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Abstract

Model-based reinforcement learning algorithms with probabilistic dynamical
models are amongst the most data-efficient learning methods. This is often
attributed to their ability to distinguish between epistemic and aleatoric uncertainty.
However, while most algorithms distinguish these two uncertainties for learning
the model, they ignore it when optimizing the policy, which leads to greedy
and insufficient exploration. At the same time, there are no practical solvers
for optimistic exploration algorithms. In this paper, we propose a practical
optimistic exploration algorithm (H-UCRL). H-UCRL reparameterizes the set of
plausible models and hallucinates control directly on the epistemic uncertainty.
By augmenting the input space with the hallucinated inputs, H-UCRL can be
solved using standard greedy planners. Furthermore, we analyze H-UCRL and
construct a general regret bound for well-calibrated models, which is provably
sublinear in the case of Gaussian Process models. Based on this theoretical
foundation, we show how optimistic exploration can be easily combined with
state-of-the-art reinforcement learning algorithms and different probabilistic
models. Our experiments demonstrate that optimistic exploration significantly
speeds-up learning when there are penalties on actions, a setting that is notoriously
difficult for existing model-based reinforcement learning algorithms.

1 Introduction

Model-Based Reinforcement Learning (MBRL) with probabilistic dynamical models can solve many
challenging high-dimensional tasks with impressive sample efficiency (Chua et al., 2018). These
algorithms alternate between two phases: first, they collect data with a policy and fit a model to the
data; then, they simulate transitions with the model and optimize the policy accordingly. A key feature
of the recent success of MBRL algorithms is the use of models that explicitly distinguish between
epistemic and aleatoric uncertainty when learning a model (Gal, 2016). Aleatoric uncertainty is in-
herent to the system (noise), whereas epistemic uncertainty arises from data scarcity (Der Kiureghian
and Ditlevsen, 2009). However, to optimize the policy, practical algorithms marginalize over both the
aleatoric and epistemic uncertainty to optimize the expected performance under the current model, as
in PILCO (Deisenroth and Rasmussen, 2011). This greedy exploitation can cause the optimization to
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Figure 1: Final returns in an inverted pendulum swing-up task with sparse rewards. As the action
penalty increases, exploration through noise is penalized and algorithms get stuck in a local minimum,
where the pendulum is kept at the bottom position. Instead, H-UCRL is able to solve the swing-up task
reliably. This holds for for all considered dynamical models: Deterministic- (DE) and Probabilistic
Ensembles (PE) of neural networks as well as Gaussian Processes (GP) models.

get stuck in local minima even in simple environments like the swing-up of an inverted pendulum: In
Fig. 1, all methods can solve this problem without action penalties (left plot). However, with action
penalties, the expected reward (under the epistemic uncertainty) of swinging up the pendulum is
low relative to the cost of the maneuver. Consequently, the greedy policy does not actuate the system
at all and fails to complete the task. While optimistic exploration is a well-known remedy, there
is currently a lack of efficient, principled means of incorporating optimism in deep MBRL.

Contributions Our main contribution is a novel optimistic MBRL algorithm, Hallucinated-UCRL
(H-UCRL), which can be applied together with state-of-the-art RL algorithms (Section 3). Our key
idea is to reduce optimistic exploration to greedy exploitation by reparameterizing the model-space
using a mean/epistemic variance decomposition. In particular, we augment the control space of the
agent with hallucinated control actions that directly control the agent’s epistemic uncertainty about
the 1-step ahead transition dynamics (Section 3.1). We provide a general theoretical analysis for
H-UCRL and prove sublinear regret bounds for the special case of Gaussian Process (GP) dynamics
models (Section 3.2). Finally, we evaluate H-UCRL in high-dimensional continuous control tasks
that shed light on when optimistic exploration outperforms greedy exploitation and Thompson
sampling (Section 4). To the best of our knowledge, this is the first approach that successfully
implements optimistic exploration with deep-MBRL.

Related Work MBRL is a promising avenue towards applying RL methods to complex real-
life decision problems due to its sample efficiency (Deisenroth et al., 2013). For instance, Kaiser
et al. (2019) use MBRL to solve the Atari suite, whereas Kamthe and Deisenroth (2018) solve
low-dimensional continuous-control problems using GP models and Chua et al. (2018) solve high-
dimensional continuous-control problems using ensembles of probabilistic Neural Networks (NN).
All these approaches perform greedy exploitation under the current model using a variant of PILCO
(Deisenroth and Rasmussen, 2011). Unfortunately, greedy exploitation is provably optimal only in
very limited cases such as linear quadratic regulators (LQR) (Mania et al., 2019).

Variants of Thompson (posterior) sampling are a common approach for provable exploration in
reinforcement learning (Dearden et al., 1999). In particular, Osband et al. (2013) propose Thompson
sampling for tabular MDPs. Chowdhury and Gopalan (2019) prove a Õ(

√
T ) regret bound for

continuous states and actions for this theoretical algorithm, where T is the number of episodes.
However, Thompson sampling can be applied only when it is tractable to sample from the posterior
distribution over dynamical models. For example, this is intractable for GP models with continuous
domains. Moreover, Wang et al. (2018) suggest that approximate inference methods may suffer from
variance starvation and limited exploration.

The Optimism-in-the-Face-of-Uncertainty (OFU) principle is a classical approach towards provable
exploration in the theory of RL. Notably, Brafman and Tennenholtz (2003) present the R-Max
algorithm for tabular MDPs, where a learner is optimistic about the reward function and uses the
expected dynamics to find a policy. R-Max has a sample complexity of O(1/ε3), which translates to
a sub-optimal regret of Õ(T 2/3). Jaksch et al. (2010) propose the UCRL algorithm that is optimistic
on the transition dynamics and achieves an optimal Õ(

√
T ) regret rate for tabular MDPs. Recently,

Zanette and Brunskill (2019), Efroni et al. (2019), and Domingues et al. (2020) provide refined
UCRL algorithms for tabular MDPs. When the number of states and actions increase, these tabular
algorithms are inefficient and practical algorithms must exploit structure of the problem. The use of
optimism in continuous state/action MDPs however is much less explored. Jin et al. (2019) present an
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optimistic algorithm for linear MDPs and Abbasi-Yadkori and Szepesvári (2011) for linear quadratic
regulators (LQR), both achieving Õ(

√
T ) regret. Finally, Luo et al. (2018) propose a trust-region

UCRL meta-algorithm that asymptotically finds an optimal policy but it is intractable to implement.

Perhaps most closely related to our work, Chowdhury and Gopalan (2019) present GP-UCRL for
continuous state and action spaces. They use optimistic exploration for the policy optimization
step with dynamical models that lie in a Reproducing Kernel Hilbert Space (RKHS). However,
as mentioned by Chowdhury and Gopalan (2019), their algorithm is intractable to implement and
cannot be used in practice. Instead, we build on an implementable but expensive strategy that was
heuristically suggested by Moldovan et al. (2015) for planning on deterministic systems and develop
a principled and highly efficient optimistic exploration approach for deep MBRL. Partial results from
this paper appear in Berkenkamp (2019, Chapter 5).

Concurrent Work Kakade et al. (2020) build tight confidence intervals for our problem setting
based on information theoretical quantities. However, they assume an optimization oracle and do
not provide a practical implementation (their experiments use Thompson sampling). Abeille and
Lazaric (2020) propose an equivalent algorithm to H-UCRL in the context of LQR and proved that the
planning problem can be solved efficiently. In the same spirit as H-UCRL, Neu and Pike-Burke (2020)
reduce intractable optimistic exploration to greedy planning using well-selected reward bonuses.
In particular, they prove an equivalence between optimistic reinforcement learning and exploration
bonus (Azar et al., 2017) for tabular and linear MDPs. How to generalize these exploration bonuses
to our setting is left for future work.

2 Problem Statement and Background

We consider a stochastic environment with states s ∈ S ⊆ Rp, actions a ∈ A ⊂ Rq within a compact
set A, and i.i.d., additive transition noise ωn ∈ Rp. The resulting transition dynamics are

sn+1 = f(sn,an) + ωn (1)

with f : S ×A → S. For tractability we assume continuity of f , which is common for any method
that aims to approximate f with a continuous model (such as neural networks). In addition, we also
assume sub-Gaussian noise ω, which includes any zero-mean distribution with bounded support and
Gaussians. This assumption allows the noise to depend on states and actions.
Assumption 1 (System properties). The true dynamics f in (1) are Lf -Lipschitz continuous and, for
all n ≥ 0, the elements of the noise vector ωn are i.i.d. σ-sub-Gaussian.

2.1 Model-based Reinforcement Learning

Objective Our goal is to control the stochastic system (1) optimally in an episodic setting over a
finite time horizon N . To control the system, we use any deterministic policy πn : S → A from a set
Π that selects actions an = πn(sn) given the current state. For ease of notation, we assume that the
system is reset to a known state s0 at the end of each episode, that there is a known reward function
r : S × A → R, and we omit the dependence of the policy on the time index. Our results, easily
extend to known initial state distributions and unknown reward functions using standard techniques
(see Chowdhury and Gopalan (2019)). For any dynamical model f̃ : S × A → S (e.g., f in (1)),
the performance of a policy π is the total reward collected during an episode in expectation over the
transition noise ω,

J(f̃ , π) = Eω̃0:N−1

[∑N

n=0
r(s̃n, π(s̃n))

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n, π(s̃n)) + ω̃n. (2)

Thus, we aim to find the optimal policy π∗ for the true dynamics f in (1),

π∗ = argmax
π∈Π

J(f, π). (3)

If the dynamics f were known, (3) would be a standard stochastic optimal control problem. However,
in model-based reinforcement learning we do not know the dynamics f and have to learn them online.

Model-learning We consider algorithms that iteratively select policies πt at each iteration/episode
t and conduct a single rollout on the real system (1). That is, starting with D1 = ∅, at each iteration t
we apply the selected policy πt to (1) and collect transition data Dt+1 = {(sn−1,t,an−1,t), sn,t}Nn=1.
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Algorithm 1 Model-based Reinforcement Learning

Inputs: Calibrated dynamical model, reward function r(s,a), horizon N , initial state s0

1: for t = 1, 2, . . . do
2: Select πt based on (4), (5), or (7)
3: Reset the system to s0,t = s0

4: for n = 1, . . . , N do
5: sn,t = f(sn−1,t, πt(sn−1,t)) + ωn−1,t

6: Update statistical dynamical model with the N observed state transitions in Dt.

We use a statistical model to estimate which dynamical models f̃ are compatible with the data
in D1:t = ∪0<i≤tDi. This can either come from a frequentist model with mean and confidence
estimate µt(s,a) and Σt(s,a), or from a Bayesian perspective that estimates a posterior distribution
p(f̃ | D1:t) over dynamical models f̃ and defines µt(·) = Ef̃∼p(f̃ | D1:t)

[f̃(·)] and Σ2
t (·) = Var[f̃(·)],

respectively. Either way, we require the model to be well-calibrated:

Assumption 2 (Calibrated model). The statistical model is calibrated w.r.t. f in (1), so that with
σt(·) = diag(Σt(·)) there exists a sequence βt ∈ R>0 such that, with probability at least (1− δ), it
holds jointly for all t ≥ 0 and s,a ∈ S ×A that |f(s,a)− µt(s,a)| ≤ βtσt(s,a), elementwise.

Popular choices for statistical dynamics models include Gaussian Processes (GP) (Rasmussen
and Williams, 2006) and Neural Networks (NN) (Anthony and Bartlett, 2009). GP models naturally
differentiate between aleatoric noise and epistemic uncertainty and are effective in the low-data regime.
They provably satisfy Assumption 2 when the true function f has finite norm in the RKHS induced
by the covariance function. In contrast to GP models, NNs potentially scale to larger dimensions
and data sets. From a practical perspective, NN models that differentiate aleatoric from epistemic
uncertainty can be efficiently implemented using Probabilistic Ensembles (PE) (Lakshminarayanan
et al., 2017). Deterministic Ensembles (DE) are also commonly used but they do not represent
aleatoric uncertainty correctly (Chua et al., 2018). NN models are not calibrated in general, but can
be re-calibrated to satisfy Assumption 2 (Kuleshov et al., 2018). State-of-the-art methods typically
learn models so that the one-step predictions in Assumption 2 combine to yield good predictions for
trajectories (Archer et al., 2015; Doerr et al., 2018; Curi et al., 2020).

2.2 Exploration Strategies

Ultimately the performance of our algorithm depends on the choice of πt. We now provide a unified
overview of existing exploration schemes and summarize the MBRL procedure in Algorithm 1.

Greedy Exploitation In practice, one of the most commonly used algorithms is to select the policy
πt that greedily maximizes the expected performance over the aleatoric uncertainty and epistemic
uncertainty induced by the dynamical model. Other exploration strategies, such as dithering (e.g.,
epsilon-greedy, Boltzmann exploration) (Sutton and Barto, 1998) or certainty equivalent control
(Bertsekas et al., 1995, Chapter 6.1), can be grouped into this class. The greedy policy is

πGreedy
t = argmax

π∈Π
Ef̃∼p(f̃ | D1:t)

[
J(f̃ , π)

]
. (4)

For example, PILCO (Deisenroth and Rasmussen, 2011) and GP-MPC (Kamthe and Deisenroth, 2018)
use moment matching to approximate p(f̃ | D1:t) and use greedy exploitation to optimize the policy.
Likewise, PETS-1 and PETS-∞ from Chua et al. (2018) also lie in this category, in which p(f̃ | D1:t)
is represented via ensembles. The main difference between PETS-∞ and other algorithms is that
PETS-∞ ensures consistency by sampling a function per rollout, whereas PETS-1, PILCO, and GP-
MPC sample a new function at each time step for computational reasons. We show in Appendix A that,
in the bandit setting, the exploration is only driven by noise and optimization artifacts. In the tabular
RL setting, dithering takes an exponential number of episodes to find an optimal policy (Osband et al.,
2014). As such, it is not an efficient exploration scheme for reinforcement learning. Nevertheless, for
some specific reward and dynamics structure, such as linear-quadratic control, greedy exploitation
indeed achieves no-regret (Mania et al., 2019). However, it is the most common exploration strategy
and many practical algorithms to efficiently solve the optimization problem (4) exist (cf. Section 3.1).
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Figure 2: Illustration of the optimistic trajectory s̃n from H-UCRL. The policy π is used to choose the
next-state distribution, and the variables η to choose the next state optimistically inside the one-step
confidence interval (dark grey bars). The true dynamics is contained inside the light grey confidence
intervals, but, after the first step, not necessarily inside the dark grey bars. Even when the expected
reward w.r.t. the epistemic uncertainty is small (red cross compared to light grey bar), H-UCRL
efficiently finds the high-reward region (red cross). Instead, greedy exploitation strategies fail.

Thompson Sampling A theoretically grounded exploration strategy is Thompson sampling, which
optimizes the policy w.r.t. a single model that is sampled from p(f̃ | D1:t) at every episode. Formally,

f̃t ∼ p(f̃ | D1:t), πTS
t = argmax

π∈Π
J(f̃t, π). (5)

This is different to PETS-∞, as the former algorithm optimizes w.r.t. the average of the (consistent)
model trajectories instead of a single model. In general, it is intractable to sample from p(f̃ | D1:t).
Nevertheless, after the sampling step, the optimization problem is equivalent to greedy exploitation
of the sampled model. Thus, the same optimization algorithms can be used to solve (4) and (5).

Upper-Confidence Reinforcement Learning (UCRL) The final exploration strategy we address
is UCRL exploration (Jaksch et al., 2010), which optimizes jointly over policies and models inside
the setMt = {f̃ | |f̃(s,a) − µt(s,a)| ≤ βtσt(s,a)∀s,a ∈ S × A} that contains all statistically-
plausible models compatible with Assumption 2. The UCRL algorithm is

πUCRL
t = argmax

π∈Π
max
f̃∈Mt

J(f̃ , π). (6)

Instead of greedy exploitation, these algorithms optimize an optimistic policy that maximizes
performance over all plausible models. Unfortunately, this joint optimization is in general intractable
and algorithms designed for greedy exploitation (4) do not generally solve the UCRL objective (6).

3 Hallucinated Upper Confidence Reinforcement Learning (H-UCRL)

We propose a practical variant of the UCRL-exploration (6) algorithm. Namely, we reparameterize
the functions f̃ ∈Mt as f̃ = µt−1(s,a)+βt−1Σt−1(s,a)η(s,a), for some function η : Rp×Rq →
[−1, 1]p. This transformation is similar in spirit to the re-parameterization trick from Kingma and
Welling (2013), except that η(s,a) are functions. The key insight is that instead of optimizing over
dynamics in f̃ ∈ Mt as in UCRL, it suffices to optimize over the functions η(·). We call this
algorithm H-UCRL, formally:

πH−UCRL
t = argmax

π∈Π
max

η(·)∈[−1,1]p
J(f̃ , π), s.t. f̃(s,a) = µt−1(s,a) + βt−1Σt−1(s,a)η(s,a). (7)

At a high level, the policy π acts on the inputs (actions) of the dynamics and chooses the next-state
distribution. In turn, the optimization variables η act in the outputs of the dynamics to select the
most-optimistic outcome from within the confidence intervals. We call the optimization variables the
hallucinated controls as the agent hallucinates control authority to find the most-optimistic model.

The H-UCRL algorithm does not explicitly propagate uncertainty over the horizon. Instead, it does
so implicitly by using the pointwise uncertainty estimates from the model to recursively plan an
optimistic trajectory, as illustrated in Fig. 2. This has the practical advantage that the model only has
to be well-calibrated for 1-step predictions and not N -step predictions. In practice, the parameter βt
trades off between exploration and exploitation.

3.1 Solving the Optimization Problem

Problem (7) is still intractable as it requires to optimize over general functions. The crucial
insight is that we can make the H-UCRL algorithm (7) practical by optimizing over a smaller class

5



Algorithm 2 H-UCRL combining Optimistic Policy Search and Planning

Inputs: Mean µ(·, ·) and variance Σ2(·, ·), parametric policies πθ(·), ηθ(·), parametric critic Qϑ(·),
horizon N , policy search algorithm PolicySearch, online planning algorithm Plan,

1: for t = 1, 2, . . . do
2: (πθ,t, ηθ,t), Qϑ,t ← PolicySearch(µt−1; Σ2

t−1; (πθ,t−1, ηθ,t−1))
3: for n = 1, . . . , N do
4: (an−1,t,a

′
n−1,t) = Plan(sn−1,t;µt−1; Σ2

t−1; (πθ,t, ηθ,t), Qϑ)
5: sn,t = f(sn−1,t,an−1,t) + ωn−1,t

6: Update statistical dynamical model with the N observed state transitions in Dt.

of functions η. In Appendix E, we prove that it suffices to optimize over Lipschitz-continuous
bounded functions instead of general bounded functions. Therefore, we can optimize jointly
over policies and Lipschitz-continuous, bounded functions η(·). Furthermore, we can re-write
η(s̃n, ãn) = η(s̃n, π(s̃n,t)) = η(s̃n,t). This allows to reduce the intractable optimistic problem
(7) to greedy exploitation (4): We simply treat η(·) ∈ [−1, 1]p as an additional hallucinated control
input that has no associated control penalties and can exert as much control as the current epistemic
uncertainty that the model affords. With this observation in mind, H-UCRL greedily exploits a
hallucinated system with the extended dynamics f̃ in (7) and a corresponding augmented control
policy (π, η). This means that we can now use the same efficient MBRL approaches for optimistic
exploration that were previously restricted to greedy exploitation and Thompson sampling (albeit
on a slightly larger action space, since the dimension of the action space increases from q to q + p).

In practice, if we have access to a greedy oracle π = GreedyOracle(f), we simply access it using
π, η = GreedyOracle(µt−1 + βt−1Σt−1η). Broadly speaking, greedy oracles are implemented
using offline-policy search or online planning algorithms. Next, we discuss how to use these strategies
independently to solve the H-UCRL planning problem (7). For a detailed discussion on how to
augment common algorithms with hallucination, see Appendix C.

Offline Policy Search is any algorithm that optimizes a parametric policy to maximize performance
of the current dynamical model. As inputs, it takes the dynamical model and a parametric family for
the policy and the critic (the value function). It outputs the optimized policy and the corresponding
critic of the optimized policy. These algorithms have fast inference time and scale to large dimensions
but can suffer from model bias and inductive bias from the parametric policies and critics (van Hasselt
et al., 2019).

Online Planning or Model Predictive Control (Morari and H. Lee, 1999) is a local planning algorithm
that outputs the best action for the current state. This method solves the H-UCRL planning problem (7)
in a receding-horizon fashion. The planning horizon is usually shorter than N and the reward-to-go is
bootstrapped using a terminal reward. In most cases, however, this terminal reward is unknown and
must be learned (Lowrey et al., 2019). As the planner observes the true transitions during deployment,
it suffers less from model errors. However, its running time is too slow for real-time implementation.

Combining Offline Policy Search with Online Planning In Algorithm 2, we propose to combine
the best of both worlds to solve the H-UCRL planning problem (7). In particular, Algorithm 2 takes as
inputs a policy search algorithm and a planning algorithm. After each episode, it optimizes parametric
(e.g. neural networks) control and hallucination policies (πθ, ηθ) using the policy search algorithm.
As a by-product of the policy search algorithm we have the learned critic Qϑ. At deployment, the
planning algorithm returns the true and hallucinated actions (a, a′), and we only execute the true
action a to the true system. We initialize the planning algorithm using the learned policies (πθ, ηθ)
and use the learned critic to bootstrap at the end of the prediction horizon. In this way, we achieve
the best of both worlds. The policy search algorithm accelerates the planning algorithm by shortening
the planning horizon with the learned critic and by using the learned policies to warm-start the
optimization. The planning algorithm reduces the model-bias that a pure policy search algorithm has.

3.2 Theoretical Analysis

In this section, we analyze the H-UCRL algorithm (7). A natural quality criterion to evaluate
exploration schemes is the cumulative regret RT =

∑T
t=1 |J(f, π∗) − J(f, πt)|, which is the
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difference in performance between the optimal policy π∗ and πt on the true system f over the run
of the algorithm (Chowdhury and Gopalan, 2019). If we can show that RT is sublinear in T , then
we know that the performance J(f, πt) of our chosen policies πt converges to the performance of
the optimal policy π∗. We first introduce the final assumption for the results in this section to hold.
Assumption 3 (Continuity). The functions µt and σt are Lµ and Lσ Lipschitz continuous, any
policy π ∈ Π is Lπ-Lipschitz continuous and the reward r(·, ·) is Lr-Lipschitz continuous.

Assumption 3 is not restrictive. NN with Lipschitz-continuous non-linearities or GP with Lipschitz-
continuous kernels output Lipschitz-continuous predictions (see Appendix G). Furthermore, we
are free to choose the policy class Π, and most reward functions are either quadratic or tolerance
functions (Tassa et al., 2018). Discontinuous reward functions are generally very difficult to optimize.

Model complexity In general, we expect that RT depends on the complexity of the statistical
model in Assumption 2. If we can quickly estimate the true model using a few data-points, then
the regret would be lower than if the model is slower to learn. To account for these differences, we
construct the following complexity measure over a given set S and A,

IT (S,A) = max
D1,...,DT⊂S×S×A, |Dt|=N

∑T

t=1

∑
s,a∈Dt

‖σt−1(s,a)‖22. (8)

While in general impossible to compute, this complexity measure considers the “worst-case” datasets
D1 to DT , with |Dt| = N elements each, that we could collect at each iteration of Algorithm 1 in
order to maximize the predictive uncertainty of our statistical model. Intuitively, if σ(s,a) shrinks
sufficiently quickly after observing a transition (·, s,a) and if the model generalizes well over S ×A,
then (8) will be small. In contrast, if our model does not learn or generalize at all, then IT will
be O(TNp) and we cannot hope to succeed in finding the optimal policy. For the special case of
Gaussian process (GP) models, we show that IT is indeed sublinear in the following.

General regret bound The true sequence of states sn,t at which we obtain data during our rollout
in Line 5 of Algorithm 1 lies somewhere withing the light-gray shaded state distribution with epistemic
uncertainty in Fig. 2. While this is generally difficult to compute, we can bound it in terms of the
predictive variance σt−1(sn,t, πt(sn,t)), which is directly related to IT . However, the optimistically
planned trajectory instead depends on σt−1(s̃n,t, π(s̃n,t)) in (7), which enables policy optimization
without explicitly constructing the state distribution. How the predictive uncertainties of these two
trajectories relate depends on the generalization properties of our statistical model; specifically on
Lσ in Assumption 3. We can use this observation to obtain the following bound on RT :
Theorem 1. Under Assumptions 1–3 let sn,t ∈ S and an,t ∈ A for all n, t > 0. Then,
for all T ≥ 1, with probability at least (1 − δ), the regret of H-UCRL in (7) is at most

RT ≤ O
(
LNσ β

N
T−1

√
TN3 IT (S,A)

)
.

We provide a proof of Theorem 1 in Appendix D. The theorem ensures that, if we evaluate optimistic
policies according to (7), we eventually achieve performance J(f, πt) arbitrarily close to the optimal
performance of J(f, π∗) if IT (S,A) grows at a rate smaller than T . As one would expect, the regret
bound in Theorem 1 depends on constant factors like the prediction horizon N , the relevant Lipschitz
constants of the dynamics, policy, reward, and the predictive uncertainty. The dependence on the
dimensionality of the state space p is hidden inside IT , while βt is a function of δ.

Gaussian Process Models For the bound in Theorem 1 to be useful, we must show that IT is sublin-
ear. Proving this is impossible for general models, but can be proven for GP models. In particular, we
show in Appendix H that IT is bounded by the worst-case mutual information (information capacity)
of the GP model. Srinivas et al. (2012); Krause and Ong (2011) derive upper-bounds for the infor-
mation capacity for commonly-used kernels. For example, when we use their results for independent
GP models with squared exponential kernels for each component [f(s,a)]i, we obtain a regret bound
O( (1+Bf )NLNσ N

2
√
T (p2(p+q) log(pTN))(N+1)/2), whereBf is a bound on the functional com-

plexity of the function f . Specifically, Bf is the norm of f in the RKHS that corresponds to the kernel.

A similar optimistic exploration scheme was analyzed by Chowdhury and Gopalan (2019), but
for an algorithm that is not implementable as we discussed at the beginning of Section 3. Their
exploration scheme depends on the (generally unknown) Lipschitz constant of the value function,
which corresponds to knowing Lf a priori in our setting. While this is a restrictive and impractical
requirement, we show in Appendix H.3 that under this assumption we can improve the dependence
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Figure 3: Mean final episodic returns on Mujoco tasks averaged over five different random seeds. For
Reacher and Pusher (50 episodes), all exploration strategies perform equally. For Sparse-Reacher (50
episodes) and Half-Cheetah (250 episodes), H-UCRL outperforms other exploration algorithms.

on LNσ β
N
T in the regret bound in Theorem 1 to (LfβT )1/2. This matches the bounds derived by

Chowdhury and Gopalan (2019) up to constant factors. Thus we can consider the regret term LNσ β
N
T

to be the additional cost that we have to pay for a practical algorithm.

Unbounded domains We assume that the domain S is compact in order to bound IT for GP models,
which enables a convenient analysis and is also used by Chowdhury and Gopalan (2019). However, it
is incompatible with Assumption 1, which allows for potentially unbounded noise ω. While this is a
technical detail, we formally prove in Appendix I that we can bound the domain with high probability
within a norm-ball of radius bt = O(LNf Np log(Nt2)). For GP models with a squared exponential
kernel, we analyze IT in this setting and show that the regret bound only increases by a polylog factor.

4 Experiments

Throughout the experiments, we consider reward functions of the form r(s,a) = rstate(s)−ρcaction(a),
where rstate(s) is the reward for being in a “good” state, and ρ ∈ [0,∞) is a parameter that scales
the action costs caction(a). We evaluate how H-UCRL, greedy exploitation, and Thompson sampling
perform for different values of ρ in different Mujoco environments (Todorov et al., 2012). We expect
greedy exploitation to struggle for larger ρ, whereas H-UCRL and Thompson sampling should
perform well. As modeling choice, we use 5-head probabilistic ensembles as in Chua et al. (2018).
For greedy exploitation, we sample the next-state from the ensemble mean and covariance (PE-DS
algorithm in Chua et al. (2018)). We use ensemble sampling (Lu and Van Roy, 2017) to approximate
Thompson sampling. For H-UCRL, we follow Lakshminarayanan et al. (2017) and use the ensemble
mean and covariance as the next-state predictive distribution. For more experimental details and
learning curves, see Appendix B. We provide an open-source implementation of our method, which
is available at http://github.com/sebascuri/hucrl.

Sparse Inverted Pendulum We first investigate a swing-up pendulum with sparse rewards. In this
task, the policy must perform a complex maneuver to swing the pendulum to the upwards position.
A policy that does not act obtains zero state rewards but suffers zero action costs. Slightly moving
the pendulum still has zero state reward but the actions are penalized. Hence, a zero-action policy
is locally optimal, but it fails to complete the task. We show the results in Fig. 1: With no action
penalty, all exploration methods perform equally well – the randomness is enough to explore and
find a quasi-optimal sequence. For ρ = 0.1, greedy exploitation struggles: sometimes it finds the
swing-up sequence, which explains the large error bars. Finally, for ρ = 0.2 only H-UCRL is able to
successfully swing up the pendulum.

7-DOF PR2 Robot Next, we evaluate how H-UCRL performs in higher-dimensional problems.
We start by comparing the Reacher and Pusher environments proposed by Chua et al. (2018). We plot
the results in the upper left and right subplots in Fig. 3. The Reacher has to move the end-effector
towards a goal that is randomly sampled at the beginning of each episode. The Pusher has to push an
object towards a goal. The rewards and costs in these environments are quadratic. All exploration
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Figure 4: Learning curves in Half-Cheetah environment. For all action penalties, H-UCRL learns
faster than greedy and Thompson sampling strategies. For larger action penalties, greedy and
Thompson lead to insufficient exploration and get stuck in local optima with poor performance.

strategies achieve state-of-the-art performance, which seems to indicate that greedy exploitation is
indeed sufficient for these tasks. Presumably, this is due to the over-actuated dynamics and the reward
structure. This is in line with the theoretical results for linear-quadratic control by Mania et al. (2019).

To test this hypothesis, we repeat the Reacher experiment with a sparse reward function. We plot the
results in the lower left plot of Fig. 3. The state reward has a positive signal when the end-effector is
close to the goal and the action has a non-negative signal when it is close to zero. Here we observe
that H-UCRL outperforms alternative methods, particularly for larger action penalties.

Half-Cheetah Our final experiment demonstrates H-UCRL on a common deep-RL benchmark,
the Half-Cheetah. The goal is to make the cheetah run forward as fast as possible. The actuators have
to interact in a complex manner to achieve running. In Fig. 4, we can see a clear advantage of using
H-UCRL at different action penalties, even at zero. This indicates that H-UCRL not only addresses
action penalties, but also explores through complex dynamics. For the sake of completeness, we
also show the final returns in the lower right plot of Fig. 3.

H-UCRL vs. Thompson Sampling In Appendix B.4, we carry out extensive experiments to em-
pirically evaluate why Thompson sampling fails in our setting. Phan et al. (2019) in the Bandit Setting
and Kakade et al. (2020) in the RL setting also report that approximate Thompson sampling fails
unless strong modelling priors are used. We believe that the poor performance of Thompson sampling
relative to H-UCRL suggests that the models that we use are sufficient to construct well-calibrated
1-step ahead confidence intervals, but do not comprise a rich enough posterior distribution for Thomp-
son sampling. As an example, in H-UCRL we use the five members of the ensemble to construct
the 1-step ahead confidence interval at every time-step. On the other hand, in Thompson sampling
we sample a single model from the approximate posterior for the full horizon. It is possible that in
some regions of the state-space one member is more optimistic than others, and in a different region
the situation reverses. This is not only a property of ensembles, but also other approximate models
such as random-feature GP models (c.f. Appendix B.4.5) exhibit the same behaviour. This discussion
highlights the advantage of H-UCRL over Thompson sampling using deep neural networks: H-UCRL
only requires calibrated 1-step ahead confidence intervals, and we know how to construct them
(c.f. Malik et al. (2019)). Instead, Thompson sampling requires posterior models that are calibrated
throughout the full trajectory. Due to the multi-step nature of the problem, constructing scalable
approximate posteriors that have enough variance to sufficiently explore is still an open problem.

5 Conclusions

In this work, we introduced H-UCRL: a practical optimistic-exploration algorithm for deep MBRL.
The key idea is a reduction from (generally intractable) optimistic exploration to greedy exploitation
in an augmented policy space. Crucially, this insight enables the use of highly effective standard
MBRL algorithms that previously were restricted to greedy exploitation and Thompson sampling.
Furthermore, we provided a theoretical analysis of H-UCRL and show that it attains sublinear regret
for some models. In our experiments, H-UCRL performs as well or better than other exploration
algorithms, achieving state-of-the-art performance on the evaluated tasks.
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Broader Impact

Improving sample efficiency is one of the key bottlenecks in applying reinforcement learning to
real-world problems with potential major societal benefit such as personal robotics, renewable energy
systems, medical decisions making, etc. Thus, algorithmic and theoretical contributions as presented
in this paper can help decrease the cost associated with optimizing RL policies. Of course, the overall
RL framework is so general that potential misuse cannot be ruled out.
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