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A Expected Performance for Exploration in the Bandit Setting

In practice, one of the most commonly used exploration strategies is to select θt in order to maximize
the expected performance over the aleatoric uncertainty and epistemic uncertainty induced by the
Gaussian process model.

We consider the simplest possible case that still allows for nonlinear dynamics. That is, we consider
a system with zero-mean noise, i.e., E[ωn = 0] for all time steps n ≥ 0. In addition, we consider
a one-dimensional system, p = 1, with a linear (convex/concave) reward function r(s,a) = s, a
constant feedback policy π(s) = θ that is parameterized by some parameters θ, and a time horizon
of one step, N = 1. With these simplifying assumptions, the performance estimate J(f, π) in (2)
reduces to

J(f̃ , π) = Eω0:N−1

[
N∑
n=0

r(s̃n, π(s̃n))

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n, π(s̃n)) + ωn,

= Eω0:N−1

[
N∑
n=0

r(s̃n, π(s̃n))

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n,θ) + ωn, (π(s) = θ)

= Eω0:N−1

[
N∑
n=0

s̃n

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n,θ) + ωn, (p = 1, r(s,a) = s)

= Eω0

[
s0 + s̃1

∣∣∣∣ s0

]
, s.t. s̃1 = f̃(s0,θ) + ω0, (N = 1)

= s0 + f̃(s0,θ) + Eω0
[ω0],

= s0 + f̃(s0,θ), (E[ω] = 0)
(9)

so that the overall goal of model-based reinforcement learning in (3) becomes

θ∗ = argmax
πθ

J(f, πθ), (10)

= argmax
θ

s0 + f(s0,θ), (11)

= argmax
θ

f(s0,θ). (12)

This is the simplest possible scenario and reduces the optimal control problem in (4) to the bandit
problem, where want to maximize an unknown function f that depends on parameters θ together
with a fixed context s0 that does not impact the solution of the problem.

Algorithms that model the unknown function f in (10) with a probabilistic model p(f̃ | D1:t) based
on noisy observations in Dt are called Bayesian optimization algorithms (Brochu et al., 2010). In this
special case of model-based reinforcement learning, the expected performance objective (4) reduces
to

θt = argmax
θ

Ef̃∼p(f̃ | D1:t)

[
J(f̃ , πθ)

]
, (13)

= argmax
θ

Ef̃∼p(f̃ | D1:t)

[
s0 + f̃(s0,θ)

]
, (14)

= argmax
θ

Ef̃∼p(f̃ | D1:t)

[
f̃(s0,θ)

]
, (15)

= argmax
θ

µt−1(s0,θ). (16)

Thus the expected performance objective selects parameters θt that maximize the posterior mean
estimate of f according to p(f̃ | D1:t). This may seem natural, since the linear reward function
encourages states that are as large as possible. However, in the Bayesian optimization literature (13)
is equivalent to the UCB strategy with βt = 0. This is a greedy algorithm that is well-known to get
stuck in local optima (Srinivas et al., 2012).

This is illustrated in Fig. 5: We use a Gaussian process model for f and use (13), which means we set
β = 0 in the GP-UCB algorithm. As a result, we obtain optimization behaviors as in Fig. 5a. The
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Figure 5: Comparison of the GP-UCB algorithm with two different constants for βt. The expected
performance objective in (13) is equivalent setting to β = 0 in Fig. 5a. The algorithm gets stuck
and repeatedly evaluates inputs (orange crosses) at a local optimum of the true objective function
(black dashed). This is due to the mean function (blue line) achieving higher values than the prior
expected performance of zero. In contrast, an optimistic algorithm with β = 2 in Fig. 5b determines
close-to-optimal parameters after few evaluations.

first evaluation that achieves performance higher than the expected prior performance (in our case,
zero), is evaluated repeatedly (orange crosses). However, this can correspond to a local optimum of
the true, unknown objective function (black dashed). In contrast, if we use an optimistic algorithm
and set β = 2, GP-UCB evaluates parameters with close-to-optimal performance.

As a consequence of this counter-example, it is clear that we cannot expect the expected performance
exploration criterion in (4) to yield regret guarantees for exploration in the general case. However,
under the additional assumption of linear dynamics, Mania et al. (2019) show that the algorithm is
no-regret. More empirically, Deisenroth et al. (2014, Section 6.1) discuss how to choose specific
reward functions that tend to encourage high-variance transitions and thus exploration. However,
it is unclear how such an approach can be analyzed theoretically and we would prefer to avoid
reward-shaping to encourage exploration.

B Extended Experiments

B.1 Experimental Setup

Models We consider ensembles of Probabilistic Neural Networks (PE) as in Chua et al. (2018)
and Gaussian Process (GP) Models for the inverted pendulum as in Kamthe and Deisenroth (2018).
For GPs, we use the predictive variance estimate as Σt−1(s,a) For Ensembles, we approximate the
output of the ensemble with a Gaussian as suggested by Lakshminarayanan et al. (2017) and use its
predictive mean and variance as µt−1(s,a) and Σt−1(s,a).

Model Selection (Training) For GPs we do not optimize the Hyper-parameters as this is prone
to getting stuck to local minima (Bull, 2011). Advanced methods to avoid this problem, such as
those proposed by Berkenkamp et al. (2019), are left for future work. For Ensembles, we train each
ensemble separately using Adam (Kingma and Ba, 2015). We assign a transition to each ensemble
member sampling from a Poisson distribution Poi(1) (Osband et al., 2016). This is an asymptotic
approximation to the Bootstrap.

Approximate Thompson Sampling We do not consider a Thompson sampling variant of Exact
GPs due to the computational complexity. For PE, we sample at the beginning of each episode a head
and use only this head for optimizing the policy as in Lu and Van Roy (2017).

Trajectory Sampling For greedy exploitation, we propagate particles and the next-state distri-
bution is given by the ensemble (or GP) output at the current particle location. This is the PE-DS
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algorithm from Chua et al. (2018), which has comparable performance to PE-TS1 and PE-TS∞. We
use this algorithm because it has the same predictive uncertainty used by H-UCRL.

Policy Search and Planning Algorithm For experiments, we use a modification of MPO (Ab-
dolmaleki et al., 2018) with Hallucinated Data Augmentation to simulate data and Hallucinated
Value Expansion to compute targets as the PolicySearch algorithm. As the resulting algorithm is
on-policy, we only learn a value function as critic. The planning algorithm is implemented using
Dyna-MPC from Algorithm 7. We update the sampling distribution using the Cross-Entropy Method
from Botev et al. (2013). We provide an open-source implementation of our method, which is
available at http://github.com/sebascuri/hucrl that builds upon the RL-LIB library from
Curi (2020), based on pytorch (Paszke et al., 2017).

B.2 Environment Description and Learning Curves

B.2.1 Swing-Up Inverted Pendulum

The pendulum has p = 2 and q = 1, with actions bounded in [−1, 1] and each episode lasts 400 time
steps.. We transform the angles to a quaternion representation via [sin(θ), cos(θ)]. The pendulum
starts at θ0 = π, ω0 = 0 and the objective is to swing it up to θ0 = 0, ω0 = 0. The reward function
is r(θ, ω,a) = rθ · rω + ρra, where rθ = TOLERANCE(cos(θ), bounds = (0.95, 1.),margin = 0.1),
rω = TOLERANCE(ω, bounds = (−0.5, 0.5),margin = 0.5), and ra = TOLERANCE(a, bounds =
(−0.1, 0.1),margin = 0.1)− 1. The TOLERANCE is defined in Tassa et al. (2018). In Fig. 6 we show
the learning curve of the PE model for five different random seeds. H-UCRL finds quickly a swing-up
maneuvere even with high action penalties.
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Figure 6: Learning curves of the inverted pendulum. H-UCRL outperforms other algorithms during
learning.

B.2.2 Mujoco Cart Pole

We repeat the experiment in a easy environment, the Mujoco Cart Pole. The cart-pole has p = 4
and q = 1, with actions bounded in [−3, 3] and each episode lasts 200 time steps. We transform the
angles to a quaternion representation via [sin(θ), cos(θ)]. The cart-pole starts from (0, 0, 0, 0) + ω,
where ω is a zero-mean normal noise with 0.1 standard deviation. The goal is to upswing and stabilize
the end-effector at position x = 0. The reward is given by r = e−

∑
i=x,y ee2i /0.6

2 − ρa2, where ee
is vector of coordinates of the end-effector. Here we see again that, as the action penalty increases,
expected and Thompson sampling do not find a swing-up maneuver. We plot the final results together
with the learning curves in Fig. 7.
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Figure 7: Top: Final episodic return in Cart-Pole environment. Bottom: Learning curves in Cart-
Pole environment. For action penalty = 0.05, H-UCRL outperforms other algorithms. For action
penalty=0.2 already after the fifth episode it finds a swing-up maneuver. Thompson sampling finds it
in only one run after the thirtyfifth episode.

B.2.3 Reacher

The Reacher is a 7DOF robot with p = 14 and q = 7, with actions bounded in [−20, 20]q and each
episode lasts 150 time steps. The goal is sampled at location (x, y, z) = (0, 0.25, 0) + ω, where ω
is a zero-mean normal noise with 0.1 standard deviation. We transform the angles to a quaternion
representation via [sin(θ), cos(θ)]. The goal is to move the end-effector towards the goal and the
reward signal is given by r = −∑i=x,y,z(ee− goal)2

i − ρ
∑7
i=1 a2

i , where ee− goal is the vector
that measures the distance between the end-effector and the goal. We show the results in Fig. 8. All
algorithms perform equally for different action penalties.
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Figure 8: Top: Final episodic return in Reacher environment. Bottom: Learning curves in Reacher
environment. Greedy, Thompson sampling, and H-UCRL perform equally well.
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B.2.4 Pusher

The Pusher is also a 7DOF robot with p = 14 and q = 7, with action bounds in [−2, 2]q and
each episode lasts 150 time steps. The object is free to move, introducing 3 more states to the
environment. The robot starts with zero angles, an angular velocity sampled uniformly at random
from [−0.005, 0.005], the object is sampled from (x, y) = (−0.25, 0.15)+ω, where ω is a zero-mean
normal noise with 0.025 standard deviation. The objective is to push the object towards the goal at
(x, y) = (0, 0). The reward signal is given by r = −0.5

∑
i=x,y,z(ee− obj)2

i − 1.25
∑
i=x,y,z(obj−

goal)2
i − ρ

∑7
i=1 a2

i , where ee − obj is the distance between the end-effector and the object and
obj − goal is the distance between the object and the goal. We show the results in Fig. 9. All
algorithms perform equally for different action penalties.
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Figure 9: Top: Final episodic return in Pusher environment. Bottom: Learning curves in Pusher
environment. Greedy, Thompson sampling, and H-UCRL perform equally well.

B.2.5 Sparse Reacher

The sparse Reacher is the same 7DOF robot as the Reacher with p = 14 and q = 7, with actions
bounded in [−20, 20]q and each episode lasts 150 time steps. The sole difference arises in the reward
function, which is given by r = e−

∑
i=x,y,z(ee−goal)2i /0.452

+ ρ(e−
∑7

i=1 a2
i − 1). We show the results

in Fig. 10. H-UCRL performs better than Greedy and Thompson, particularly for larger action
penalties.
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Figure 10: Top: Final episodic return in sparse Reacher environment. Bottom: Learning curves in
sparse Reacher environment. H-UCRL outperforms greedy and Thompson sampling, particularly
when the action penalty increases.

B.2.6 Half-Cheetah

The Half-Cheetah is a mobile robot with p = 17 and q = 6, with actions bounded in [−2, 2]q and
each episode lasts 1000 time steps. The objective is to make the cheetah run as fast as possible
forwards up to a maximum of 10m/s. The reward function is given by r = max(v, 10). We show the
results in Fig. 11. H-UCRL performs finds quicker policies with higher returns and, when the action
penalty is 1, it outperforms greedy and Thompson sampling considerably.
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Figure 11: Top: Final episodic return in Half-Cheetah environment. Bottom: Learning curves in
Half-Cheetah environment. H-UCRL outperforms greedy and Thompson sampling, particularly when
the actoin penalty increases.
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B.3 Visualization of Real and Simulated Trajectories for Inverted Pendulum

In this section, we visualize the optimistic trajectory for the inverted pendulum problem. We plot the
real and simulated trajectories using H-UCRL in Figs. 12–14 with increasing action penalties.

B.3.1 H-UCRL Trajectories

Already in the first episode, the H-UCRL finds an optimistic trajectory to reach the goal (0, 0) position.
With more episodes, it learns the dynamics and simulated and real trajectories match. As the action
penalty increases, the action magnitude decreases and it takes longer for the algorithm to find a
swing-up trajectory.
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Figure 12: Real and simulated trajectories for first 6 episodes with H-UCRL (0 action penalty). We
plot the trajectory in phase space, and use color coding to denote the action magnitude.
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Figure 13: Real and simulated trajectories for first 6 episodes with H-UCRL (0.1 action penalty). We
plot the trajectory in phase space, and use color coding to denote the action magnitude.
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Figure 14: Real and simulated trajectories for first 6 episodes with H-UCRL (0.2 action penalty). We
plot the trajectory in phase space, and use color coding to denote the action magnitude.

B.4 Further Experiments on Thompson Sampling

We found surprising that Thompson Sampling under-performs compared to optimistic exploration.
To understand better why this happens, we perform different experiments in this section.

B.4.1 Can the sampled models solve the task?

One possibility is that, when doing posterior sampling, the agent learns a model for the sampled
model, which might be biased. If this was the case, we would expect to see the simulated returns, i.e.,
the returns of the optimal policy in the sampled system f̃i large.

In Fig. 15 we show the returns of the last simulated trajectory starting from the bottom position
of each episode. This figure indicates that there is no model bias, i.e., the simulated returns for
Thompson sampling are also low. We conclude that it is not over-fitting to the sampled model, but
rather the algorithm cannot solve the task with the sampled model.
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Figure 15: Total return from last simulated trajectory with the same initial state as the environment
initial state. H-UCRL has higher simulated returns than Greedy and Thompson as the action penalty
increases.
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B.4.2 Is it variance starvation?

Another possibility is Thompson Sampling suffers variance starvation, i.e., all ensemble members’
predictions are identical. Variance starvation means that the approximate posterior variance is smaller
than the true posterior variance. When this happens, (approximate) Thompson Sampling fails because
of lack of exploration (Wang et al., 2018). In contrast to UCRL-stye algorithms where the optimism
is implemented deterministically, Thompson sampling implements optimism stochastically. Thus, it
is crucial that the variance is not underestimated.

If there was variance starvation, we would expect to see the epistemic variance along simulated
trajectories shrink. In Fig. 16 we show the average simulated uncertainty during training, considered
as the predictive variance of the ensemble. To summarize the predictive uncertainty into a scalar, we
consider the trace of the Cholesky factorization of the covariance matrix. From the figure, we see that
H-UCRL starts with the same predictive uncertainty as greedy and Thompson sampling. Furthermore,
the variance of Thompson sampling does not shrink. We conclude that there is no variance starvation
in the one-step ahead predictions.
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Figure 16: Epistemic model uncertainty along simulated trajectories. Thompson and Greedy have the
same or more uncertainty than H-UCRL.

B.4.3 Is the number of ensemble members enough?

In order to verify this hypothesis, we ran the same experiments with 5, 10, 20, 50, and 100 ensemble
members. All models swing-up the pendulum with 0 action penalty. With 0.1 action penalty, the
20, 50, and 100 ensembles find a swing up in only one run out of five. With 0.2 action penalty, no
model finds a swing-up strategy. This suggests that having larger ensembles could help, but it is not
convincing. Furthermore, the model training computational complexity increases linearly with the
number of ensemble members, which limits the practicality of larger ensembles.
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Figure 17: Episodic returns using Thompson Sampling for different number of ensemble members
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B.4.4 Is it the bootstrapping procedure during Training?

Yet another possibility is that the bootstrap procedure yields inconsistent models for Thompson
sampling. To simulate bootstrapping, for each transition and ensemble member, we sample a mask
from a Poisson distribution (Osband et al., 2016). Then, we train using the loss of each transition
multiplied by this mask. This yields correct one-step ahead confidence intervals. However, the model
is used for multi-step ahead predictions. To test if this is the reason of the failure we repeat the
experiment without bootstrapping the transitions. The only source of discrepancy between the models
comes from the initialization of the model. This is how Chua et al. (2018) train their probabilistic
models and the models learn from consistent trajectories.

In Fig. 18 we show the results when training without bootstrapping. The learning curves closely
follow those with bootstrapping in Fig. 6. We conclude that the bootstrapping procedure is likely not
the cause of the failure of Thompson Sampling.
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Figure 18: Episodic Returns in inverted pendulum without bootstrapping data while learning the
model.

B.4.5 Are probabilistic ensembles not a good approximation to the posterior in Thompson
sampling?

We next investigate the possibility that Probabilistic Ensembles are not a good approximation for
p(f̃ | D1:t). To this end, we consider the Random Fourier Features (RFF) proposed by Rahimi and
Recht (2008) for GP Models. To sample a posterior, we sample a set of random features and use the
same features throughout the episodes as required by theoretical results for Thompson sampling and
suggested by Hewing et al. (2019) to simulate trajectories. RFFs, however, are known to suffer from
variance starvation. We also consider Quadrature Fourier Features (QFF) proposed by Mutny and
Krause (2018). QFFs have provable no-regret guarantees in the Bandit setting as well as a uniform
approximation bound.

In Fig. 19, we show the results for both RFF (1296 features), and QFFs (625 features). Neither
QFFs nor RFFs find a swing-up maneuver for action penalties larger than zero, whereas optimistic
exploration with both QFFs and RFFs do. For 0 action penalty, optimistic exploration with RFFs
underperforms compared to greedy exploitation and Thompson sampling. This might be due to
variance starvation of RFFs because we do not see the same effect on QFFs. We conclude that PE are
as good as other approximate posterior methods such as random feature models.
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Figure 19: Episodic Returns in inverted pendulum using Random Fourier Features (RFF) and
Quadrature Fourier Features (QFF).

B.4.6 Is it the optimization procedure?

The final and perhaps most enlightening experiment is the following. We run optimistic exploration
with five ensemble heads and save snapshots of the models after the first, fifth and tenth episode.
Then, we optimize a different policy for each of the models separately. In Fig. 20 we compare the
simulated returns using optimistic exploration on the ensemble at each episode against the maximum
return obtained by the best head.

After the first episode, the simulated returns using optimistic exploration always find an optimistic
swing-up trajectory, whereas the best-head always returns zero. This indicates that, when the
uncertainty is large, optimistic exploration finds a better policy than approximate Thompson sampling.
Without action penalty, the best head return quickly catches up to the simulated ones with optimistic
exploration. For an action penalty of 0.1, after five episodes the best head is not able to find a
swing-up trajectory. However, after ten episodes it does. This shows that the optimization algorithm
is able to find the policy that swings-up a single model. However, when Thompson sampling is used
to collect data, the optimization does not find such a policy. This indicates that the models learned
using H-UCRL better reduce the uncertainty around the high-reward region and each member of the
ensemble has sharper predictions. For 0.2 action penalty, the best head never finds a swing-up policy
in ten episodes.
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Figure 20: Simulated Returns using H-UCRL vs. Maximum simulated return over all ensemble
members using the same model as H-UCRL.

B.4.7 Conclusions

We believe that the poor performance of Thompson sampling relative to H-UCRL suggests that a
probabilistic ensemble with five members is sufficient to construct reasonable confidence intervals
(hence H-UCRL finds good policies), but does not comprise a rich enough posterior distribution
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for Thompson Sampling. We suspect that this effect is inherent to the multi-step RL setting. It
seems to be the case that an approximate posterior model whose variance is rich enough for one-step
predictions does not sufficiently represent/cover the diversity of plausible trajectories in the multi-step
setting. Thompson sampling implements optimism stochastically: for it to work, we must be able to
sample a model that solves the task using multi-step predictions. Designing tractable approximate
posteriors with sufficient variance for multi-step prediction is still a challenging problem. For instance,
an ensemble model with B members that has sufficient variance for 1-step predictions, requires BN
members for N-step predictions, this quickly becomes intractable.

Compared to Thompson sampling, UCRL algorithms in general, and H-UCRL in particular, only
require one-step ahead calibrated predictive uncertainties in order to successfully implement optimism.
This is because the optimism is implemented deterministically and it can be used recursively in a
computationally efficient way. Furthermore, we know how to train (and calibrate) models to capture
the uncertainty. This hints that optimism might be better suited than approximate Thompson sampling
in model-based reinforcement learning.
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C Solving the Augmented Greedy Exploitation Program

In this section, we discuss how to practically solve the greedy exploitation problem with the augmented
hallucination variables. In Section 3.1 we showed that the optimization program is a stochastic
optimal-control problem for the hallucinated model f̃ . There are two common ways to solve this
stochastic optimal-control problem: off-line policy search and on-line planning. In Appendix C.1, we
describe offline policy search algorithms, in Appendix C.2 we present online planning algorithms,
and in Appendix C.3 we show how to combine these algorithms.

C.1 Offline Policy Search

Off-line policy search usually parameterize a policy π(·; θ) using a function approximation method
(e.g., neural networks), and then uses the policy π(·; θ) to interact with the environment. We
parameterize both the true and hallucinated policies with neural network π(·; θ), η(·; θ). Next, we
describe how to augment common policy-search algorithms with hallucinated policies. Any of such
algorithms can be used as the PolicySearch method in Algorithm 2.

Imagined Data Augmentation consists of using the model to simulate data and then use these data
to learn a policy using a model-free RL method. For example, the celebrated Dyna algorithm from
Sutton (1990), DAD from Venkatraman et al. (2016), IB from Kalweit and Boedecker (2017), and
I2A Racanière et al. (2017) generate data by sampling from expected models. In Algorithm 3, we
show HDA (for Hallucinated Data Augmentation). In HDA, we generate data using the optimistic
dynamics in (4) and then call any model-free RL algorithm such as SAC (Haarnoja et al., 2018),
MPO (Abdolmaleki et al., 2018), TD3 (Fujimoto et al., 2018), TRPO (Schulman et al., 2015), or PPO
(Schulman et al., 2017). Furthermore, the initial state distribution where hallucinated trajectories
start from might be any exploratory distribution. This greatly simplifies the task of the ModelFree
algorithm. Usually these strategies combine true with hallucinated data buffers. To match dimensions
between these, we augment the action space of the true data buffer with samples of a standard normal.
This strategy usually suffers from model-bias as model errors compound throughout a trajectory,
yielding highly biased estimates that hinder the policy optimization (van Hasselt et al., 2019).

Algorithm 3 Hallucinated Data Augmentation

Inputs: Calibrated dynamical model (µ,Σ), reward function r(s,a), horizonN , initial state distribu-
tion d(s0), number of iterations Niter, number of data points Ndata, initial parameters θt−1, ϑt−1,
model-free algorithm ModelFree.

1: Initialize θt,0 ← θt−1, ϑt,0 ← ϑt−1

2: for i = 1, . . . , Niter do
3: /* Simulate Data */
4: Initialize hallucinated data buffer Dh = {∅}.
5: for i = 1, . . . , Ndata do
6: Start from initial state distribution ŝ0 ∼ d(s0).
7: for n = 0, . . . , N − 1 do
8: Compute action ân ∼ π(ŝn; θt,i), â′n ∼ η(ŝn; θt,i)
9: Sample next state ŝn+1 ∼ µt(ŝn, ân) + βtΣt(ŝn, ân)â′n + ωn .

10: Append transition to buffer Dh ← Dh ∪ {(ŝn, ŝn+1, ân, â
′
n, r(ŝn, ân))}.

11: /* Optimize Policy */
12: θt,i+1, ϑt,i+1 ← ModelFree(Dh, θt,i, ϑt,i)

Outputs: Final policy and critic θt = θt,Niter , ϑt = ϑt,Niter

Back-Propagation Through Time is an algorithm that updates the policy parameters by computing
the derivatives of the performance w.r.t. the parameters directly. For instance, PILCO from Deisenroth
and Rasmussen (2011) and MBAC from Clavera et al. (2020) are different examples of practical
algorithms that use a greedy policy (4) using GPs and ensembles of neural networks, respectively.
In Algorithm 4, we show how to adapt BPTT to hallucinated control. Like in BPTT it samples the
trajectories in a differentiable way, i.e., using the reparameterization trick (Kingma and Welling, 2013).
Under some assumptions (such as moment matching), the sampling step in Line 8 of Algorithm 4 can
be replaced by exact integration as in PILCO (Deisenroth and Rasmussen, 2011). While performing
the rollout, it computes the performance and at the end it bootstrapped with a critic. This critic is
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learned using a policy evaluation PolEval algorithm such as Fitted Value Iteration (Antos et al.,
2008). This strategy usually suffers from high variance due to the stochasticity of the sampled
trajectories and the compounding of gradients (McHutchon, 2014). Interestingly, Parmas et al. (2018)
propose a method to combine the model-free gradients given by any HDA strategy together with the
model-based gradients given by HBPTT, but we leave this for future work. We found that limiting
the KL-divergence between the policies in different episodes as suggested by Schulman et al. (2015)
helps to control this variance by regularization.

Algorithm 4 Hallucinated Back-Propagation Through Time

Inputs: Calibrated dynamical model (µ,Σ), reward function r(s,a), horizon N , initial state distri-
bution d(s0), number of iterations Niter, initial parameters θt−1, ϑt−1, learning rate eta, policy
evaluation algorithm PolEval, regularization λ.

1: Initialize θt,0 ← θt−1, ϑt,0 ← ϑt−1

2: for i = 1, . . . , Niter do
3: /* Simulate Data */
4: Start from initial state distribution ŝ0 ∼ d(s0).
5: Restart J ← 0
6: for n = 0, . . . , N − 1 do
7: Compute action ân ∼ π(ŝn; θt,i), â′n ∼ η(ŝn; θt,i)
8: Sample next state ŝn+1 ∼ µt(ŝn, ân) + βtΣt(ŝn, ân)â′n + ωn .
9: Accumulate J ← J + γnr(ŝn, ân)− λKL(π(ŝn; θt,i)||π(ŝn; θt−1)).

10: Bootstrap J ← J + γNQ(ŝN , π(ŝN ; θt,i), η(ŝN ; θt,i);ϑt,i)
11: /* Optimize Policy */
12: Compute gradient ∂J/∂θt with back-propagation through time.
13: Do gradient step θt,i+1 ← θt,i + η∂J/∂θt
14: Update Critic ϑt,i+1 ← PolEval(θt,i+1)

Outputs: Final policy and critic θt = θt,Niter , ϑt = ϑt,Niter

Model-Based Value Expansion is an Actor-Critic approach that uses the model to compute the
next-states for the Bellman target when learning the action-value function. It then uses pathwise
derivatives (Mohamed et al., 2019) through the learned action-value function. For example MVE from
(Feinberg et al., 2018) and STEVE from Buckman et al. (2018) use such strategy. In Algorithm 5, we
show H-MVE (Hallucinated-Model Based Value Expansion). Here we use optimistic trajectories
only to learn the Bellman target. In turn, the learned action-values functions are optimistic and so are
the pathwise gradients computed through them. This strategy is usually less data efficient than BPTT
or IDA as it uses the model only to compute targets, but suffers less from model bias. To address
data efficiency, one can combine HVE and HDA to compute optimistic value functions as well as
simulating optimistic data.

C.2 Online Planning

An alternative approach is to consider non-parametric policies and directly optimize the true and
hallucinated actions as an,t ∈ [−1, 1]q,a′n,t ∈ [−1, 1]p. This is usually called Model-Predictive
Control (MPC) and it is implemented in a receding horizon fashion (Morari and H. Lee, 1999). That
means that for each new state encounter online the HUCRL planning problem (7) is solved using
the actions as decission variables. This addresses model errors compounding as the trajectories are
evaluated through the real trajectories, but it comes at high online computational costs, which limit
the applicability of such algorithms to simulations.

GP-MPC Kamthe and Deisenroth (2018) and PETS Chua et al. (2018) are MPC-based methods that
use the greedy policy (4) using GP and neural networks ensembles, respectively. Other MPC solvers
such as POPLIN Wang and Ba (2019) or POLO (Lowrey et al., 2019) are also compatible with
such dynamical models. In H-MPC (Hallucinated-MPC), we directly optimize both the control and
hallucinated inputs jointly and any of the previous methods can be used as the MPC solver. Moldovan
et al. (2015) also use MPC to solve an optimistic exploration scheme but only on linear models and,
like other on-line planning methods, are extremely slow for real-time deployment.
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Algorithm 5 Hallucinated Value Expansion

Inputs: Calibrated dynamical model (µ,Σ), reward function r(s,a), number of steps N , number
of iterations Niter, initial parameters θt−1, ϑt−1, true data buffer Dr, learning rate η, polyak
parameter τ .

1: Initialize θt,0 ← θt−1, ϑt,0 ← ϑt−1, ϑ̄t,0 ← ϑt−1

2: for i = 1, . . . , Niter do
3: /* Simulate Data */
4: Start from buffer ŝ0 ∼ Dr.
5: Initialize target Qtarget ← 0.
6: Compute prediction Qpred = Q(ŝ0;ϑt,i).
7: for n = 0, . . . , N − 1 do
8: Compute action ân ∼ π(ŝn; θt,i), â′n ∼ η(ŝn; θt,i)
9: Sample next state ŝn+1 ∼ µt(ŝn, ân) + βtΣt(ŝn, ân)â′n + ωn .

10: Accumulate target Qtarget ← γnr(ŝn, ân).
11: Bootstrap Qtarget ← Qtarget + γNQ(ŝN , π(ŝN ; θt,i), η(ŝN ; θt,i); ϑ̄t,i)
12: /* Optimize Critic */
13: ϑt,i+1 ← ϑt,i − η∇ϑ(Qpred −Qtarget)

2

14: Update target parameters ϑ̄t,i+1 ← τ ϑ̄t,i + (1− τ)ϑt,i+1

15: /* Optimize Policy */
16: θt,i+1 ← θt,i + η∇θt,iQ(ŝ0;ϑt,i)

Outputs: Final policy θt = θt,θt .

To solve the optimization problem, approximate local solvers are usually used that rely either on
sampling or on linearization. We discuss how to use both of them with hallucinated inputs. These
algorithms can be used as the Plan method in Algorithm 2.

Random Sampling Methods An approximate way of solving MPC problems is to exhaustively
sample the decision variables. Shooting methods sample the actions and then propagate the trajectory
through the model whereas collocation methods sample both the states and the actions. For simplicity,
we only consider shooting methods. This method initializes particles at the current state. For each
particle, it samples a sequence of actions from a proposal distribution and rollouts each particle
independently, computing the returns of such sequence. This process is repeated updating the proposal
distribution. Random Shooting (Richards and How, 2006), the Cross-Entropy Method (Botev et al.,
2013), and Model-Predictive Path Integral Control (Williams et al., 2016) differ in the ways to select
the elite actions between iterations and how to update the sampling distributions. All these methods
maintain a distribution over the actions. POPLIN from Wang and Ba (2019) instead maintains a
distribution over the weights of a policy network and samples different policies. The main advantage
of this method is that it correlates the random samples through the dynamics, possibly scalling to
higher dimensions. Any of these methods can be used with hallucination. We show in Algorithm 6
the pseudo-code for a meta-Hallucinated shooting algorithm.

Differential Dynamic Programming (DDP) DDP can be interpreted as a second-order shooting
method Jacobson (1968) for dynamical systems. For linear dynamical models with quadratic costs,
problem (4) is a quadratic program (QP) that enjoys a closed form solution (Morari and H. Lee,
1999). To address non-linear systems and other cost functions, a common strategy is to use a variant
of iLQR Li and Todorov (2004); Todorov and Li (2005); Tassa et al. (2012) which linearizes the
system and uses a second order approximation to the cost function to solve sequential QPs (SQP)
that approximate the original problem. When the rewards and dynamical model are differentiable,
this method is faster to sampling methods as it uses the problem structure to update the sampling
distribution.

C.3 Combining Offline Policy Search with Online Planning

MPC methods suffer less from model bias, but typically require substantial computation. Furthermore,
they are limited to the planning horizon unless a learned terminal reward is used to approximate the
reward-to-go (Lowrey et al., 2019). On the other hand, off-policy search approaches yield policies
and value function estimates (critics) that are fast to evaluate, but suffer from bias (van Hasselt et al.,
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Algorithm 6 Hallucinated Shooting Method

Inputs: Calibrated dynamical model (µ,Σ), terminal reward V , reward function r(s,a), horizon N ,
current state sn, number of particles nparticle, number of iterations niter, number of elite particles
nelite. initial sampling distribution d(·), algorithm to evaluate actions EliteActions, algorithm
to update distribution UpdateDistribution.

1: for i = 1, . . . , niter do
2: /* Simulate Data */
3: Initialize nparticle at the current state ŝ

(i)
0 = sn

4: Initialize J (i) ← 0
5: for n = 0, . . . , N − 1 do
6: Sample action â

(i)
n , â

′(i)
n ∼ d(·)

7: Sample next state ŝ
(i)
n+1 ∼ µn(ŝ

(i)
n , â

(i)
n ) + βtΣn(ŝ

(i)
n , â

(i)
n )â

′(i)
n + ωn.

8: Accumulate J (i) ← J (i) + γnr(ŝ
(i)
n , â

(i)
n )

9: Bootstrap J (i) ← J (i) + γNV (ŝ
(i)
N ).

10: a, a′ ← EliteActions(J (i), â
(i)
0:N−1, â

′(i)
0:N−1, nelite)

11: /* Optimize Policy */
12: Update proposal distribution d(·)← UpdateDistribution(a, a′).
Outputs: Return best action a, a′ ← EliteActions(J (i), â

(i)
0:N−1, â

′(i)
0:N−1, 1).

Algorithm 7 Dyna-MPC with Hallucinated Models

Inputs: Calibrated dynamical model (µ,Σ), learned policies π(·; θ), η(·; θ) learned critic Q(·;ϑ),
reward function r(s,a), horizon N , current state sn, number of particles nparticle, number of
iterations niter, number of elite particles nelite. initial sampling distribution d(·), algorithm to
evaluate actions EliteActions, algorithm to update distribution UpdateDistribution.

1: for i = 1, . . . , niter do
2: /* Simulate Data */
3: Initialize nparticle at the current state ŝ

(i)
0 = sn

4: Initialize J (i) ← 0
5: for n = 0, . . . , N − 1 do
6: Sample action â

(i)
n , â

′(i)
n ∼ (π(ŝ

(i)
n ; θ), η(ŝ

(i)
n ; θ)) + d(·)

7: Sample next state ŝ
(i)
n+1 ∼ µn(ŝ

(i)
n , â

(i)
n ) + βtΣn(ŝ

(i)
n , â

(i)
n )â

′(i)
n + ωn.

8: Accumulate J (i) ← J (i) + γnr(ŝ
(i)
n , â

(i)
n )

9: Bootstrap J (i) ← J (i) + γNQ(ŝ
(i)
N , â

(i)
N , â

′(i)
N ;ϑ).

10: a, a′ ← EliteActions(J (i), â
(i)
0:N−1, â

′(i)
0:N−1, nelite)

11: /* Optimize Policy */
12: Update proposal distribution d(·)← UpdateDistribution(a, a′).
Outputs: Return best action a, a′ ← EliteActions(J (i), â

(i)
0:N−1, â

′(i)
0:N−1, 1).

2019). We propose to combine these methods to get the best of both worlds: First, we learn parametric
policies π and η using a policy search algorithm. Then, we use such policies as a warm-start for
the sampling distributions of the planning algorithm. We name this planning algorithm Dyna-MPC,
as it resembles the Dyna architecture proposed by Sutton (1990) and we show the pseudo-code for
hallucinated models in Algorithm 7.

Closely related to Dyna-MPC is POPLIN (Wang and Ba, 2019). We also use a policy to initialize
actions and and then refine them with a shooting method. Nevertheless, we use a policy search
algorithm to optimize the policy parameters instead of the cross-entropy method. Hong et al. (2019)
also uses MPC to refine an off-line learned policy. However, they use a model-free algorithm directly
form real data instead of model-based policy search.
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D Proofs for Exploration Regret Bound

In this section, we prove the main theorem.

D.1 Notation

In the following, we implicitly denote with sn,t the states visited under the true dynamics f in
(1) and with s̃n the states visited under πt but the optimistic dynamics f̃t(s,a) = µt−1(s,a) +
Σt−1(s,a)ηt(s,a),

sn+1,t = f(sn,t,an,t) + ωn,t (17a)
an,t = πt(sn,t) (17b)

and

s̃n+1,t = f̃t(sn,t, ãn,t) + ωn,t (17c)
= µt−1(sn,t, ãn,t) + Σt−1(sn,t, ãn,t)ηt(sn,t, ãn,t) + ωn,t (17d)

ãn,t = πt(s̃n,t). (17e)

Since the control actions an,t = πt(sn,t) and ãn,t = πt(s̃n,t) are fixed given πt, we generally drop
the dependence on u and write f(s) = f(s, πt(s)), µ(s, πt(s)), etc. We also drop the subscript t
from sn,t whenever it is clear that we refer to the tth episode. Lastly, when no norm is specified,
‖ · ‖ = ‖ · ‖2 refers to the two-norm.

We start by clarifying that as a consequence of Assumptions 1 and 3 the closed-loop dynamics are
Lipschitz continuous too.

Corollary 1. As in Assumption 6, let the open-loop dynamics f in (1) be Lf -Lipschitz continuous
and the policy π ∈ Π be Lπ-Lipschitz continuous w.r.t. to the 2-norm. Then the closed-loop system is
Lfc-Lipschitz continuous with Lfc = Lf

√
1 + Lπ .

Proof.

‖f(s, π(s))− f(s′, π(s′))‖2 ≤ Lf‖(s− s′, π(s)− π(s′))‖2 (18)

= Lf

√
‖(s− s′‖22 + ‖π(s)− π(s′))‖22 (19)

≤ Lf
√
‖(s− s′‖22 + Lπ‖s− s′))‖22 (20)

= Lf
√

1 + Lπ︸ ︷︷ ︸
:=Lfc

‖s− s′‖2 (21)

D.2 Bounding the Regret

We start by bounding the cumulative regret in terms of the predictive variance of the states/actions on
the true trajectory (the one that we will later collect data one).

Lemma 1. Under Assumption 2, for any sequence sn,t generated by the true system (1), there exists
a function η : Rp → [−1, 1]p such that sn,t = s̃n,t if ω = ω̃.

Proof. By Assumption 2 we have |f(s) − µ(s)| ≤ βσ(s) elementwise. Thus for each s,a there
exists a vector η with values in [−1, 1]p such that f(s,a) = µ(s,a) + Σ(s,a)η. Let the function
η(·) return this vector for each state and action, then the result follows.

Lemma 2. Under Assumption 2, with probability at least (1 − δ) we have for all t ≥ 0 that the
regret rt is bounded by

rt = J(f, π∗)− J(f, πt) ≤ J(f̃t, πt)− J(f, πt) (22)
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Proof. By Assumption 2, we know from Lemma 1 that the true dynamics are contained within
the feasible region of (7); that is, there exists an η(·) : Rp × Rq → [−1, 1]p such that with f̃(s) =

µ(s) + Σ(s)η(s) we have J(f, π∗) = J̃(f̃ , π∗). As a consequence, we have J(f, π∗) ≤ J(f̃t, πt)
and the result follows.

Thus, to bound the instantaneous regret rt, we must bound the difference between the optimistic
value estimate J(f̃t, πt) and the true value J(f, πt). We can use the Lipschitz continuity properties
to obtain
Lemma 3. Based on Assumption 3 we have

|J(f̃t, πt)− J(f, πt)| ≤ Lr
√

1 + Lπ

N∑
n=0

Eω=ω̃[‖sn,t − s̃n,t‖2] (23)

Proof.

|J(f̃t, πt)− J(f, πt)| =
∣∣∣∣∣Eω̃

[
N∑
n=0

r(s̃n, πt(s̃n))

]
− Eω

[
N∑
n=0

r(sn, πt(sn))

]∣∣∣∣∣ (24)

=

∣∣∣∣∣Eω=ω̃

[
N∑
n=0

r(s̃n, πt(s̃n))− r(sn, πt(sn))

]∣∣∣∣∣ (25)

≤ Lr
√

1 + Lπ

N∑
n=0

Eω=ω̃[‖s̃n − sn‖2], (26)

where Eω=ω̃[·] means in expectation over ω and with ω̃ = ω; that is, ω̃ and ω are the same random
variable.

Figure 21: Illustrative comparison of the true state trajectory sn under the policy πθ and the optimistic
trajectory s̃n from (7). After one step, s1 is contained within the confidence intervals (grey bars). The
optimistic dynamics are chosen within this confidence interval to maximize performance. Since the
optimistic dynamics are constructed iteratively based on the previous state s̃n, beyond one step the
true dynamics are not contained in the confidence intervals.

What remains is to bound the deviation of the optimistic and the true trajectory. We show a different
perspective of Fig. 2 in Fig. 21, where we explicitly show the “real” state trajectory under a policy
and for a given noise realisation the the optimistic trajectory with its one-step uncertainty estimates
as in (7). We exploit the Lipschitz continuity of σ from Assumption 3 in order to bound the deviation
in terms of σt−1 at states of the “real” trajectory.
Lemma 4. Under Assumptions 1–3, let L̄f = 1 + Lfc + 2βt−1Lσ

√
1 + Lπ . Then, for all iterations

t > 0, any function η : Rp × Rq → [−1, 1]p and any sequence of ωn with ω̃n = ωn, π ∈ Π with
1 ≤ n ≤ N we have that

‖sn,t − s̃n,t‖ ≤ 2βt−1L̄
N−1
f

n−1∑
i=0

‖σt−1(si,t)‖ (27)
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Proof. We start by showing that, for any n ≥ 1 we have

‖sn,t − s̃n,t‖ ≤ 2βt−1

n−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si,t)‖ (28)

by induction. For the base case we have s̃0 = s0. Consequently, at iteration t we have

‖s1,t − s̃1,t‖ = ‖f(s0) + ω0 − µt−1(s0)− βt−1Σt−1(s0)η(s0)− ω̃0‖ (29)
≤ ‖f(s0)− µt−1(s0)‖+ βt−1‖Σt−1(s0)η(s0)‖ (30)
≤ βt−1‖σt−1(s0)‖+ βt−1‖σt−1(s0)‖ (31)
= 2βt−1‖σt−1(s0)‖ (32)

For the induction step assume that (28) holds at time step n. Subsequently we have at iteration t that

‖sn+1,t − s̃n+1,t‖
= ‖f(sn) + ωn − µt−1(s̃n)− βt−1Σt−1(s̃n)η(s̃n)− ω̃n‖
= ‖f(sn)− µt−1(s̃n)− βt−1Σt−1(s̃n)η(s̃n) + f(s̃n)− f(s̃n)‖
= ‖f(s̃n)− µt−1(s̃n)− βt−1Σt−1(s̃n)η(s̃n) + f(sn)− f(s̃n)‖
= ‖f(s̃n)− µt−1(s̃n)‖+ ‖βt−1Σt−1(s̃n)η(s̃n)‖+ ‖f(sn)− f(s̃n)‖
≤ βt−1‖σt−1(s̃n)‖+ βt−1‖σt−1(s̃n)‖+ Lfc‖sn − s̃n‖
= 2βt−1‖σt−1(s̃n)‖+ Lfc‖sn − s̃n‖
= 2βt−1‖σt−1(sn) + σt−1(s̃n)− σt−1(sn)‖+ Lfc‖sn − s̃n‖
≤ 2βt−1

(
‖σt−1(sn)‖+ Lσ

√
1 + Lπ‖sn − s̃n‖

)
+ Lfc‖sn − s̃n‖

= 2βt−1‖σt−1(sn)‖+ (Lfc + 2βt−1Lσ
√

1 + Lπ)‖sn − s̃n‖

≤ 2βt−1‖σt−1(s̃n)‖+ (Lfc + 2βt−1Lσ
√

1 + Lπ)2βt−1

n−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si)‖

= 2βt−1

(n+1)−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)(n+1)−1−i‖σt−1(si)‖

Thus (28) holds. Now since n ≤ N we have

‖sn,t − s̃n,t‖ ≤ 2βt−1

n−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si,t)‖ (33)

≤ 2βt−1

n−1∑
i=0

(1 + Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si,t)‖ (34)

≤ 2βt−1(1 + Lfc + 2βt−1Lσ
√

1 + Lπ)︸ ︷︷ ︸
:=L̄f

N−1
n−1∑
i=0

‖σt−1(si,t)‖ (35)

(36)

Corollary 2. Under the assumptions of Lemma 4, for any sequence of ηn ∈ [−1, 1], θ ∈ D, and
n ≥ 1, t ≥ 1 we have that

Eω=ω̃[‖sn,t − s̃n,t‖] ≤ 2βt−1L̄
N−1
f Eω

[
n−1∑
i=0

‖σt−1(si,t)‖
]

(37)

Proof. This is a direct consequence of Lemma 4.

As a direct consequence of these lemmas, we can bound the regret in terms of the predictive
uncertainty of our statistical model in expectation over the states visited under the true dynamics.
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Lemma 5. Under Assumptions 2–3, let LJ = 2Lr
√

1 + Lπβt−1L̄
N−1
f . Then, with probability at

least (1− δ) it holds for all t ≥ 0 that

r2
t ≤ L2

JN
3Eω

[
N−1∑
n=0

‖σt−1(sn,t)‖22

]
(38)

Proof.

rt ≤ J(f̃t, πt)− J(f, πt) (39)

≤ Lr
√

1 + Lπ

N∑
n=0

Eω=ω̃[‖sn,t − s̃n,t‖2] (40)

≤ 2Lr
√

1 + Lπβt−1L̄
N−1
f

N∑
n=0

Eω

[
n−1∑
i=0

‖σt−1(si,t)‖2
]

(41)

≤ 2Lr
√

1 + Lπβt−1L̄
N−1
f NEω

[
N−1∑
n=0

‖σt−1(sn,t)‖2
]

(42)

where the third inequality follows from Corollary 2. Now, let LJ = 2Lr
√

1 + Lπβt−1L̄
N−1
f , so that

rt ≤ LJNEω

[
N−1∑
n=0

‖σt−1(sn,t)‖2
]

(43)

r2
t ≤ L2

JN
2

(
Eω

[
N−1∑
n=0

‖σt−1(sn,t)‖2
])2

(44)

≤ L2
JN

2Eω

(N−1∑
n=0

‖σt−1(sn,t)‖2
)2
 (45)

≤ L2
JN

3Eω

[
N−1∑
n=0

‖σt−1(sn,t)‖22

]
(46)

Lemma 6. Under the assumption of Assumptions 1–3, with probability at least (1− δ) it holds for
all t ≥ 0 that

R2
T ≤ TL2

JN
3
T∑
t=1

Eω

[
N−1∑
n=0

‖σt−1(sn,t,an,t)
2‖22

]
(47)

Proof.

R2
T =

(
T∑
t=1

rt

)2

(48)

≤ T
T∑
t=1

r2
t Jensen’s (49)

≤ TL2
JN

3
T∑
t=1

Eω

[
N−1∑
n=0

‖σt−1(sn,t,an,t)
2‖22

]
Lemma 5 (50)

That is, at every iteration t the regret bound increases by the sum of predictive uncertainties in
expectation over the true states that we may visit. This is an instance-dependent bound, since it
depends on specific data collected up to iteration t within σt−1. We will replace this with a worst-case
bound in the following.

36



Lemma 7. Under the assumption of Assumptions 1–3, let sn,t ∈ St, St−1 ⊆ St, and an,t ∈ A for
all n, t > 0 with compact sets St and A. Then, with probability at least (1− δ) it holds for all t ≥ 0
that

R2
T ≤ TL2

JN
3IT (St,A) (51)

where

IT (S,A) = max
D1,...,DT⊂S×S×A, |Di|=N

T∑
t=1

∑
s,a∈Dt

‖σt−1(s,a)‖22 (52)

Proof. As a consequence of sn,t ∈ St we have

T∑
t=1

Eω

[
N−1∑
n=0

‖σt−1(sn,t,an,t)
2‖22

]
≤ IT (St,A) (53)

and thus
R2
T ≤ TL2

JN
3IT (St,A). (54)

Theorem 2. Under Assumptions 1–3 let sn,t ∈ St, St−1 ⊆ St, and an,t ∈ A for all n, t > 0.
Then, for all T ≥ 1, with probability at least (1 − δ), the regret of H-UCRL in (7) is at most

RT ≤ O
(
βNT−1L

N
σ

√
TN3 IT (ST ,A)

)
.

Proof. From Lemma 7 we have

R2
T ≤ TL2

JN
3IT (St,A) (55)

RT ≤ LJ
√
N3IT (St,A) (56)

where LJ = 2Lr
√

1 + Lπβt−1L̄
N−1
f from Lemma 5 and L̄f = 1 + Lf + 2βt−1Lσ

√
1 + Lπ

from Lemma 4. Plugging in we get LJ = 2Lr
√

1 + Lπβt−1(1 + Lf + 2βt−1Lσ
√

1 + Lπ)N−1 =
O
(
βNt−1L

N
σ

)
so that

RT ≤ O
(
βNt−1L

N
σ

√
N3IT (St,A)

)
(57)

Theorem 1. Under Assumptions 1–3 let sn,t ∈ S and an,t ∈ A for all n, t > 0. Then,
for all T ≥ 1, with probability at least (1 − δ), the regret of H-UCRL in (7) is at most

RT ≤ O
(
LNσ β

N
T−1

√
TN3 IT (S,A)

)
.

Proof. A direct consequence of Theorem 2.

E Properties of the Functions η(·)

So far, we have considered general functions η : Rp × Rq → [−1, 1]p, which can potentially be
discontinuous. However, as long as Lemma 1 holds and the true dynamics are feasible in (7), we can
use any more restrictive function class. In this section, we investigate properties of η.

It is clear, that it is sufficient to consider functions η such that Σt(s)η(s) is Lipschitz continuous,
since it aims to approximate a Lipschitz continuous function f :
Lemma 8. With Assumptions 1–3 let η(·) be a function such that f(s)−µt(s) = βtΣt(s)η(s) as in
Lemma 1. Then Σt(s)η(s) is Lipschitz continuous.

Proof.

‖Σt(s)η(s)−Σt(s
′)η(s′)‖ ≤ ‖f(s)− µt(s)− (f(s′)− µt(s′))‖ (58)

≤ (Lf + Lµ)‖s− s′‖ (59)
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Unfortunately, the same is not true for η on its own in general. However, if the predictive standard
deviation σ does not decay to zero, this holds.

Lemma 9. Under the assumptions of Lemma 8 let 0 < σmin ≤ σ(s,a) ≤ σmax elementwise for all
s,a ∈ S × A. Then, with probability at least (1− δ), there exists a Lipschitz-continuous function
η(·) with ‖η(·)‖∞ = 1 such that f(s)− µt(s) = βtΣt(s)η(s) for all s ∈ Rp.

Proof. By contradiction. Let η(·) be a function that is not Lipschitz continuous such that f(s) −
µ(s) = βΣ(s)η(s). By assumption we know that σt(s) is strictly larger than zero and bounded
element-wise from above by some constant. As a consequence, Σ−1(s) exists and is Lσ/σ2

min-
Lipschitz continuous w.r.t. the Frobenius norm. Thus, we have

‖η(s)− η(s′)‖2
= ‖ 1

β
Σ−1(s)(f(s)− µ(s))− 1

β
Σ−1(s′)(f(s′)− µ(s′))‖2

≤ | 1
β
|‖Σ−1(s)((f(s)− µ(s))− (f(s′)− µ(s′)))‖2 + | 1

β
|‖
(
Σ−1(s)−Σ−1(s′)

)
(f(s′)− µ(s′))‖2

≤ | 1
β
|‖Σ−1(s)‖F‖(f(s)− µ(s))− (f(s′)− µ(s′))‖2 + | 1

β
|‖f(s′)− µ(s′)‖2‖Σ−1(s)−Σ−1(s′)‖F

≤ | 1
β
|‖Σ−1(s)‖F(Lfc + Lµ

√
1 + Lπ)‖s− s′‖2 + | 1

β
|‖βσ(s′)‖2‖Σ−1(s)−Σ−1(s′)‖F

≤
√
p

βσmin
(Lfc + Lµ

√
1 + Lπ)‖s− s′‖2 +

√
pσmax

σ2
min

Lσ
√

1 + Lπ‖s− s′‖2

Since βt > 0 we have that η(s) is Lipschitz continuous, which is a contradiction.

Thus, it is generally sufficient to optimize over Lipschitz continuous functions in order to obtain the
same regret bounds as in the optimistic case. However, it is important to note that the complexity of
the function (i.e., its Lipschitz constant) will generally increase as the predictive variance decreases.
It is easy to construct cases where σ(·) = 0 implies that η has to be discontinuous. However, at least
in theory σ(·) = 0 is impossible with finite data when the system is noisy (σ > 0). Also note that as
σ decreases, the effect of η on the dynamics also decreases.

This might also motivate optimizing over a function that model Σt−1(s,a)η(s,a) jointly, since that
one is regular even for σ(·) = 0. However, this would require regularizing the resulting function to
be bounded by βtσt(s,a) and might lead to difficulties with policy optimization, since the resulting
hallucinated actions are no longer normalized to [−1, 1]p. We leave it as an avenue for future
research.

F Background on Gaussian Processes

Gaussian processes are a nonparametric Bayesian model that has a tractable, closed-form posterior
distribution (Rasmussen and Williams, 2006). The goal of Gaussian process inference is to infer
a posterior distribution over a nonlinear map f ′(x) : X → R from an input vector x ∈ X with
X ⊆ Rd to the function value f ′(x). This is accomplished by assuming that the function values
f ′(x), associated with different values of x, are random variables and that any finite number of these
random variables have a joint normal distribution (Rasmussen and Williams, 2006).

A Gaussian process distribution is parameterized by a prior mean function and a covariance function
or kernel k(x,x′), which defines the covariance of any two function values f(x) and f(x′) for
x,x′ ∈ X . In this work, the mean is assumed to be zero without loss of generality. The choice of
kernel function is problem-dependent and encodes assumptions about the unknown function. A
review of potential kernels can be found in (Rasmussen and Williams, 2006).

We can condition a Gaussian process on the observations yt at input locations Xt. The Gaussian
process model assumes that observations are noisy measurements of the true function value with
Gaussian noise, ω ∼ N (0, σ2). The posterior distribution is again a Gaussian process with mean µt,
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covariance kt, and variance σt, where

µt(x) = kt(x)(Kt + Iσ2)−1yt, (60)

kt(x,x
′) = k(x,x′)− kt(x)(Kt + Iσ2)−1kT

t (x′), (61)

σ2
t (x) = kt(x,x). (62)

The covariance matrix Kt ∈ R|Xt|×|Xt| has entries [Kt](i,j) = k(xi,xj) with xi,xj ∈ Xt and the
vector kt(x) =

[
k(x,x1), . . . , k(x,x|Xt|)

]
contains the covariances between the input x and the

observed data points in Xt. The identity matrix is denoted by I.

Given the Gaussian process assumptions, we obtain point-wise confidence estimates from the marginal
Normal distribution specified by µt and σt. For finite sets, the Gaussian process belief induces a
joint normal distribution over function values that is correlated through (61). We can use this to
fulfill Assumption 2 for continuous sets by using a union bound and exploiting that samples from a
Gaussian process are Lipschitz continuous with high probability (Srinivas et al., 2012, Theorem 2).

F.1 Information Capacity

One important property of normal distributions is that the confidence intervals contract after we
observe measurement data. How much data we require for this to happen generally depends on the
variance of the observation noise, σ2, and the size of the function class; i.e., the assumptions that
we encode through the kernel. In the following, we use results by Srinivas et al. (2012) and use the
mutual information to construct such a capacity measure.

Formally, the mutual information between the Gaussian process prior on f ′ at locations X and the
corresponding noisy observations yX is given by

I(yX ; f ′) = 0.5 log |I + σ−2KX |, (63)

where KX is the kernel matrix [k(x,x′)]x,x′∈X and | · | is the determinant. Intriguingly, for Gaussian
process models this quantity only depends on the inputs inX and not the corresponding measurements
yX . Intuitively, the mutual information measures how informative the collected samples yX are
about the function f . If the function values are independent of each other under the Gaussian process
prior, they provide large amounts of new information. However, if measurements are taken close
to each other as measured by the kernel, they are correlated under the Gaussian process prior and
provide less information.

The mutual information in (63) depends on the locations Xt at which we obtain measurements. While
it can be computed in closed-form, it can also be bounded by the largest mutual information that any
algorithm could obtain from t noisy observations,

γt = max
X⊂D, |X |≤t

I(yX ; f ′). (64)

We refer to γt as the information capacity, since it can be interpreted as a measure of complexity of
the function class associated with a Gaussian process prior. It was shown by Srinivas et al. (2012)
that γt has a sublinear dependence on t for many commonly used kernels such as the Gaussian
kernel. This sublinear dependence is generally exploited by exploration algorithms in order to show
convergence.

F.2 Functions in a Reproducing Kernel Hilbert Space

Instead of the Bayesian Gaussian process framework, we can also consider frequentist confidence
intervals. Unlike the Bayesian framework, which inherently models a belief over a random function,
frequentists assume that there is an a priori fixed underlying function f ′ of which we observe noisy
measurements.

The natural frequentist counterpart to Gaussian processes are functions inside the Reproducing Kernel
Hilbert Space (RKHS) spanned by the same kernel k(x,x′) as used by the Gaussian process in
Appendix F. An RKHSHk contains well-behaved functions of the form f(x) =

∑
i≥0 αi k(x,xi),

for given representer points xi ∈ Rd and weights αi ∈ R that decay sufficiently quickly. For example,
the Gaussian process mean function (60) lies in this RKHS. The kernel function k(·, ·) determines
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the roughness and size of the function space and the induced RKHS norm ‖f ′‖2k = 〈f ′, f ′〉k =∑
i,j≥0 αiαjk(xi,xj) measures the complexity of a function f ′ ∈ Hk with respect to the kernel. In

particular, the function f ′ is Lipschitz continuous with respect to the kernel metric

d(x,x′) =
√
k(x,x) + k(x′,x′)− 2k(x,x′), (65)

so that |f ′(x) − f ′(x′)| ≤ ‖f ′‖kd(x,x′), see the proof of Proposition 4.30 by Christmann and
Steinwart (2008).

F.2.1 Confidence Intervals

We can construct an estimate together with reliable confidence intervals if the measurements are
corrupted by σ-sub-Gaussian noise. This is a class of noise where the tail probability decays
exponentially fast, such as in Gaussian random variables or any distribution with bounded support.
Specifically, we have the following definition.
Definition 1 (Vershynin (2010)). A random variableX is σ-sub-Gaussian if P {|X| > s} ≤ exp(1−
s2/σ2) for all s > 0.

While the Gaussian process framework makes different assumptions about the function and the noise,
Gaussian processes and RKHS functions are closely related (Kanagawa et al., 2018) and it is possible
to use the Gaussian process posterior marginal distributions to infer reliable confidence intervals
on f ′.
Lemma 10 (Abbasi-Yadkori (2012); Chowdhury and Gopalan (2017)). Assume that f has bounded
RKHS norm ‖f ′‖k ≤ B and that measurements are corrupted by σ-sub-Gaussian noise. If β1/2

t =

B + 4σ
√

I(yt; f) + 1 + ln(1/δ), then for all x ∈ X and t ≥ 0 it holds jointly with probability at
least 1− δ that | f ′(x)− µt(x) | ≤ β1/2

t σt(x).

Lemma 10 implies that, with high probability, the true function f ′ is contained in the confidence
intervals induced by the posterior Gaussian process distribution that uses the kernel k from Lemma 10
as a covariance function, scaled by an appropriate factor βt. In contrast to Appendix F, Lemma 10
does not make probabilistic assumptions on f ′. In fact, f ′ could be chosen adversarially, as long as it
has bounded norm in the RKHS.

Since the frequentist confidence intervals depend on the mutual information and the marginal
confidence intervals of the Gaussian process model, they inherit the same contraction properties up
to the factor βt. However, note that the confidence intervals in Lemma 10 hold jointly through the
continuous domain X . This is not generally possible for Gaussian process models without employing
additional continuity arguments, since Gaussian process distributions are by definitions only defined
via a multivariate Normal distribution over finite sets. This stems from the difference between a
Bayesian belief and the frequentist perspective, where the function is unknown but fixed a priori.

F.3 Extension to multiple dimensions

It is straight forward to extend these models to functions with vector-values outputs by extending
the input domain by an extra input argument that indexes the output dimension. While this requires
special kernels, they have been analyzed by Krause and Ong (2011).
Lemma 11 (based on Chowdhury and Gopalan (2017)). Assume that f ′(θ, i) = [f ′(θ)]i has RKHS
norm bounded byB and that measurements are corrupted by σ-sub-Gaussian noise. Let Xt = Dt×I
denote the measurements obtained up to iteration t. If βt = B+4σ

√
I(yXt ; f

′) + 1 + ln(1/δ), then
the following holds for all parameters θ ∈ D, function indices i ∈ I, and iterations n ≥ 0 jointly
with probability at least 1− δ: ∣∣ f ′(θ, i)− µn(θ, i)

∣∣ ≤ βnσn(θ, i) (66)

G Lipschitz Continuity of Gaussian Process Predictions

Since the mean function is a linear combination of kernels evaluations (features), it is easy to show
that it is Lipschitz continuous if the kernel function is Lipschitz continuous (Lederer et al., 2019).
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However, existing bounds for the Lipschitz constant for the posterior standard deviation σt(·) depend
on the number of data points. Since our regret bounds depend on LNσ , this would render our regret
bound superlinear and thus meaningless.

In the following, we show that the GP standard deviation is Lipschitz-continuous with respect to the
kernel metric.
Definition 2 (Kernel metric). dk(x,x′) =

√
k(x,x) + k(x′,x′)− 2k(x,x′).

We start with the standard deviation.
Lemma 12. For all x and x′ in X and all t ≥ 0, we have

|σt(x)− σt(x′)| ≤ dk(x,x′) (67)

Proof. From Mercer’s theorem we know that each kernel can be equivalently written in terms of
an infinite-dimensional inner product, so that k(x,x′) = 〈k(x, ·), k(x′, ·)〉k, where < ·, · >k is
the inner product in the Reproducing Kernel Hilbert Space corresponding to the kernel k. We can
think of Gaussian process regression as linear regression based on these infinite-dimensional feature
vectors. In particular, it follows from (Kirschner and Krause, 2018, Appendix D) that we can write the
Gaussian process posterior standard deviation σt(x) as the weighted norm of the infinite-dimensional
feature vectors k(x, ·),

σt(x) = ‖k(x, ·)‖V−1
t
, (68)

where Vt = σ2M∗M + I and M is a linear operator that corresponds to the infinite-dimensional
feature vectors k(xi, ·) of the data points xi in Xt so that [MM∗](i,j) = k(xi,xj), where xi and xj
are the ith and jth data point in Xt. Now we have that the minimum eigenvalue of Vt is larger or
equal than one, which implies that the maximum eigenvalue of V−1

t is less or equal than one. Thus,

|σt(x)− σt(x′)| =
∣∣‖k(x, ·)‖V−1

t
− ‖k(x′, ·)‖V−1

t

∣∣ (69)

≤ ‖k(x, ·)− k(x′, ·)‖V−1
t
, (70)

≤ ‖k(x, ·)− k(x′, ·)‖k, (71)

=
√
〈k(x, ·)− k(x′, ·), k(x, ·)− k(x′, ·)〉k, (72)

=
√
k(x,x)− k(x,x′)− k(x′,x) + k(x′,x′), (73)

=
√
k(x,x) + k(x′,x′)− 2k(x,x′), (74)

= dk(x,x′), (75)

where (69)→ (70) follows from the reverse triangle inequality.

To show that Lemma 12 implies Lipschitz continuity of the variance, the key observation is that
standard deviation σni(x) is bounded for all t ≥ 0. In particular,

σt(x) ≤ σ0(x) =
√
k(x,x) ≤ max

x,x′∈Rd

√
k(x,x′) :=

√
|k|∞ (76)

Based on this, we have the following result.
Lemma 13. For all x and x′ in X and all t ≥ 0, we have

|σt(x)− σt(x′)| ≤ 2
√
|k|∞ dk(x,x′) (77)

Proof. For any compact domain D the function f(x) = x2 is Lipschitz continuous for s ∈ D with
Lipschitz constant |df/dx|∞ = maxx∈D 2|x|. Since 0 ≤ σt(x) ≤

√
|k|∞, we have

|σ2
t (x)− σ2

t (x′)| ≤ 2
√
|k|∞

∣∣σt(x)− σt(x′)
∣∣ (78)

≤ 2
√
|k|∞ dk(x,x′) (79)
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H Regret Bound for Gaussian Process model

H.1 Assumptions about the model

Assumption 4. The both the kernel and the kernel metric (65) are Lipschitz continuous.

Note that the kernel metric is not trivially Lipschitz if the kernel is Lipschitz, since the square root
function has unbounded derivatives at zero. However, for many commonly used kernels, e.g., the
linear and squared exponential kernels, the kernel metric is in fact Lipschitz continuous.

As a direct consequence of Assumption 4 together with Appendix G we know that σ(·) is Lσ-
Lipschitz continuous.

Assumption 5. The model f has RKHS norm bounded by Bf with respect to a kernel that fulfilles
Assumption 4 and k((s, π(s), (s, π(s)) ≤ 1 for all π ∈ Π and s ∈ S.

This assumption allows us to learn a calibrated model of the function g. Note that the assumption
of a bounded kernel over a compact domain S is mild, since any scaling can be absorbed into the
constant Bf . We weaken this assumption in Appendix I, where we bound the domain S rather than
assuming compactness.

Since RKHS functions are linear combinations of the kernel function evaluated at representer points,
the continuity assumptions on the kernel directly transfer to continuity assumptions on the function f ,
so that we get the following result.

Corollary 3. Under Assumption 5, the dynamics function f is Lf -Lipschitz continuous with respect
to the 2-norm.

Proof. For scalar functions, this is a direct consequence of Assumption 5 and (Christmann and
Steinwart, 2008, Cor. 4.36). This directly generalizes to the vector case.

Since the state s is observed directly, the Assumption 5 allows us to learn a reliable statistical model
of f that conforms with the requirement of a well-calibrated model in Assumption 2. In particular,
for each transition from (sn,an) to sn+1, we add p observations, one for each output dimension, to
Dt as in Lemma 11.

Corollary 4. Under Assumptions 1 and 5 with βt as in Lemma 11 and a Gaussian process model
trained on observations xn+1 based on an input a = (sn,an), the following holds with probability
1− δ for all t ≥ 0, s ∈ Rp, and a ∈ Rq:

|f(s,a, i)− µt(s,a, i)| ≤ βtσt(s,a, i) (80)

In the following, we write

µt(s,a) = (µtNp(s,a, 1), . . . ,atNp(s,a, p)), (81)
σt(s,a) = (σtNp(s,a, 1), . . . , σtNp(s,a, p)) (82)

to represent the individual elements as vectors. Note that µt is conditioned on the tNp individual
one-dimensional observations after t episodes. Corollary 4 allows us to build confidence intervals on
the model error g based on the scaled Gaussian process posterior variance. A direct consequence of
these point-wise error bounds is that we can also bound the norm of the error on the vector-output of
f .

Corollary 5. Under the assumption of Corollary 4, with probability 1 − δ we have for all t ≥ 0,
s ∈ Rp, and a ∈ Rq that

‖f(s,a)− h(s,a)− µt(s,a)‖2 ≤ βt‖σt(s,a)‖2 (83)
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Proof.

‖f(s,a)− µt(s,a)‖2 =

(
p∑
i=1

|f(s,a, i)− µt(s,a, i)|2
)1/2

(84)

≤
(

p∑
i=1

|βtσt(s,a, i)|2
)1/2

= βt‖σt(s,a)‖2 (85)

H.2 Bounding IT for the GP model

In this section, we bound IT based on the GP assumptions. This allows us to use them together with
Theorem 2 to obtain regret bounds. We start with some preliminary lemmas

Lemma 14 (Srinivas et al. (2012)). s2 ≤ s2max

log(1+s2max) log(1 + s2) for all s ∈ [0, s2
max]

Lemma 15. Let |σt(·)| ≤ σmax and σ > 0. Then

σ2
t (x) ≤ σmax

log(1 + σ−2σmax)
log(1 + σ−2σ2

t (x)) (86)

Proof.

σ2
t (x) ≤ σ2(σ−2σ2

t (x)) (87)

Now σ−2σ2
t (x) ≤ σ−2σmax by assumption. Thus, we can use Lemma 14 to obtain

σ2
t (x) ≤ σ2 σ−2σmax

log(1 + σ−2σmax)
log(1 + σ−2σ2

t (x)) (88)

=
σmax

log(1 + σ−2σmax)
log(1 + σ−2σ2

t (x)) (89)

Lemma 16. Let D1:T denote the TN p-dimensional observations collected up to iteration t and
yD1:t

the corresponding observations of the following states. Then

1

2

T∑
t=1

N−1∑
n=0

p∑
j=1

log(1 + σ−2σ2
(t−1)Np(xn,t, j)) ≤ Np I(yDT

; fDT
) (90)

Proof.

1

2

T∑
t=1

N−1∑
n=0

p∑
j=1

log(1 + σ−2σ2
(t−1)Np(xn,t, j)) (91)

=

N−1∑
n=0

p∑
j=1

1

2

T∑
t=1

log(1 + σ−2σ2
(t−1)Np(xn,t, j)) (92)

≤ Np I(yD1:T
; fD1:T

) (93)

Where the second to last step follows from (Srinivas et al., 2012, Lemma 2) together with log(1+x) ≥
0 for x ≥ 0 and the properties of the mutual information. In particular, the inner sum conditions
on (t− 1)Np measurements, but sums only over the one element (xn,t, j). The mutual information
in (Srinivas et al., 2012, Lemma 2) instead sums over every element that we condition on in the next
step. By adding the missing non-negative terms together with the fact that the mutual information is
independent of the order of the observations we obtain the result. Another way to interpret this bound
is that, in the worst case, we could hypothetically visit N times the same state during a trajectory and
obtain the corresponding p-dimensional observation. This explains the Np factor that multiplies the
mutual information.
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We can use these two lemmas to obtain:
Lemma 17. For a GP model let |σt(·)| ≤ σmax and σ > 0. Then

IT (S,A) ≤ σmaxNp

log(1 + σ−2σmax)
γTNp(S ×A× Ip) (94)

Proof.

IT (S,A) = max
D1,...,DT⊂S×S×A, |Dt|=N

T∑
t=1

∑
s,a∈Dt

‖σt−1(s,a)‖22 (95)

= max
D1,...,DT⊂S×S×A, |Dt|=N

T∑
t=1

∑
s,a∈Dt

p∑
j=1

σ2
(t−1)Np(s,a, j) (96)

≤ σmax

log(1 + σ−2σmax)
max

D1,...,DT⊂S×S×A, |Dt|=N

T∑
t=1

∑
s,a∈Dt

p∑
j=1

log(1 + σ−2σ2
(t−1)Np(s,a, j))

(97)

≤ σmax

log(1 + σ−2σmax)
max

D1,...,DT⊂S×S×A, |Dt|=N
Np I(yD1:T

; fD1:T
) (98)

≤ σmaxNp

log(1 + σ−2σmax)
γTNp(S ×A× Ip) (99)

To obtain an instance-independent bound, we must bound the mutual information by the worst-case
mutual information as in (Srinivas et al., 2012).
Theorem 3. Under Assumptions 1–3 let sn,t ∈ Xt, St−1 ⊆ St, and an,t ∈ U for all n, t > 0 with
compact sets St and A. Let ‖σ(·)‖∞ ≤ σmax. At each iteration, select parameters according to (7).
Then the following holds with probability at least (1− δ) for all t ≥ 1

RT ≤ O
(
βNT−1L

N
σ N

2
√
T p γpTN (ST ×A× Ip)

)
, (100)

where γpTN (S ×A× Ip) is the information capacity after (ptN) observations within the extended
domain S ×A× Ip.

Proof. From Theorem 2 we have R2
T ≤ TL2

JN
3IT (St,A). Together with Lemma 17 we obtain

RT ≤ LJ
√
N3IT (St,A) (101)

≤ LJ
(

σmaxN
4p

log(1 + σ−2σmax)
γTNp(S ×A× Ip)

)1/2

(102)

where LJ = 2Lr(1 + Lπ)βt−1L̄
N−1
f from Lemma 5 and L̄f = 1 + Lf + 2βt−1Lσ

√
1 + Lπ

from Lemma 4. Plugging in we get LJ = 2Lr(1 + Lπ)βt−1(1 + Lf + 2βt−1Lσ
√

1 + Lπ)N−1 =
O
(
βNt−1L

N
σ

)
so that

RT ≤ O
(
LNσ β

N
T−1N

2
√
TpγpTN (St ×A× Ip)

)
(103)

Notably, unlike in Theorem 1 we can actually bound the information capacity γ in Theorem 3.
For a GP model that uses a squared exponential kernel with independent outputs, we have
γpTN ≤ O(p(p+ q) log(pTN)) by (Srinivas et al., 2012; Krause and Ong, 2011), which ren-
ders the overall regret bound sublinear. Note that for the Matern kernel the best known bound on
γpTN is O(p(pTN)c log(pTN)) with 0 < c < 1. This means the regret bound is not sublinear for
long trajectories due to the βNt term in the regret bound. However, the bound is expected to be loose
(Scarlett et al., 2017). Tighter bounds can be computed numerically, see (Srinivas et al., 2012, Fig. 3).

Note that the requirement ‖σ(·)‖∞ if fulfilled according to

44



Lemma 18. Under Assumption 5 we have σ(s) ≤ 1 for all s ∈ S.

Proof. This is a direct consequence of (62).

H.3 Comparison to Chowdhury and Gopalan (2019)

In this section, we compare our bound to the one by Chowdhury and Gopalan (2019). This is a
difficult endeavour, because they make fundamentally different assumptions. In particular, they
assume that the value function v(x) is LM -Lipschitz continuous, which hides all the complexity of
thinking about different trajectories, as deviations between the two trajectories can be bounded after
one step by LM‖s1 − s̃1‖. In contrast, we do not make this high-level assumption and specifically
reason about the entire trajectories based on system properties. Note, that the constant LM is at least
Ω(N) without additional assumptions about the system and generally will depend on the statistical
model (GP).

Secondly, they restrict the optimization over dynamics that are Lipschitz continuous, which means
their algorithm depends on system properties that are difficult to estimate in general. However, this
assumption avoids the dependency βN in our regret bound, since it limits optimization to trajectories
that are at most as smooth as the dynamics of the true system. The cost of this is that their algorithm
is not tractable to implement or compute.

For completeness, in the following we modify our proof to use their assumption and show a regret
bound that is comparable to the one by Chowdhury and Gopalan (2019).

H.3.1 Our bound under the assumptions of (Chowdhury and Gopalan, 2019)

Now, we show that if we assume that the optimistic dynamics are Lipschitz, which together with a
Lipschitz-continuous policy implies the Lipschitz continuity of the value function that is assumed by
Chowdhury and Gopalan (2019), we obtain the same regret bounds.

Let

M̃t =
{
f ′ | |µ(s,a)− f ′(s,a)| ≤ βσ(s,a)∀s,a ∈ Rp × Rq,
‖f ′(s,a)− f ′(s′,a′)‖ ≤ Lf‖(s,a)− (s′,a′)‖ ∀(s,a), (s′,a′) ∈ Rp × Rq,

}
be the set of all Lipschitz continuous dynamics that are compatible with the uncertainty representation
in Assumption 2. We now consider a variant of (7) that optimizes over dynamics in this set,

πt = argmax
π∈Π, f̃t∈M̃t

J(f̃t, π) (104)

and we implicitly define s̃ and ã based on f̃t in (104) for the remainder of this section, instead of the
global definition from (17). Note that this optimization is not tractable in the noisy case.

For the exploration scheme in (104) we have the following results that lead to improved regret bounds
that match those in (Chowdhury and Gopalan, 2019) up to constant factors.

Lemma 19. Under the assumptions of Corollary 4, let L̄f = Lf . Then, for any sequence of ηn ∈
[−1, 1]p, any sequence of ωn with ω̃n = ωn, θ ∈ D, and n ≥ 1 we have that

‖sn,t − s̃n,t‖ ≤ 2βt−1L̄
N−1
f

n−1∑
i=0

‖σt−1(si,t)‖ (105)

Proof. Let
f̃(s̃n,t) = µt−1(s̃n) + βt−1Σt−1(s̃n)ηn. (106)

Then by design we have ‖f̃(s)− f̃(s′)‖ ≤ Lf‖s− s′‖.
We start by showing that, for any n ≥ 1, we have

‖sn,t − s̃n,t‖ ≤ 2βt−1

n−1∑
i=0

Ln−1−i
f ‖σt−1(si,t)‖ (107)
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by induction.

For the base case we have s̃0 = s0. Consequently, at t we have

‖s1,t − s̃1,t‖ = ‖f(s0) + ω0 − f̃(s0)− ω̃0‖ (108)

= ‖f(s0)− f̃(s0)‖ (109)
= ‖f(s0)− µt−1(s0)− βt−1Σt−1(s0)η0‖ (110)
≤ ‖f(s0)− µt−1(s0)‖+ βt−1‖σt−1(s0)η0‖ (111)
≤ βt−1‖σt−1(s0)‖+ βt−1‖σt−1(s0)‖ (112)
= 2βt−1‖σt−1(s0)‖ (113)

For the induction step assume that (107) holds at time step n. Subsequently we have at iteration t that

‖sn+1,t − s̃n+1,t‖ = ‖f(sn)− f̃(s̃n)‖
= ‖f(sn)− f̃(sn) + f̃(sn)− f̃(s̃n)‖
= ‖f(sn)− f̃(sn)‖+ ‖f̃(sn)− f̃(s̃n)‖
≤ 2βt−1‖σt−1(sn)‖+ Lf‖sn − s̃n‖

≤ 2βt−1‖σt−1(sn)‖+ Lf2βt−1

n−1∑
i=0

Ln−1−i
f ‖σt−1(si,t)‖

= 2βt−1‖σt−1(sn)‖+ 2βt−1

n−1∑
i=0

Ln−1−i+1
f ‖σt−1(si,t)‖

= 2βt−1

(n+1)−1∑
i=0

L
(n+1)−1−i+1
f ‖σt−1(si,t)‖

= 2βt−1

(n+1)−1∑
i=0

L
(n+1)−i
f ‖σt−1(si,t)‖

Thus (107) holds. Now since n ≤ N we have

‖sn+1,t − s̃n+1,t‖ ≤ 2βt−1

n−1∑
i=0

Ln−1−i
f ‖σt−1(si,t)‖ ≤ 2βt−1L

N−1
f

n−1∑
i=0

‖σt−1(si,t)‖ (114)

Theorem 4. Under Assumptions 1–3 let sn,t ∈ Xt, St−1 ⊆ St, and an,t ∈ U for all n, t > 0 with
compact sets St and A. Let ‖σ(·)‖∞ ≤ σmax. At each iteration, select parameters according to
(104). Then the following holds with probability at least (1− δ) for all t ≥ 1

RT ≤ O
(
LNf N

2
√
T p γpTN (ST ×A)

)
, (115)

where γpTN (S ×A) is the information capacity after (ptN) observations within the domain S ×A.

Thus, our proof strategy also avoids the scaling βN when we assume that optimizing over dynamics
inM is tractable. Thus, the factor βN is the cost that we pay for not being able to do so.

I Extension to Unbounded Domains

So far, we have assumed a compact domain S . This is incompatible with the dynamic system in (1),
since sub-Gaussian noise includes noise distributions with unbounded support. In this section, we
show that we can bound the domain with high probability and that we can use continuity arguments
to extend our previous theorem to this more general settings. This also avoids the implicit assumption
that the dynamics function is bounded, which is not even true for linear systems.
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I.1 Bound on Aleatoric Uncertainty (Noise Bound)

We start by bounding the norm of the noise vector ωn over all time steps n.

We know that the ωn are i.i.d. sub-Gaussian vectors. We exploit the basic properties of sub-Gaussian
random variables and refer to Eldar and Kutyniok (2012, Chapter 5) for a concise review.

Lemma 20. Vershynin (2010, Corollary 5.17) Let X1, . . . , Xp be independent centered sub-
exponential random variables, and let 2σ = maxi ‖Xi‖φ1

be the largest, sub-exponential norm.
Then, for every ε ≥ 0, we have

P

{∣∣∣∣∣
T∑
i=1

Xi

∣∣∣∣∣ ≥ εp
}
≤ 2exp

[−eT

2
min

(
ε2

4σ2
,
ε

2σ

)]
(116)

This allows us to bound the 2-norm of the noise vectors in (1).

Lemma 21. Letω = (ω1, . . . , ωp) be a vector with i.i.d. elements [ω]i = ωi that are σ-sub-Gaussian.
Then, with probability at least 1− δ, we have that

‖ω‖22 ≤ 2σp+
4σ

e
log

2

δ
(117)

Proof. Since the ωi are σ-sub-Gaussian, we have the ω2
i are 2σ-sub-exponential (Vershynin, 2010,

Lemma 5.14). Thus we have

‖ω‖22 =

p∑
i=1

ω2
i ,

where the ω2
i are i.i.d. 2σ-sub-exponential. Following Lemma 20, we have

P
{
‖ω‖22 ≥ εp

}
≤ 2exp

[−ep

2
min

(
ε2

4σ2
,
ε

2σ

)]
(118)

Now for ε ≥ 2σ we have ε2/(4σ2) ≥ ε/(2σ). Thus

P
{
‖ω‖22 ≥ (2σ + ε)p

}
≤ 2exp

[−ep

2

(2σ + ε)

2σ

]
≤ 2exp

[−ep

2

ε

2σ

]
(119)

We want to upper bound the right hand side by δ. so

2 exp

[−epε

4σ

]
≤ δ, (120)

−epε

4σ
≤ log(δ/2), (121)

epε

4σ
≥ log(2/δ), (122)

ε ≥ 4σ

ep
log(2/δ). (123)

the result follows by plugging the bound for ε into (119),

(2σ + ε)p = (2σ +
4σ

ep
log(2/δ))p (124)

= 2σp+
4σ

e
log

2

δ
(125)

As the last step, we apply the union bound to obtain confidence intervals over multiple steps.
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Lemma 22. Let ω0,ω1, . . . be i.i.d. random vectors with ωn ∈ Rp such that each entry of the vector
is i.i.d. σ-sub-Gaussian. Then, with probability at least (1− δ),

‖ωn‖22 ≤ 2σp+
4σ

e
log

(n+ 1)2π2

3δ
(126)

holds jointly for all n ≥ 0.

Proof. At each time step n, we apply a probability budget of δ/πn to the bound in Lemma 21, where
πn ≥ 0 and

∑
n≥0 π

−1
n = 1. In particular, we use πn = (n+1)2π2

6 as in (Srinivas et al., 2012, Lemma
5.1), so that we apply monotonically decreasing probability thresholds as n increases. We obtain the
result by applying a union bound over n, since

∑
n≥0 δ/πn = δ.

This means that, for all time steps n, the noise is bounded within the hyper-sphere defined through
(126) with high probability. In particular, the joint confidence intervals only come at the cost of a
O
(
log n2

)
increase in the confidence intervals over time.

I.2 Bounding the Domain Under Aleatoric Uncertainty

We exploit the σ-sub-Gaussian property of the transition noise and build on Lemmas 20 and 21 to
obtain a bound over the domain. We start by applying a union bound on Lemma 21 over the time
horizon N .
Lemma 23. Let ω0, . . . ,ωN−1 be vectors with ωi ∈ Rp such that each entry of the vector is i.i.d.
σ-sub-Gaussian. Then, with probability at least (1− δ),

N−1∑
n=0

‖ωi‖2 ≤ N
√

2σp+
4σ

e
log

2T

δ
(127)

Proof. Now using Lemma 21 with probability threshold δ/T and applying the union bound we, get
that ‖ωi‖22 ≤ 2σp+ 4σ

e log 2T
δ holds for all 0 ≤ i ≤ N − 1 with probability at least 1− δ.

Now, first using Jensen’s inequality and then plugging in the bound for ‖ωi‖22, we obtain
N∑
n=1

‖ωn‖2 =

N−1∑
i=0

√
‖ωn‖22 (128)

≤
√
T

√√√√N−1∑
n=0

‖ωn‖22 (129)

≤
√
T

√√√√N−1∑
n=0

(
2σp+

4σ

e
log

2T

δ

)
(130)

= N

√
2σp+

4σ

e
log

2T

δ
(131)

Lastly, we use a union bound over all iterations similar to (Srinivas et al., 2012, Lemma 5.1).
Lemma 24. Let ωt,n be the random vectors as in Lemma 23 at iteration n. Then, with probability
(1− δ) we have for all n ≥ 1 that

N∑
t=1

‖ωn,t‖2 ≤ N
√

2σp+
4σ

e
log

Nπ2t2

3δ
(132)

Proof. At each iteration n, we apply a probability budget of δ/ρt to the bound in Lemma 23, where
ρt ≥ 0 and

∑
t≥1 ρ

−1
t = 1. In particular, we use ρt = t2π2

6 as in (Srinivas et al., 2012, Lemma 5.1),
so that we apply monotonically decreasing probability thresholds as t increases. We obtain the result
by applying a union bound over t, since

∑
t≥1 δ/ρt = δ.
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Now that we can bound the noise over all iterations, we can bound the domain over which the system
acts with a compact set.
Lemma 25. Let f be Lf -Lipschitz continuous with respect to the norm ‖ · ‖. Then we have for all
n ≥ 1 that

‖sn − s0‖ ≤
n−1∑
i=0

Lifc‖f(s0)− s0‖+

n−1∑
i=0

Ln−1−i
fc ‖ωi‖ (133)

≤ (1 + Lfc)n−1

(
n‖f(s0)− s0‖+

n−1∑
i=0

‖ωi‖
)

(134)

Proof. We first proof (133) by induction. For the base case we have

‖s1 − s0‖ = ‖f(s0) + ω0 − s0‖ (135)
≤ ‖f(s0)− s0‖+ ‖ω0‖, (136)

= L0
fc‖f(s0)− s0‖+ L0

fc‖ω0‖. (137)

For the induction step, assume that the assumption holds for some n. Then,

‖st+1 − s0‖ = ‖f(sn) + ωn − s0‖ (138)
= ‖f(sn)− f(s0) + f(s0)− s0 + ωn‖ (139)
≤ ‖f(sn)− f(s0)‖+ ‖f(s0)− s0‖+ ‖ωn‖ (140)
≤ Lfc‖sn − s0‖+ ‖f(s0)− s0‖+ ‖ωn‖ (141)

≤ Lfc

(
n−1∑
i=0

Lifc‖f(s0)− s0‖+

n−1∑
i=0

Ln−1−i
fc ‖ωi‖

)
(142)

+ ‖f(s0)− s0‖+ ‖ωn‖ (143)

=

(t−1)+1∑
i=1

Lifc‖f(s0)− s0‖+ ‖f(s0)− s0‖

+

n−1∑
i=0

L
(t+1)−1−i
fc ‖ωi‖+ ‖ωn‖ (144)

=

(t−1)+1∑
i=0

Lifc‖f(s0)− s0‖+

(t+1)−1∑
i=0

L
(t+1)−1−i
fc ‖ωi‖ (145)

Which concludes the proof. For (134), note that Lifc ≤ (1 + Lfc)t for all i ≤ t. Thus we have

n−1∑
i=0

Lifc‖f(s0)− s0‖+

n−1∑
i=0

Ln−1−i
fc ‖ωi‖ (146)

≤ Ln−1
fc

n−1∑
i=0

(
‖f(s0)− s0‖+ ‖ωi‖

)
(147)

= Ln−1
fc

(
n‖f(s0)− s0‖+

n−1∑
i=0

‖ωi‖
)

(148)

Lemma 26. Let bt = LT−1
fc N

(
B0 +

√
2σp+ 4σ

e log Nπ2n2

3δ

)
and ‖f(s0) − s0‖2 ≤ B0. Then,

with probability at least (1 − δ), we have for all iterations n ≥ 1 and corresponding time steps
0 ≤ n ≤ N that

sn,t ∈ B(s0, bt), (149)
where B(s0, bt) = {s ∈ Rp | ‖s− s0‖2 ≤ bt} is a norm-ball centered around s0 with radius bt.
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Proof. From Lemma 25, we have for all n ≥ 1, 0 ≤ n ≤ N that

‖st,n − s0‖2 ≤ (1 + Lfc)n−1

(
n‖f(s0)− s0‖2 +

n−1∑
i=0

‖ωi‖2
)

(150)

Now by Assumptions 1 and 3 and Combined with Lemma 24, we obtain

‖st,n − s0‖2 ≤ (1 + Lfc)n−1

(
n‖f(s0)− s0‖2 + n

√
2σp+

4σ

e
log

tπ2n2

3δ

)
(151)

≤ (1 + Lfc)T−1N

(
‖f(s0)− s0‖2 +

√
2σp+

4σ

e
log

Nπ2n2

3δ

)
(152)

:= bt (153)
Lastly, we have ‖f(s0)− s0‖2 ≤ B0 by assumption, which concludes the proof.

I.3 Regret bounds over Unbounded Domains

The probability for the noise bound is generally different from the one used for the well-calibrated
model. We can derive a joint bound using a simple union bound.
Lemma 27. Under Assumptions 1–3, let ‖f(s0) − s0‖2 ≤ B0 and define bt =

LT−1
fc N

(
B0 +

√
2σp+ 4σ

e log Nπ2n2

3δ

)
. Then the following hold jointly with probability at least

(1− 2δ) for all t ≥ 1 and 0 ≤ n < N

i) |f(s,a)− µt(s,a)| ≤ βtσt(s,a) elementwise for all s ∈ Rp and a ∈ Rq

ii) sn,t ∈ B(s0, bt)

Proof. This follows directly from applying a union bound over Lemma 26 and Corollary 5 with a
probability budget of δ/2 for each.

Note that the probability dropped from individual confidences of 1−δ in Assumption 2 and Lemma 26
to a joint confidence of 1− 2δ.

Thus, we can used Lemma 27 together with Corollary 6 to fulfill both the compact set and the
boundedness requirements. The last assumption we need is boundedness of the predictions. For this,
we introduce an additional weak assumptions
Assumption 6 (Boundedness). The system dynamics at the first step are bounded, ‖f(s0)− s0‖2 ≤
B0. Similarly we have Σ(s0) and, if used, k(s0, s0) bounded.

These assumptions are not restrictive, since any dynamical system that explodes to infinity after one
step is generally not real-world relevant or controllable. Similarly, we cannot expect to do learning if
our model’s confidence intervals allow infinite predictions.
Corollary 6. Under Assumptions 3 and 6, if the states live in a compact set St, then σ(s) is bounded.

Proof. This follows trivially from Assumption 3, since s0 ∈ S and σ(s0) is bounded. Thus, by
continuity, it must be bounded over a compact set.

Theorem 5. Under Assumptions 1–3 let the noise distribution be σ-subGaussian as in Assumption 1
and πθ(s) ∈ A for all π ∈ Π with A compact. At each iteration, select parameters according to (7).
Then the following holds with probability at least (1− 2δ) for all T ≥ 1

RT ≤ O
(
βNT−1L

N
σ N

2
√
T p γpTN (B(s0, bt)×A× Ip)

)
, (154)

where bt = LT−1
fc N

(
B0 +

√
2σp+ 4σ

e log Nπ2n2

3δ

)
.

Proof. By Assumption 1 we know from Lemma 27 that with probability at least (1− 2δ) the model
is well-calibrated and s ∈ St = B(s0, bt). Boundedness of predictions follows from Corollary 6, so
that all requirements of Theorem 1 are satisfied and the result follows.
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I.4 Bounding the Maximum Information Capacity for Gaussian Processes

In Theorem 5 the information capacity is a function of the domain size. Given the previous proofs,
the radius of the domain increases at a logarithmic rate bt ∈ O

(
log t2

)
, which also increases the

information capacity. In the following two lemmas, we show how this affects the information capacity
of the Gaussian process model.
Lemma 28 (Srinivas et al. (2012)). For the linear kernel k(s, s′) = sTs′ with s ∈ Rp we have

γt(B(s0, bt)) = O(p log(t)) (155)

Lemma 29. For the squared exponential kernel we have

γt(B(s0, bt)) = O
(
bpt (log(t))p+1

)
(156)

Proof. The proof is the same as in (Srinivas et al., 2012). In their notation, we have nT =
O
(
bdt log(bdt )

)
while analyzing the terms in the eigenvalue bound leads to Bk(T ∗) ∼ bdt . The

remainder of the proof follows through as in the original paper, which leads to the result.

Thus, the information capacity grows proportionally to the volume of the domain. Since bt in
Theorem 5 is O

(
log t2

)
this means that this costs us only an additional logarithmic factor in the

regret relative to a fixed domain S.

Note that we are using a composite kernel to model the different output dimensions. Thus these
bounds need to be combined with the methodology from Krause and Ong (2011) in order to obtain
bounds for the composite kernels. However, this does not affect the result.
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