbitrary-strength compression. Lu & Sa (2020) study a67

compression based on the assumption that model differences across connected nodes are coordinate-68

wise bounded. However, the abovementioned methods introduce additional hyperparameters specific69

to compression (e.g. the consensus stepsize)—an inconvenience we overcome in this work.70

3 Decentralized machine learning71

Decentralized multi-worker training of machine learning models has two key characteristics. Firstly,72

there is no central ‘master’ node and nodes can only communicate with a limited number of neighbors.73

This can either be a physical limitation of the network, or it can be desirable for performance. In a74

datacenter, sparse, decentralized connectivity leads to excellent scalability (Assran et al., 2019). The75

second characteristic is distributed data: each worker has their own data that potentially come from76

non-identical distributions. This can also be a hard limitation (e.g. to protect privacy), or it can be77

desirable for co-locality of computation and data.78

The setup is formalized as follows: n worker nodes aim to collectively minimize a loss function79

f(X) :=
1

n

n∑
i=1

fi(X), fi(X) := Eξi∼Di
Fi(X, ξi)

over model parameters X, where fi(·) are smooth potentially non-convex loss functions over local80

data distributions Di. We assume that X ∈ Rp×q where p represents the size of the ‘input’ and q is81

the output size. For linear models, this matrix representation is natural. For multi-layer networks,82

each weight and bias is considered separately, and for convolutional layers, q represents the number83

of input layers and the kernel size and p is the number of output channels.84
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The network topology is represented by an undirected connected graph G that connects nodes i85

with their neighbors Ni (including self-links). Communication between nodes i and j is typically86

weighted by the i, j-th entry of a mixing matrix W ∈ Rn,n which is non-zero only for connected87

nodes. This matrix is chosen such that for any scalars v ∈ Rn held by the nodes, repeated averaging88

(gossip) between connected nodes, Wv, gradually leads to consensus, vi → 1
n

∑n
i=1 vi ∀i.89

In stochastic gradient-based optimization, each worker typically has its own model parameters Xi.90

Gossip averaging is used to bring the Xi’s closer together and share information between nodes,91

while local stochastic gradient updates change Xi to fit local data. Our methods builds on the elegant92

DP-SGD algorithm (Lian et al., 2017). In DP-SGD, for each timestep t and each worker i,93

X
(t+1)
i := X

(t)
i − η∇fi(X

(t)
i , ξi,t) +

∑
j∈Ni

Wij

(
X

(t)
j −X

(t)
i

)
, (1)

where ηi is the learning rate and ξi,t ∼ Di represents a local data point. Note that each step requires94

sending and receiving the full model parameters between all pairs of connected neighbors, but that95

this communication can be overlapped with computation of the stochastic gradient.96

4 Algorithm97

Naively applying lossy communication compression (quantization / sparsification) to the gossip update98

in Eq. (1) leads to non-convergence. To support arbitrary compression, prior approaches introduce99

algorithmic modifications and additional hyperparameters to tune (Koloskova et al., 2019b; Tang et al.,100

2019, 2018). In this section, we introduce PowerGossip, a compressed consensus algorithm based101

on low-rank approximations and power iteration that does not suffer from these issues. Low-rank102

decomposition has already been shown to perform well in centralized deep learning (Vogels et al.,103

2019; Cho et al., 2019; Xu et al., 2020), and we find that they can be competitive with expensively104

tuned quantization- or sparsification-based algorithms for decentralized training as well.105

PowerGossip is based on the premise that Cv(X) := (Xv)v>, for a matrix X ∈ Rp×q and vector106

v ∈ Rq with ‖v‖2 = 1, can be a reasonable low-rank approximation of X that can be communicated107

with only p floats instead of p× q, given that all parties know v. For the large weight matrices in deep108

learning, this reduction is significant. For a random v, Cv is a random projection, while for v being109

the top right singular vector, Cv(X) is the best rank-1 approximation of X in the Frobenius norm.110

We use the low-rank compressor Cv to reduce communication in the gossip part of Eq. (1):111

X
(t+1)
i := X

(t)
i +

∑
j∈Ni

Wij Cvij (X
(t)
j −X

(t)
i ), (2)

for a time-varying vector vij shared between each pair of connected workers. Due to linearity,112

Cv(Xj −Xi) = (Xj −Xi)vv> = (Xjv −Xiv)v>. Therefore, the compressed difference can be113

computed jointly by nodes i and j without ever communicating the full Xj −Xi. Thus any nodes i114

and j only need to exchange vectors instead of matrices.115

The approximation quality of Cv depends on the choice of the projection vector v, and we leverage116

the mechanism of power iteration to find good ones. Every time (k) the compressor Cv is used on117

some parameter difference D(k) := X
(k)
j −X

(k)
i , we choose v(k) based on the previous low-rank118

approximation. Starting with a random initial vector v(0), we use119

v(2k+1) :=
D(2k)v(2k)

‖D(2k)v(2k)‖ , v(2k) :=
D(2k−1)>v(2k−1)

‖D(2k−1)>v(2k−1)‖ , ∀k ∈ Z≥0. (3)

If X
(k)
j −X

(k)
i changes slowly over time, this procedure approaches power iteration and it finds the120

top eigenvector v. This approach empirically leads to better approximations and faster convergence121

than compression with random projections.122

Algorithm 1 describes how we use PowerGossip for stochastic optimization. Algorithm 2 presents123

the details of our compression scheme.124

4.1 Properties125

Linearity. Due to the linearity of matrix multiplication, we can compute a matrix-vector product126

(Xi−Xj)v with matrices stored on different workers in a distributed fashion as (Xiv)−(Xjv). This127
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Algorithm 1 Decentralized SGD with edge-wise compression

1: input model parameters X
(0)
i ∈ Rp×q for each node i out of n, randomly initialized identically

2: given a symmetric, doubly stochastic, diffusion matrix W ∈ RN×N
3: given a compressor C that can approximate Xi −Xj with little communication
4: for each timestep t at each worker i do
5: G← a stochastic gradient∇f(X

(t−1)
i , ξi,t) for mini-batch ξi,t

6: X
(t)
i ← X

(t−1)
i +

∑
j∈Ni

WijC(X(t−1)
j −X

(t−1)
i )− η ·G

7: end for

Algorithm 2 Rank-1 s-step PowerGossip compression for Algorithm 1
1: initialize a projection vector vij = −vji ∈ Rq for each pair of connected nodes i, j, initialized

from an entry-wise standard normal distribution, stored on nodes i and j. Initialize k ← 0.
2: procedure C(Xj −Xi)
3: for s power iteration steps do
4: increment k ← k + 1
5: if k ≡ 1 mod 2 then
6: v̂← vij

‖vij‖
7: pj ← Xjv̂, pi ← Xiv̂ . computed on nodes i and j
8: Q̂← (pj − pi)v̂

>

9: vij ← pj − pi . vij changes between Rp and Rq
10: else
11: do the same, but with X transposed as in Eq. (3).
12: end if
13: end for
14: return the approximation Q̂
15: end procedure
16: note that computations of C(Xj −Xi) = −C(Xi −Xj) overlap and share communication.

circumvents communication of matrices by sending much smaller vectors instead. By compressing128

the differences of the models, we ensure that the models get closer to the average in every step without129

the need for additional ‘consensus stepsize’ like prior protocols. In particular, if two workers agree130

on the parameters and their difference is 0, then the compressed update will also be 0. This ensures131

that consensus is always a fixed-point of our method for arbitrary-strength compressors.132

Low-rank compression. PowerGossip approximates differences between model parameters by133

low-rank matrices. The quality of these approximations depends on the power spectra of the134

differences. Similar to how top-k compression—which approximates a vector by its top k coordinate135

in absolute value, and zeros otherwise—works best when a few coordinates are much larger than the136

rest, low-rank compression can leverage the peaky power spectra found in deep learning (Vogels et al.,137

2019; Cho et al., 2019) to maximize information sent per bit. Our experiments in Section 6 confirm138

that low-rank compression is competitive with quantization- or sparsification-based approaches, while139

keeping our algorithm simple and free of hyperparameters.140

Memory and computation complexity. The linear projection operations in PowerGossip are well141

suited for accelerator hardware used in deep learning (Vogels et al., 2019; Cho et al., 2019; Xu et al.,142

2020), and are typically even faster than compression based on random sparsification or quantization.143

Like in DP-SGD (Lian et al., 2017), this computation and the communication between nodes can be144

overlapped with gradient computation. Storing the previous projection vectors v requires memory145

linear in the number of connections per worker, but these vectors are very small compared to a146

full model (0.1–2% of the full model in our experiments). This yields lower memory usage than147

competing methods ChocoGossip Koloskova et al. (2019a) and DeepSqueeze Tang et al. (2019).148
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5 Theoretical analysis149

5.1 Assumptions and setup150

Loss functions. We make standard assumptions about our loss functions. Note that our analysis151

covers both functions satisfying (A1), as well as more general non-convex functions which do not.152

(A1) fi is µ-convex for µ ≥ 0 if it satisfies for any X, and X? minimizing f153

∇fi(X) ◦ (X? −X) ≤ −
(
fi(X)− fi(X?) +

µ

2
‖X−X?‖2F

)
.

(A2) We assume {fi} are L-smooth and thus satisfy:154

‖∇fi(X)−∇fi(Y)‖F ≤ L‖X−Y‖F , for any i,X ,Y .

(A3) Bounded variance: We assume there exist constants σ2 and ζ2 which bound the variance155

within and across different nodes, i.e. for any X we have156

Eξi∼Di‖∇Fi(X, ξi)−∇fi(X)‖2F ≤ σ2 and 1
N

∑N
i=1‖∇fi(X)−∇f(X)‖2F ≤ ζ2 .

Assumption A1 is known as star-convexity and is weaker than the usual definition of convexity (Stich157

& Karimireddy, 2019). While A3 requires both the variance within each node as well as across the158

nodes be bounded, we allow for heterogeneous (non-iid) data distributions across the nodes.159

Communication network. We assume that we are given a mixing matrix W ∈ Rn×n and an160

underlying communication network over n nodes ([n], E) satisfying (A4):161

(A4) Wij 6= 0 only if (i, j) ∈ E, and W ∈ Rn×n is symmetric (W>=W) and doubly stochastic162

(W1=1,1>W=1>). Further, W2 has eigenvalues 1 = λ2
1 ≥ λ2

w ≥ . . . λ2
n with spectral163

gap ρ := 1− λ2
2 > 0.164

Assumption (A4) characterizes the mixing matrix W for decentralized optimization and controls the165

rate of information spread in the network (Lian et al., 2017; Pu & Nedic, 2018). If W satisfies (A4)166

for ρ > 0, then the underlying communication network is undirected and strongly connected.167

Compression operators. We introduce a new class of compression operators C(·) and assume that168

every compressor used in Algorithm 1 satisfies (A5):169

(A5) We assume that C is a δ-approximate unbiased linear projection operator i.e. for any X and170

Y, the following are true for some δ > 0:171

C(X + Y) = C(X) + C(Y) , C(C(X)) = C(X) , and E[C(X)] = δX .

Consider a random-p sampler whose (i, j) element [Sp(X)]i,j is Xi,j with probability p and 0172

otherwise. Then Sp(·) is a linear projection operator satisfying (A5) with δ = p.173

For a second example closer to Algorithm 2, consider the following compressor for X ∈ Rp,q:174

R(X) := (Xu)u> for u ∼ S(q−1) ,

i.e. we project X along u which is sampled uniformly from the unit sphere. The operator R(X)175

approximates X as a product of two rank-1 matrices u and Xu. Then, R(·) is clearly linear in176

X, is an unbiased projection operator, and satisfies (A5) with δ = 1
q . We can also approximate177

X by two rank-k matrices as Rk(X) = (XU)U> for U ∈ Rq×k being a uniformly sampled178

orthonormal matrix. Then Rk(·) satisfies (A5) with δ = k
q . We can also define a left projection179

operator L(X) := v(v>X) for v ∼ S(p−1). The operator L(·) approximates X with two rank-1180

matrices v and X>v and satisfies (A5) with δ = 1
p .181

While (A5) defines a specific class of compression operators which are a subset of those considered182

in (Koloskova et al., 2019b), they can still be of arbitrary approximation quality δ > 0.183

5.2 Convergence rates184

We study the rate of consensus as well as convergence of the objective function in stochastic185

optimization with compressed communication. Our analysis shows that our algorithm is not only186

simpler than the previous approaches, but also significantly faster. To simplify notation, we will use ·̄187

to indicate the average across the n nodes, e.g. X̄ := 1
n

∑n
i=1 Xi.188
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Compressed consensus. Suppose that every iteration, each worker i performs the following update:189

190

X
(t)
i := X

(t−1)
i +

∑
j∈Ni

Wij

(
C(t)
ij (X

(t−1)
j )− C(t)

ij (X
(t−1)
i )

)
. (4)

Each edge (i, j) can use a different compressor C(t)
ij that can be varied over time. In this update, only191

compressed parameters are communicated.192

Theorem I. Assuming all compressors C(t)
ij are δ-approximate satisfying (A5) and that the mixing193

matrix W has spectral gap ρ as in (A4), then the update (4) achieves consensus at a q-linear rate:194

1

N

N∑
i=1

E
∥∥X(t)

i − X̄(0)
∥∥2

F
≤ (1− ρδ) 1

N

N∑
i=1

∥∥X(t−1)
i − X̄(0)

∥∥2

F
.

Note that update (4) requires no additional parameters and that our rate is linear in both δ and ρ.195

When δ = 1, i.e. with uncompressed messages, the rate in I corresponds to the classical consensus196

rate (e.g. Xiao & Boyd, 2004a). In contrast, (Koloskova et al., 2019b) require a consensus stepsize,197

do not obtain q-linear rates, and are slower with a rate depending on ρ2δ instead of our ρδ.198

Compressed optimization. Consider the following algorithm where every node i performs the199

following updates using a sequence of predetermined stepsizes {ηt}:200

Y
(t)
i := X

(t−1)
i − ηt∇Fi(X, ξi,t)

X
(t)
i := Y

(t)
i +

∑
j∈Ni

Wij(C(t)
ij (Y

(t))
j )− C(t)

ij (Y
(t))
i )) . (5)

This algorithm is like PowerGossip, but it applies the consensus update of (4) after a local gradient201

update rather than simultaneously. Again, the compressors are allowed to vary across edges and202

with time, and only compressed parameters are communicated. After running for T steps, we will203

randomly pick the final model given some weights {αt} as204

Xout
i := X

(t)
i with probability proportional to αt. (6)

Theorem II. Suppose that assumptions A2–A5 hold at every round of (5). Then, in each of the205

following cases there exist a sequence of stepsizes {ηt} and weights {αt} such that the output X̄out206

computed using (5) and (6) is ε-accurate.207

• Non-convex: E‖∇f(X̄out)‖2 ≤ ε after208

T = O
(
Lσ2

nε2
+

√
L(ζ + σ)

ρδε3/2
+

L

ρδε

)
rounds.

• Convex: If {fi} are convex and satisfy (A1) with µ = 0, then E[f(X̄out)] ≤ ε after209

T = O
(
σ2

nε2
+

ζ + σ

ρδε3/2
+

L

ρδε

)
rounds.

• Strongly-convex: If {fi} satisfy (A1) with µ > 0, then E[f(X̄out)] ≤ ε after210

T = Õ
(
σ2

nµε
+

ζ + σ

ρδµ
√
ε

+
L

ρδµ
log
(1

ε

))
rounds.

Let us focus on the strongly convex case ignoring logarithmic factors. Theorem II proves that the211

iteration complexity is σ2

nµε + ζ+σ
ρδµ
√
ε

+ L
ρδµ log

(
1
ε

)
. This can be decomposed into three terms. The212

first stochastic term σ2

nµε is independent of both the compression factor δ as well as spectral-gap ρ213

implying that these terms do not affect the asymptotic rates. It scales linearly with the number214

of nodes n. The second term ζ+σ
ρδµ
√
ε

corresponds to the drift experienced and is a penalty due to215

computation of gradients at inexact points (Karimireddy et al., 2019a). However, this is asymptotically216

smaller than the stochastic term. Last is the optimization term L
ρδµ log

(
1
ε

)
, which is the slowed down217

by a factor of ρδ. If ρδ = 1, this term matches the linear rate of gradient descent on strongly218

convex functions (Nesterov, 2004). In contrast, the optimization term of (Koloskova et al., 2019b) is219

sub-linear. The dependence on ρ and δ is linear in our rates while (Koloskova et al., 2019b) have a220

quadratic dependence on ρ. With exact communication (δ = 1) we recover the rates of (Koloskova221

et al., 2020).222
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Figure 1: Consensus in an 8-ring. We study the level of consensus achieved as a function of
bits transmitted by decentralized averaging. We compare out-of-the-box PowerGossip with power
iterations and random projections against ChocoGossip (Koloskova et al., 2019b) with varying
diffusion parameters. PowerGossip is competitive to the best tuned instances of ChocoGossip, and
can leverage low rank structure in structured data (right).

6 Experimental analysis223

We study PowerGossip in three settings. We first evaluate bits of communication required to reach224

consensus between 8 workers in a ring through (compressed) gossip averaging. The workers start225

with personal data matrices Xi (i = 1 . . . 8) that are either unstructured, from a 100× 100 standard226

normal distribution, or structured, with 64× 64 images from the Faces Database (AT&T Laboratories227

Cambridge). Then we evaluate PowerGossip in deep learning. We study the algorithm on the228

Cifar-10 image classification benchmark of Koloskova et al. (2019a), using a ResNet-20 and labeled229

images that are reshuffled between 8 workers every epoch. We also follow the language modeling230

experiment on WikiText-2 with an LSTM from Vogels et al. (2019) and extend it to a decentralized231

setting with 16 workers in a ring. Here, the training data is strictly partitioned between workers,232

dividing the source text equally over the workers in the original ordering.233

In all experiments, we tune the hyperparameters of our baselines according to Appendix G and use234

the same learning rate as uncompressed centralized SGD for all instances of PowerGossip. Further235

details on the experimental settings are specified in Appendix C.236

Random projections v.s. power iteration. Power iteration helps PowerGossip to leverage ap-237

proximate low-rank structure in parameter differences between workers. This is illustrated by the238

consensus experiments in Figure 1. While on random data no compressed gossip algorithm outper-239

forms full-precision gossip in bits to an arbitrary level of consensus, PowerGossip can reliably use240

structure in images of faces AT&T Laboratories Cambridge with less communication.241

Algorithm Test loss

PowerGossip w/ Random projections 4.627
w/ Power iteration 4.565

DP-SGD 35× communication 4.583

In our deep learning experiments, we also ob-242

serve that PowerGossip requires less communi-243

cation than random projections. The table on the244

right shows that more efficient communication245

leads to improved test accuracy within a fixed246

budget of 90 epochs.247

Compression rate. The compression rate in PowerGossip is determined by the number of power248

iteration steps per stochastic gradient update. For models with large, square parameter tensors, like249

our LSTM (Appendix I), a single step of PowerGossip uses less than 0.1% of the bits used by an250

uncompressed averaging step. For a smaller model like the ResNet-20, the compression ratio is much251

lower. While our algorithm works for any compression rate, more gradient steps may be required to252

reach the same accuracy under extreme compression.253

In our experiments, we use compression levels similar to those studied in related work. At those254

levels, PowerGossip achieves test performance similar to uncompressed DP-SGD in the same number255

of steps. Our compression level is varied through the number of power iterations per gradient update.256

More power iteration steps speed up consensus at the cost of increased communication in the same257

way as increasing the rank of the compressor does (see Appendix F), but it requires less memory to258

store the previous approximation and avoids an expensive orthogonalization step (Vogels et al., 2019).259

Table 1 shows the effect of varying our compression rate while keeping the number of epochs fixed.260
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Algorithm η γ Test loss Sent/epoch

All-reduce (baseline) tuned 4.46
Uncompressed (DP-SGD) tuned 4.58 15.0 GB

PowerGossip (8 iterations) default 4.73 127 MB (122×)
PowerGossip (16 iterations) default 4.63 230 MB (67×)
PowerGossip (32 iterations) default 4.57 437 MB (35×)

Choco (Sign+Norm) tuned tuned 4.49 483 MB (32×)
Choco (top-1%) tuned tuned 5.04 464 MB (33×)

Table 1: Test loss achieved within 90 epochs on WikiText-2 language modeling with an LSTM on
a 16-ring with strictly partitioned training data. PowerGossip requires no tuning, supports varying
levels of compression, and is competitive to tuned ChocoSGD (Koloskova et al., 2019a) at a similar
compression rate, matching the test loss of uncompressed DP-SGD.

Algorithm η γ θ Test accuracy Sent/epoch

All-reduce (baseline) tuned 92.3%
Uncompressed (DP-SGD) tuned 92.1% 102 MB

Choco (top-1%) tuned tuned 91.2% 3.1 MB (33×)
Choco (Sign+Norm) tuned tuned 92.0% 3.2 MB (32×)
Moniqua (2-bit) tuned tuned tuned 90.7% 6.4 MB (16×)
DeepSqueeze (Sign+Norm) tuned tuned 91.2% 3.2 MB (32×)

PowerGossip (1 iteration) default 91.7% 1.8 MB (57×)
PowerGossip (2 iterations) default 91.9% 3.0 MB (34×)

Table 2: Test accuracy reached on Cifar-10 within 300 epochs with a ResNet-20 by decentralized
optimization algorithms. PowerGossip has no additional hyperparameters and is competitive to all
related work at a similar compression rate. Other algorithms used tuned learning rate η, averaging
stepsize γ. Moniqua has an additional parameter θ that can be computed or tuned.

Hyper-parameter tuning. In our experiments, we have strictly used the same learning rate tuned261

for centralized, uncompressed SGD for all PowerGossip configurations. Tables 1 and 2 show that we262

can reach performance competitive to DP-SGD in both tasks, at a similar compression rate to the best263

tuned configurations of ChocoSGD (Koloskova et al., 2019b) and DeepSqueeze (Tang et al., 2019).264

7 Conclusion265

The introduction of communication compression to decentralized learning has come with algorithmic266

changes that introduced new hyperparameters required to support arbitrary compression operators.267

Focusing on a special class of linear low-rank compression, we presented simple parameter-free268

algorithms that perform as well as the extensively tuned alternatives in decentralized learning. Using269

power-iterations, this method can leverage the approximate low-rank structure present in deep learning270

updates to maximize the information transferred per bit, and reduce the communication between271

workers significantly at no loss in quality compared to full-precision decentralized algorithms. This272

is achieved with lower memory consumption than current state-of-the-art decentralized optimization273

algorithms that use communication compression.274

Plug-and-play algorithms like PowerGossip can be directly deployed in a decentralized setting while275

reusing standard learning rates set in the centralized environment without compression. In view of276

the environmental, financial, and productivity impact of hyperparameter tuning in deep learning,277

such tuning-free methods are crucial for practical applicability of communication compression in278

decentralized machine learning.279
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8 Broader Impact280

We believe that the field of decentralized learning plays a key role in translating the recent successes281

in deep learning from large organizations with large centralized datasets to smaller industry players282

and individuals. In particular, decentralized and therefore collaborative training on decentralized283

data is an important building block towards helping to better align each individual’s data ownership284

and privacy with the resulting utility from jointly trained machine learning models. The ability285

to train collaboratively on decentralized data may lead to transformative insights in many fields,286

especially in applications where data is user-provided and privacy sensitive (Nedic, 2020). In addition287

to privacy, efficiency gains in distributed training reduce the environmental impact of training large288

machine learning models. The introduction of a practical and reliable communication compression289

technique is a small step towards achieving these goals on collaborative privacy-preserving and290

efficient decentralized learning.291

References292

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. QSGD: communication-efficient SGD293

via gradient quantization and encoding. In NeurIPS, pp. 1709–1720, 2017.294

Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochastic gradient push for distributed deep295

learning. In Proc. ICML, volume 97 of Proceedings of Machine Learning Research, pp. 344–353,296

2019.297

AT&T Laboratories Cambridge. AT&T database of faces. URL https://scikit-learn.org/0.298

19/datasets/olivetti_faces.html.299

Bernstein, J., Zhao, J., Azizzadenesheli, K., and Anandkumar, A. signsgd with majority vote is300

communication efficient and fault tolerant. In ICLR, 2019.301

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,302

P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,303

Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,304

S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.305

Language models are few-shot learners. CoRR, abs/2005.14165, 2020.306

Cho, M., Muthusamy, V., Nemanich, B., and Puri, R. GradZip: Gradient compression using307

alternating matrix factorization for large-scale deep learning, 2019.308

Frankle, J., Schwab, D. J., and Morcos, A. S. The early phase of neural network training. In ICLR,309

2020.310

Ivkin, N., Rothchild, D., Ullah, E., Braverman, V., Stoica, I., and Arora, R. Communication-efficient311

distributed SGD with sketching. In NeurIPS, pp. 13144–13154, 2019.312

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles,313

Z., Cormode, G., Cummings, R., D’Oliveira, R. G. L., Rouayheb, S. E., Evans, D., Gardner, J.,314

Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo,315

Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konecný, J., Korolova, A.,316

Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh,317

R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh,318

A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and319

Zhao, S. Advances and open problems in federated learning. CoRR, abs/1912.04977, 2019.320

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., and Suresh, A. T. SCAFFOLD:321

stochastic controlled averaging for on-device federated learning. CoRR, abs/1910.06378, 2019a.322

Karimireddy, S. P., Rebjock, Q., Stich, S. U., and Jaggi, M. Error feedback fixes signsgd and other323

gradient compression schemes. In Proc. ICML, volume 97 of Proceedings of Machine Learning324

Research, pp. 3252–3261, 2019b.325

Koloskova, A., Lin, T., Stich, S. U., and Jaggi, M. Decentralized deep learning with arbitrary326

communication compression. CoRR, abs/1907.09356, 2019a.327

9

https://scikit-learn.org/0.19/datasets/olivetti_faces.html
https://scikit-learn.org/0.19/datasets/olivetti_faces.html
https://scikit-learn.org/0.19/datasets/olivetti_faces.html


Koloskova, A., Stich, S. U., and Jaggi, M. Decentralized stochastic optimization and gossip algorithms328

with compressed communication. In Proc. ICML, volume 97 of Proceedings of Machine Learning329

Research, pp. 3478–3487, 2019b.330

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. U. A unified theory of decentralized331

SGD with changing topology and local updates. CoRR, abs/2003.10422, 2020.332

Lian, X., Zhang, C., Zhang, H., Hsieh, C., Zhang, W., and Liu, J. Can decentralized algorithms333

outperform centralized algorithms? A case study for decentralized parallel stochastic gradient334

descent. In NeurIPS, pp. 5330–5340, 2017.335

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep gradient compression: Reducing the336

communication bandwidth for distributed training. In ICLR, 2018.337

Lu, Y. and Sa, C. D. Moniqua: Modulo quantized communication in decentralized SGD. CoRR,338

abs/2002.11787, 2020.339

Nedic, A. Distributed gradient methods for convex machine learning problems in networks: Dis-340

tributed optimization. IEEE Signal Process. Mag., 37(3):92–101, 2020.341

Nedic, A. and Ozdaglar, A. E. Distributed subgradient methods for multi-agent optimization. IEEE342

Trans. Automat. Contr., 54(1):48–61, 2009.343

Nesterov, Y. E. Introductory Lectures on Convex Optimization - A Basic Course, volume 87 of344

Applied Optimization. Springer, 2004. ISBN 978-1-4613-4691-3. URL https://doi.org/10.345

1007/978-1-4419-8853-9.346

Pu, S. and Nedic, A. Distributed stochastic gradient tracking methods. CoRR, abs/1805.11454, 2018.347

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero: Memory optimization towards training A348

trillion parameter models. CoRR, abs/1910.02054, 2019.349

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochastic gradient descent and its application to350

data-parallel distributed training of speech dnns. In INTERSPEECH, pp. 1058–1062, 2014.351

Stich, S. U. and Karimireddy, S. P. The error-feedback framework: Better rates for SGD with delayed352

gradients and compressed communication. CoRR, abs/1909.05350, 2019.353

Stich, S. U., Cordonnier, J., and Jaggi, M. Sparsified SGD with memory. In NeurIPS, pp. 4452–4463,354

2018.355

Tang, H., Gan, S., Zhang, C., Zhang, T., and Liu, J. Communication compression for decentralized356

training. In NeurIPS, pp. 7663–7673, 2018.357

Tang, H., Lian, X., Qiu, S., Yuan, L., Zhang, C., Zhang, T., and Liu, J. Deepsqueeze: Parallel stochas-358

tic gradient descent with double-pass error-compensated compression. CoRR, abs/1907.07346,359

2019.360

Tsitsiklis, J. N. Problems in decentralized decision making and computation. PhD thesis, Mas-361

sachusetts Institute of Technology, Cambridge, MA, USA, 1984. URL http://hdl.handle.362

net/1721.1/15254.363

Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd: Practical low-rank gradient compression for364

distributed optimization. In NeurIPS, pp. 14236–14245, 2019.365

Wang, H., Sievert, S., Liu, S., Charles, Z. B., Papailiopoulos, D. S., and Wright, S. ATOMO:366

communication-efficient learning via atomic sparsification. In NeurIPS, pp. 9872–9883, 2018.367

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient sparsification for communication-efficient368

distributed optimization. In NeurIPS, pp. 1306–1316, 2018.369

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li, H. Terngrad: Ternary gradients to370

reduce communication in distributed deep learning. In NeurIPS, pp. 1509–1519, 2017.371

10

https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4419-8853-9
http://hdl.handle.net/1721.1/15254
http://hdl.handle.net/1721.1/15254
http://hdl.handle.net/1721.1/15254


Xiao, L. and Boyd, S. P. Fast linear iterations for distributed averaging. Syst. Control. Lett., 53(1):372

65–78, 2004a.373

Xiao, L. and Boyd, S. P. Fast linear iterations for distributed averaging. Syst. Control. Lett., 53(1):374

65–78, 2004b.375

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou, E. H., Karatsenidis, K., Canini, M.,376

and Kalnis, P. Compressed communication for distributed deep learning: Survey and quantitative377

evaluation. Technical report, 2020.378

Yu, M., Lin, Z., Narra, K., Li, S., Li, Y., Kim, N. S., Schwing, A. G., Annavaram, M., and Avestimehr,379

S. Gradiveq: Vector quantization for bandwidth-efficient gradient aggregation in distributed CNN380

training. In NeurIPS, pp. 5129–5139, 2018.381

11



A Compressed Consensus (Proof of Theorem I)382

Recall that the consensus update for each node i performs (4):383

X
(t)
i = X

(t−1)
i +

∑
j∈Ni

Wij(Cijt(X(t−1)
j )− Cijt(X(t−1)

i )) .

Lemma 1 (Preserves average). For every step of (4), X̄(t) = X̄(0).384

Proof. Note that for every edge (i, j) ∈ E, we add to node i exactly what is subtracted from node j.385

This preserves the average:386

X̄(t) =
1

n

n∑
i=1

X
(t−1)
i +

∑
j∈Ni

Wij(Cijt(X(t−1)
j )− Cijt(X(t−1)

i ))


= X̄(t−1) +

1

n

∑
(i,j)∈E

(
Wij(Cijt(X(t−1)

j )− Cijt(X(t−1)
i )) +Wji(Cjit(X(t−1)

i )− Cjit(X(t−1)
j ))

)
= X̄(t−1) .

The last equality follows because Wij = Wji and Cijt = Cjit.387

Lemma 2 (Effect of compression). Assuming (A4) and (A5) hold, the iteration (4) satisfies388

‖∆(t)
i ‖2F ≤ (1− δ)‖∆(t−1)

i ‖2F + δ‖
∑
j∈[N ]

Wij∆
(t−1)
j ‖2F .

where we define ∆
(t)
i := X

(t)
i − X̄(0).389

Proof. Starting from the consensus update and the fact that
∑
jWij = 1, we have390

X
(t)
i = X

(t−1)
i +

∑
j∈Ni

Wij(Cijt(X(t−1)
j )− Cijt(X(t−1)

i ))

= X
(t−1)
i +

∑
j∈[N ]

Wij(Cijt(X(t−1)
j −X

(t−1)
i ))

= X
(t−1)
i +

∑
j∈[N ]

WijΠijt(X
(t−1)
j −X

(t−1)
i ) .

The second equality used Wij 6= 0 only if (i, j) ∈ E and the linearity of the compressor. Finally,391

since Cijt is a linear projection, we can replace it by a projection matrix Πijt. Recall that Cijt is an392

δ-approximate linear projection which implies that Πijt satisfies393

E[Πijt] = E[Π>ijt] = E[Π>ijtΠijt] = δI . (7)

Further, since Πijt is a projection matrix, we have for any i, j394

Π>ijt � I
⇒Π>ijtΠikt � Πikt

⇒E[Π>ijtΠikt] � E[Πikt] = δI .

Note that we did not require any sort of independence between the projections Π>ijtΠikt in the above395

derivation. Armed with these properties of the projection matrices, we turn our attention to the error396

term defined as ∆
(t)
i := X

(t)
i − X̄(0). Our previous expression for X

(t)
i implies that397

∆
(t)
i = ∆

(t−1)
i +

∑
j∈[n]

WijΠijt(∆
(t−1)
j −∆

(t−1)
i ) .
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Expanding ∆
(t)
i

>
∆

(t)
i and taking expectations on both sides gives398

E[∆
(t)
i

>
∆

(t)
i ] = ∆

(t−1)
i

>
∆

(t−1)
i +

∑
j∈[n]

Wij∆
(t−1)
i

>
E[Πijt](∆

(t−1)
j −∆

(t−1)
i )

+
∑
j∈[n]

Wij(∆
(t−1)
j −∆

(t−1)
i )

>
E[Π>ijt]∆

(t−1)
i

+
∑
j,k∈[n]

WijWik(∆
(t−1)
j −∆

(t−1)
i )

>
E[Π>ijtΠikt](∆

(t−1)
k −∆

(t−1)
i )

�∆
(t−1)
i

>
∆

(t−1)
i +

∑
j∈[n]

δWij∆
(t−1)
i

>
(∆

(t−1)
j −∆

(t−1)
i )

+
∑
j∈[n]

δWij(∆
(t−1)
j −∆

(t−1)
i )

>
∆

(t−1)
i

+
∑
j,k∈[n]

δWijWik(∆
(t−1)
j −∆

(t−1)
i )

>
(∆

(t−1)
k −∆

(t−1)
i )

= ∆
(t−1)
i

>
∆

(t−1)
i − δ∆(t−1)

i ∆
(t−1)
i

>
+
∑
j,k∈[n]

δWijWjk∆
(t−1)
j

>
∆

(t−1)
k .

The second matrix inequality used the fact that if A � B then C>AC � C>BC for any C. The399

equality in the third step pulled out the terms which only depend on i from the expressions and400

used our assumption (A4) that
∑
jWij =

∑
iWij = 1. Taking trace on both sides and using401

Tr(AB) = Tr(BA) we can simplify the expression as402

E[Tr(∆
(t)
i

>
∆

(t)
i )] ≤ (1− δ) Tr(∆

(t−1)
i

>
∆

(t−1)
i ) + δTr((

∑
j∈[n]

Wij∆j)
>(
∑
j∈[n]

Wij∆j))

The lemma now follows by the definition of Frobenius norm ‖Z‖2F = Tr(Z>Z).403

Lemma 3 (Effect of mixing). Assuming that W has a spectral gap ρ as in (A4) and ∆
(t)
i :=404

X
(t)
i − X̄(0), we have405

1

n

∑
i∈[n]

∥∥∥∑
j∈[n]

Wij∆
(t−1)
j

∥∥∥2

F
≤ (1− ρ)

1

n

∑
i∈[n]

‖∆(t−1)
i ‖2F .

Proof. Follows from standard mixing arguments such as in (Xiao & Boyd, 2004b).406

Averaging lemma 2 over the nodes i and then applying Lemma 3 gives407

1

n

∑
i∈[n]

‖∆(t)
i ‖2F ≤ (1− δ) 1

n

∑
i∈[n]

‖∆(t−1)
i ‖2F + δ

1

n

∑
i∈[n]

∥∥∥∑
j∈[n]

Wij∆
(t−1)
j

∥∥∥2

F

≤ (1− δ + δ(1− ρ))
1

n

∑
i∈[n]

‖∆(t−1)
i ‖2F

= (1− ρδ) 1

n

∑
i∈[n]

‖∆(t−1)
i ‖2F .

This proves the statement of Theorem I.408

B Compressed optimization (Proof of Theorem II)409

We will use two main results proved in the previous section about our consensus step: that the410

average is preserved (Lemma 1), and that every step is a contraction in expectation (Theorem I). Any411

consensus operator which satisfies these two properties directly ensures convergence of the stochastic412

optimization method by the proof technique of (Koloskova et al., 2020). In particular, this shows413

that we satisfy Assumption 4 of (Koloskova et al., 2020) with p = ρδ. Replacing p with ρδ in their414

Theorem 2 yields the desired rates.415
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C Experimental settings416

Tables 3, 4 and 5 describe the implementation details of our experiments.417

Table 3: Default experimental settings for Cifar-10/ResNet-20 (based on Koloskova et al., 2019a)

Dataset Cifar-10
Data augmentation random horizontal flip and random 32× 32 cropping
Architecture ResNet-20
Training objective cross entropy
Evaluation objective top-1 accuracy

Number of workers 8
Topology ring
NetworkWij 0.436 for neighbors i, j, 0.128 if i = j, 0 otherwise

(optimized for largest spectral gap)
Data reshuffled between workers every epoch

Batch size 128× number of workers
Momentum 0.9
Learning rate Tuned. PowerGossip uses the same as uncompressed centralized all-reduce.
LR decay /10 at epoch 150 and 250
LR warmup Step-wise linearly within 5 epochs, starting from 0.1
# Epochs 300
Weight decay 10−4, 0 for BatchNorm parameters

Repetitions 6, with varying seeds
Reported metric Worst result of any worker of the worker’s mean test accuracy over the last 5 epochs

Table 4: Default experimental settings for WikiText-2 (based on Vogels et al., 2019)

Dataset Word-level WikiText-2
Tokenizer Spacy
Architecture 3-layer LSTM
Training objective cross entropy
Evaluation objective cross entropy / perplexity

Number of workers 16
Topology ring
NetworkWij

1
3 for neighbors i, j, 1

3 if i = j, 0 otherwise
(common settings, worked better for DPSGD than weights used for Cifar-10)

Data Source text strictly divided into 16 equal chunks, always remain on worker

Batch size 64× number of workers
Momentum 0.0
Learning rate Tuned. PowerGossip uses the same as uncompressed centralized all-reduce.
LR decay /10 at epoch 60 and 80
LR warmup Step-wise linearly within 5 epochs, starting from 1.25
# Epochs 90
Weight decay 0.0

Repetitions 2
Reported metric Worst result of any worker of the worker’s mean test cross entropy over the last 5 epochs

Table 5: Experimental settings for Consensus

Number of workers 8
Topology ring
NetworkWij 0.436 for neighbors i, j, 0.128 if i = j, 0 otherwise

(optimized for largest spectral gap)

Data 100× 100 random normal data
or 8 randomly selected 64× 64 faces from (AT&T Laboratories Cambridge)

Objective minimize 1
8

∑8
i=1

(
X

(t)
i − X̄

(0)
)2

D Convergence curves418

Below, we plot the convergence curves in terms of test accuracy, as a function of either gradient419

updates (epochs) or bits sent per worker. In all our experiments, we have used a fixed number of420

epochs and a learning rate schedule that is common for full precision centralized training. It is421

possible that experiments with high communication compression would benefit from more epochs or422

a slightly different learning rate schedule.423
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D.2 LSTM on WikiText-2426
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E The power spectrum of parameter differences428

E.1 LSTM Training429

The plots below show the power spectra of parameter differences observed while training the LSTM430

(Appendix I). We train with 16 workers connected in a ring, using PowerGossip with 32 power431

iterations per gradient update. During training, we record the power spectra of the differences432

between the parameters of connected workers 0-1, 4-5 and 8-9 at 4 different training stages. Lines433

are averages of the spectra observed between the three worker pairs.434

The power spectra change significantly over time, but at most stages, they show that a few singular435

vectors cary more weight than others. This structure can be exploited by PowerGossip with power436

iterations. Especially in early training, the power spectra are peaky. This phase has been observed to437

be critical for successful training of non-convex models (Frankle et al., 2020).438
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E.2 Consensus440

The effect of a peaky spectrum on PowerGossip shows in our consensus experiments. When we plot441

the spectra of parameter differences between neighboring workers at initialization, we see that faces442

from the Faces Database (AT&T Laboratories Cambridge) can be approximated better with a low-rank443

approximation than random normal matrices. This is the reason why, in Figure 1, PowerGossip with444

power iterations is more efficient per-bit than uncompressed gossip for this dataset.445
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F Changing rank vs changing # power iterations447

PowerSGD (Vogels et al., 2019), the algorithm on which PowerGossip is inspired, control their448

compression rate by varying the rank of the low-rank approximations. While this strategy is effective449

in terms of quality, it requires their projection matrices to be orthogonalized at every step of power450

iteration, rather than normalized. This operation scales as the square of the approximation rank, and451

is reported to be the most expensive step of the algorithm. A second disadvantage of using a high452

rank is that the memory required to store previous low-rank approximations scales linearly with the453

rank as well.454

In PowerGossip, we adopt an alternative approach where we use multiple rank-1 power iteration455

steps per gradient update instead of one step with higher accuracy. In the table below, we show that456

this alteration has no impact on the performance of our method, evaluated with a fixed budget of457

90 epochs on WikiText-2 language modeling. For the same total communication budget, we reach458

similar test loss.459
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Sent/epoch PowerGossip rank Num. power iterations WikiText-2 test loss

127 MB 1 8 4.73
230 MB 1 16 4.63
437 MB 1 32 4.58

2 16 4.58
4 8 4.58
8 4 4.58

460

G Hyperparameters461

G.1 Consensus462

In Figure 1, we plot results obtained with two compressors in ChocoGossip Koloskova et al. (2019b),463

using 20 consensus step size parameters γ ranging from 7.6× 10−5 to 1 on an exponential grid. The464

optimal hyperparameter depends on the compressor used.465

G.2 ResNet-20 on Cifar-10466

The table below specifies the optimizer-specific hyperparameters that we used in our experiments.467

For our baselines DeepSqueeze and ChocoSGD, we use tuned hyperparameters from Koloskova et al.468

(2019a).469

Learning rate η Consensus rate γ Modulo parameter θ

Method Tested Used Tested Used Tested Used

All-reduce (baseline) {0.8, 1.13, 1.6} 1.13
Uncompressed DP-SGD {0.8, 1.13, 1.6} 1.13
Choco (top-1%) {0.96, 1.2, 1.6}? 1.13 {0.025, 0.0375, 0.075, 0.15}? 0.0375
Choco (Sign+Norm) {1.2, 1.6, 2.4}? 1.6 {0.15, 0.2, 0.45, 1}? 0.45
Moniqua (2-bit) {0.1, 0.2, 0.4, 0.8} 0.4 {0.01, 0.005, 0.0025, 0.0012}† 0.005 {0.125, 0.25, 0.5} 0.25
DeepSqueeze (Sign+Norm) {0.24, 0.48, 0.96} 0.48 {0.005, 0.01, 0.05}? 0.01
PowerGossip (1 iteration) 11.3
PowerGossip (2 iterations) 11.3

470

?: based on published tuned parameters and the tuning strategy from the authors of471

ChocoSGD (Koloskova et al., 2019a).472

†: the concensus step size was tuned after the other parameters, not in a full grid.473

G.3 LSTM on WikiText-2474

The table below specifies the optimizer-specific hyperparameters that we used in our experiments.475

Learning rate η Consensus rate γ Modulo parameter θ

Method Tested Used Tested Used Tested Used

All-reduce (baseline) {15, 20, 27.5, 35, 47.5} 47.5
Uncompressed DP-SGD {15, 20, 27.5, 35, 47.5} 47.5
Choco (top-1%)† {47.5} {0.01, 0.1, 0.2, 0.4, 0.8}
Choco (Sign+Norm) {35, 47.5} 47.5 {0.4, 0.6, 0.8, 1.0} 0.8
PowerGossip (? iterations) 47.5

476

†: did not converge. We did not report this result, as more tuning may help.477

H Compared-to algorithm implementations478

In the sections below, we describe the implementation details of the algorithms we compare to. We479

provide the code for our implementations on Github (after deanonimization).480

H.1 ChocoSGD481

We implement Algorithm 1 of (Koloskova et al., 2019a), which differs slightly from Algorithm 2 in482

(Koloskova et al., 2019b), in that it executes consensus steps and gradient updates in parallel like483

DP-SGD.484

We use three compressors in our experiments. As customary, we compress each tensor parameter of485

our neural networks separately.486

• Sign+Norm Q(x) = sign(x) · ‖x‖1
length(x) . We confirm the author’s observations that this487

compressor gives the best and most reliable results.488
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• top-1% Let p99(x) represent the 99th percentile of coordinates in x by absolute value. Here489

Q(x)i = xi if xi ≥ p99(x), 0 otherwise.

To communicate the top 1% of a vector, we communicate 32-bit float values and 64-bit integer490

indices, following the authors.491

• SVD This low-rank compressor has not been used with ChocoSGD, but we have evaluated492

it because our proposed method is also based on low-rank compression. This compressor493

represents a matrix X by (Xv)v>, where v is the (normalized) top right singular vector found494

by a Singular Value Decomposition (SVD).495

H.2 DeepSqueeze496

We implement DeepSqueeze according to Algorithm 1 in (Tang et al., 2019), and use the same497

compressors described for ChocoSGD above.498

H.3 Moniqua499

Because the 1-bit version of Moniqua (Lu & Sa, 2020) is derived from the 2-bit version with500

added BZIP compression, we focus on the 2-bit version. We implement the algorithm according501

to Algorithm 1 in (Lu & Sa, 2020). We use the same step size schedule {αk} as for the optimizers502

we evaluated, and tune the a priori bound θ as a gobal constant, as suggested by the authors. As503

a stochastic rounding operator Q, we quantize stochastically in an unbiased fashion to the points504

{− 1
2 ,− 1

6 ,
1
6 ,

1
2}. This yields δ = 1

3 . Note that the modulo operator ‘mod Bθ’ in the algorithm yields505

values between − 1
2Bθ and 1

2Bθ.506

I Parameters in architectures507

See Table 6 and Table 7 for an overview of parameters in the models used.508

Table 6: Parameters in the ResNet20 architecture and their shapes. The table shows the per-tensor
compression ratio achieved by rank-1 PowerGossip with r iterations.

Parameter Parameter shape Matrix shape Uncompressed Compression

layer3.1.conv1 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.2.conv1 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.0.conv2 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.1.conv2 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.2.conv2 64× 64× 3× 3 64× 576 144 KB 115/r ×
layer3.0.conv1 64× 32× 3× 3 64× 288 72 KB 105/r ×
layer2.2.conv2 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.1.conv1 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.0.conv2 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.1.conv2 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.2.conv1 32× 32× 3× 3 32× 288 36 KB 58/r ×
layer2.0.conv1 32× 16× 3× 3 32× 144 18 KB 52/r ×
layer1.1.conv1 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.1.conv2 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.0.conv2 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.2.conv1 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.0.conv1 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer1.2.conv2 16× 16× 3× 3 16× 144 9 KB 29/r ×
layer3.0.downsample.0 64× 32× 1× 1 64× 32 8 KB 43/r ×
fc 10× 64 10× 64 2 KB 17/r ×
layer2.0.downsample.0 32× 16× 1× 1 32× 16 2 KB 21/r ×
conv1 16× 3× 3× 3 16× 27 2 KB 20/r ×
Bias vectors (total) 6 KB None

18



Table 7: Parameters in the LSTM architecture and their shapes. The table shows the per-tensor
compression ratio achieved by rank-1 PowerGossip with r iterations.

Parameter Parameter shape Matrix shape Uncompressed Compression

encoder 28869× 650 28869× 650 73300 KB 1271/r ×
rnn-ih-l0 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-hh-l0 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-ih-l1 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-hh-l1 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-ih-l2 2600× 650 2600× 650 6602 KB 1040/r ×
rnn-hh-l2 2600× 650 2600× 650 6602 KB 1040/r ×
Bias vectors (total) 174 KB None

J Experiment runtime and compute infrastructure509

We have executed our deep learning experiments on Nvidia Tesla K80 GPUs on n1-series virtual510

machines on Google Cloud. The algorithms were implemented in PyTorch, and run using a custom511

build that includes MPI for decentralized communication. We refer to the supplemental code for512

additional details on our runtime environment.513

For our LSTM experiments with 16 workers, we use 4 GPUs with 4 processes per GPU. The514

experiments took approximately 4 hours in this setup.515

For our Cifar-10 experiments with 8 workers, use 2 GPUs with 4 processes each. Those experiments516

took around 1.5 hours.517
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