
A Proof of Theorem 1

Let f be a layer of SMP:

f(U,Y,A)[i, :, :] = u(Ui, φ({m(Ui,Uj ,yij)}vj∈Ni
)) = u(Ui, φ({m(Ui,Uj ,yij)}vj :A[i,j]>0))

The action of a permutation π on the inputs is defined as f(π.(U,Y,A)) = f(π.U, π.Y, π.A). In
order to simplify notation, we will consider π−1 instead of π. We have for example (π−1.A)[i, j] =
A[πi, πj ] and (π−1.U)[i, j, k] = U[πi, πj , k], which can be written as

(π−1.U)[i, :, :] = Π Uπi
.

As shown next, the theorem’s conditions suffice to render SMP equivariant:

f(π−1.(U,Y,A))[i, :, :] = u(Π Uπi
, φ({m(Π Uπi

, Π Uπj
, yπiπj

)}vj :A[πi,πj ]>0))

= u(Π Uπi
, φ({m(Π Uπi

, Π Uk, yπik)}vk:A[πi,k]>0)) (π bijective)

= u(Π Uπi ,Π φ({m(Uπi ,Uk,yπik)}vk:A[πi,k]>0)) (φ, m equivariant)

= Π u(Uπi
, φ({m(Uπi

,Uk,yπik)}vk:A[πi,k]>0)) (u equivariant)

= Π f(U,Y,A)[πi, :, :]

= (π−1.f(U,Y,A))[i, :, :],

which matches the definition of equivariance.

B Proof of Theorem 2

We first present the formal version of the theorem:

Theorem 3 (Representation power – formal ). Consider the class S of simple graphs with n nodes,
diameter at most ∆ and degree at most dmax. We assume that these graphs have respectively cX
and cY attributes on the nodes and the edges. There exists a permutation equivariant SMP network
f : Rn×n 7→ Rn×n×c of depth at most ∆ + 1 and width at most 2dmax + cX + n cY such that, for
any two graphs G and G′ in S with respective adjacency matrices, node and edge featuresA,X,Y
andA′,X ′,Y′, the following statements hold for every vi ∈ V and vj ∈ V ′:

• If G and G′ are not isomorphic, then for all π ∈ Sn,

ΠT f(A,X,Y)[i, :, :] 6= f(A′,X ′,Y′)[j, :, :].

• If G and G′ are isomorphic, then for some π ∈ Sn independent of i and j,

ΠT f(A,X,Y)[i, :, :] = f(A′,X ′,Y′)[j, :, :].

The fact that embeddings produced by isomorphic graphs are permutations one of another is a
consequence of equivariance, so we are left to prove the first point. To do so, we will first ignore the
features and prove that there is an SMP that maps the initial one-hot encoding of each node to an
embedding that allows to reconstruct the adjacency matrix. The case of attributed graphs and the
statement of the theorem will then follow easily.

Consider a simple connected graph G = (V,E). For any layer l ∈ N and node vi ∈ V , we denote by
G

(l)
i = (V,E

(l)
i ) the graph with node set V and edge set

E
(l)
i = {(vp, vq) ∈ E, d(vi, vp) ≤ l, d(vi, vq) ≤ l, d(vi, vp) + d(vi, vq) < 2l}.

These edges correspond to the receptive field of node vi after l layers of message-passing. We denote
byA(l)

i the adjacency matrix of G(l)
i .

14



B.1 Warm up: nodes manipulate n x n matrices

To build intuition, it is useful to first consider the case whereUi are n×n matrices (rather than n× c
as in SMP). In this setting, messages are n× n matrices as well. If the initial state of each node vi
is its one-hop neighbourhood (U (1)

i = A
(1)
i ), then each node can easily recover the full adjacency

matrix by updating its internal state as follows:

U
(l+1)
i = max

vj∈Ni ∪ vi
{U (l)

j }, (2)

where the max is taken element-wise.
Lemma 2. Recursion 2 yields U (l)

i = A
(l)
i .

Proof. We prove the claim by induction. It is true by construction for l = 1. For the inductive step,
suppose that U (l)

i = A
(l)
i . Then,

U l+1
i [p, q] = 1 ⇐⇒ ∃ vj ∈ {Ni ∪ vi} such that A

(l)
j [p, q] = 1

⇐⇒ (vp, vq) ∈ E and ∃ vj ∈ {Ni ∪ vi}, d(vj , vp) ≤ l, d(vj , vq) ≤ l, d(vj , vp) + d(vj , vq) < 2l

=⇒ (vp, vq) ∈ E, d(vi, vp) ≤ l + 1, d(vi, vq) ≤ l + 1, d(vi, vp) + d(vi, vq) < 2(l + 1)

=⇒ A
(1+1)
i [p, q] = 1

Conversely, ifA(l+1)
i [p, q] = 1, then there exists either a path of length l of the form (vi, vj , . . . , vp)

or (vi, vj , . . . , vq). This node vj will satisfy U (l)
j [p, q] = 1 and thus U (l+1)

i [p, q] = 1.

It is an immediate consequence that, for every connected graph of diameter ∆, we have U (∆)
i = A.

B.2 SMP: nodes manipulate node embeddings

We now shift to the case of SMP. We will start by proving that we can find an n× 2dmax embedding
matrix (rather than n × n) that still allows to reconstruct A(l)

i . For this purpose, we will use the
following result:
Lemma 3 (Maehara and Rödl [46]). For any simple graph G = (V,E) of n nodes and maximum
degree dmax, there exists a unit-norm embedding of the nodesX ∈ Rn×2dmax such that

∀(vi, vj) ∈ V 2, (vi, vj) ∈ E ⇐⇒ Xi ⊥Xj .

In the following we assume the perspective of some node vi ∈ V . Let U (l)
i ∈ Rn×cl be the context

of vi. Further, write u(l)
j = U

(l)
i [j, :] ∈ Rcl to denote the embedding of vj at layer l from the

perspective of vi. Note that, for simplicity, the index i is omitted.

Lemma 4. There exists a sequence (fl)l≥1 of permutation equivariant SMP layers definingU (l+1)
i =

f (l+1)(U
(l)
i , {U (l)

j }j∈Ni) such that u(l)
j ⊥ u

(l)
k ⇐⇒ (vj , vk) ∈ E(l)

i for every layer l and nodes
vj , vk ∈ V . These functions do not depend on the choice of vi ∈ V .

Proof. We use an inductive argument. An initialization (layer l = 1), we have U (0)
j = δj for every

vj . We need to prove that there exists U (1)
i = f (1)(U

(0)
i , {U (0)

j }vj∈Ni
) which satisfies

∀(vj , vk) ∈ V 2, u
(1)
j ⊥ u

(1)
k ⇐⇒ (vj , vk) ∈ E(1)

i .

Rewritten in matrix form, it is sufficient to show that there exists U (1)
i such that U (1)

i (U
(1)
i )> =

11> −A(1)
i , with 1 being the all-ones vector. A(1)

i is the adjacency matrix of a star consisting of vi
at the center and all its di neighbors at the spokes. Further, it can be constructed in an equivariant
manner from the layer’s input as follows:

A
(1)
i =

∑
vj∈Ni

δiδ
>
j +

∑
vj∈Ni

δjδ
>
i .

15



Since the rank ofA(1)
i is at most di (there are di non-zero rows), the rank of 11> −A(1)

i is at most
di + 1 ≤ 2di ≤ 2dmax. It directly follows that there exists a matrix U (1)

i of dimension n × 2dmax

which satisfies U (1)
i (U

(1)
i )> = 11> −A(1)

i . Further, as the construction of this matrix is based on
the eigendecomposition ofA(1)

i , it is permutation equivariant as desired.

Inductive step. According to the inductive hypothesis, we suppose that:

u
(l)
j ⊥ u

(l)
k ⇐⇒ (vj , vk) ∈ E(l)

i for all vj , vk ∈ V

The function f (l+1) builds the embedding U (l+1)
i from (U

(l)
i , {U (l)

j , vj ∈ Ni}) in three steps:

Step 1. Each node vj ∈ Ni sends its embedding U (l)
j to node vi. This is done using the message

function m(l).
Step 2. The aggregation function φ reconstructs the adjacency matrix A(l)

j of G(l)
j from U

(l)
j

for each vj ∈ Ni ∪ {vi}. This is done by testing orthogonality conditions, which is
a permutation equivariant operation. Then, it computes A(l+1)

i as in Lemma 2 using
A

(l+1)
i = max({A(l+1)

j }vj∈Ni∪{vi}), with the maximum taken entry-wise.

Step 3. The update function u(l) constructs an embedding matrix U (l+1)
i ∈ Rn×2dmax that allows to

reconstructA(l+1)
i through orthogonality conditions. The existence of such an embedding

is guaranteed by Lemma 1. This operation can be performed in a permutation equivariant
manner by ensuring that the order of the rows of U (l+1)

i is identical with that ofA(l+1)
i .

Therefore, the constructed embedding matrix U (l+1)
i satisfies

u
(l+1)
j ⊥ u(l+1)

k ⇐⇒ (vj , vk) ∈ E(l+1)
i for all vj , vk ∈ V

and the function f (l+1) is permutation equivariant (as a composition of equivariant functions).

It is a direct corollary of Lemma 1 that, when the depth is at least as large as the graph diameter, such
that E(l)

i = E for all vi and the width is at least as large as 2dmax, then there exist a permutation
equivariant SMP f = f (L) ◦ . . .◦f (1) that induces an injective mapping from the adjacency matrixA
to the local contextUi of each node vi. As a result, given two graphs G and G′, if there are two nodes
vi ∈ V and v′j ∈ V ′ and a permutation π ∈ Sn such that U (L)

i = ΠT U
′(L)
j , then the orthogonality

conditions will yieldA = ΠT A′ Π. The contraposition is that if two nodes belong to graphs that
are not isomorphic, their embedding will belong to two different equivalence classes (i.e. they will be
different even up to permutations).

B.3 Extension for attributed graphs

For attributed graphs, the reasoning is very similar: we are looking for a SMP network that maps the
attributes to a set of local context matrices such that all the attributes of the graph can be recovered
from the context matrix at any node. We treat the case of node and edge attributes separately:

Node attributes Using cX extra channels in SMP is sufficient to create the desired embedding. We
recall that the input to the SMP is a local context such that the i-th row of vi contains [1,xi], where
xi is the vector of attributes of vi, while the other rows are zero. Ignoring the first entry of this vector
(which was used to reconstruct the topology), we propose the following update rule:

U
(l+1)
i = U

(l)
j0

where j0 = argmax({|U (l)
j |}j∈{vi∪Ni}) (3)

where the max is taken element-wise on each entry of the matrix. This function is simply an extension
of the max aggregator that allows to replace the zeros of the local context by non zero values, even if
they are negative. Using it, each node can progressively fill the rows corresponding to nodes that are
more and more distant. With the assumption that the graph is connected, each node will eventually
have access to all node features.

16



Edge attributes As each edge attribute can be seen as a n× n matrix, edges attributes are handled
in a very similar way as the adjacency matrix of unattributed graphs. If nodes could send n × n
matrices as messages, they would be able to recover all the edge features using the previous update
rule (equation 3). However, SMP manipulates embeddings that transform under the action of a
permutation as π . Ui = ΠTUi, whereas a n× n matrixM transforms as π .M = ΠTM Π. As a
result, we cannot directly pass the incomplete edge features as messages, and we need to embed them
into a matrix that permutes in the right way.

The construction of a SMP that embeds the input to local contexts that allow to reconstruct an edge
feature matrix E is the same as for the adjacency matrix, except for one difference: lemma 1, which
was used to embed adjacency matrices into a smaller matrix cannot be used anymore, as it is specific
to unweighted graphs. Therefore, we propose another way to embed each matrix E(l)

i obtained at
node vi after l message passing layers:

• For undirected graphs,E(l)
i is symmetric. We can therefore compute its eigendecomposition

E
(l)
i = V ΛV T .

• We add a given value λ to the diagonal of Λ to make sure that all coefficients are non-
negative.

• We compute the square root matrix U = V (Λ + λI)1/2. This matrix permutes as desired
under the action of a permutation: π . U = ΠTU . In addition, it allows to reconstruct the
matrix E(l)

i = UUT , so that it constitutes a valid embedding for the rest of the proof.

Note that the square root matrix permutes as desired, but that it does not compress the representation
of E(l)

i : for each edge features, n additional channels are needed, so that a SMP should have n× cY
more channels to be able to reconstruct all edge features.

B.4 Conclusion

We have shown that there exists an SMP that satisfies the conditions of the theorem, and specifically,
we demonstrated that each layer can be decomposed in a message, aggregation and update functions
that should be able to internally manipulate n× n matrices in order to produce embeddings of size
n× 2dmax + cX + n cY .

The main assumption of our proof is that the aggregation and update functions can exactly compute
any function of their input — this is impossible in practice. An extension of our argument to a
universal approximation statement would entail substituting the aggregation and update functions
by appropriate universal approximators. In particular, the aggregation function manipulates a set of
n× c matrices, which can be represented as a n× n× c tensor with some lines zeroed out. Some
universal approximators of equivariant functions for these tensors are known [48], but they have large
memory requirements. Therefore, proving that a given parametrization of an SMP can be used to
approximately reconstruct the adjacency matrix hinges on the identification of a simple universal
approximator of equivariant functions on n× n× c tensors.

C Proof of Corollary 1

Lemma 1 proves the existence of an injective mapping from adjacency matrices of simple graphs to
features for a set of nodes. Therefore, any permutation equivariant function heq(A) on adjacency
matrices can be expressed by an equivariant function on sets

heq(A) = h′eq(U) with U [i, :] = ui ∈ R2dmax+cX+n cY ∀vi ∈ V,

as long as the node embeddings u1, . . . ,un allow the reconstruction ofA, e.g., through orthogonality
conditions. It was proven in Theorem 3 that, under the corollary’s conditions, the local context U (L)

i
of any node vi yields an appropriate matrix U . In order to compute heq, each node can then rely on
the universal σ to compute the invariant function:

h′′inv(U ,1i) = h′eq(U)[i, :] = heq(A)[i, :] ∈ Rc.

17



For invariant functions hin(A) ∈ Rc, it suffices to build the equivariant function heq(A) =
[hin(A), . . . , hin(A)] ∈ Rn×c. Then, if each node vi computes heq(A)[i, :] = hin(A), averaging will
yield 1

n

∑
vi∈V heq(A)[i, :] = hin(A), as required.

D Proof of Proposition 1

SMPs are at least as powerful as MPNNs We will show by induction that any MPNN can be
simulated by an SMP:

Lemma 5. For any MPNN mapping initial node features (x
(0)
i )vi∈V to (x

(L)
i )vi∈V , there is an SMP

with the same number of layers such that

∀ vi ∈ V, ∀ l ≤ L, U(l)[i, i, :] = x
(l)
i and ∀j 6= i, U(l)[i, j, :] = 0.

Proof. Consider a graph with node features (x
(0)
i )vi∈V and edge features (yij)(vi,vj)∈E .

Initialization: The context tensor is initialized by mapping the node features on the diagonal of U:
U(0)[i, i, : ] = x

(0)
i . The desired property is then true by construction.

Inductive step: Denote by (x
(l)
i )vi∈V the features obtained after l layers of the MPNN. Assume that

there is a k-layer SMP such that the local context after l layers contains the same features in its
diagonal elements: U(l)[i, i, :] = x

(l)
i and 0 in the other entries. Consider one additional layer of

MPNN:
x

(l+1)
i = u(x

(l)
i , φ({m(x

(l)
i ,x

(l)
j ,yij)}j∈Ni

))

and the following SMP layer:

U
(l+1)
i = diag(ũ(U

(l)
i , φ̃({m̃(11T U

(l)
i ,11T U

(l)
j ,yij)}j∈Ni

))),

where m̃, φ̃ and ũ respectively apply the functions m,φ and u simultaneously on each line of the
local context Ui. As the only non-zero line of Ui is Ui[i, :], 11TU

(l)
i replicates the i-th line of U (l)

i

on all the other lines, so that they all share the same content x(l)
i . After the application of the message

passing functions m̃, φ̃ and ũ, all the lines of Ui therefore contain x(l+1)
i .

Finally, the function diag extracts the main diagonal of the tensor U along the two first axes. Let δi,j
be the function that is equal to 1 if i = j and 0, otherwise. We have: diag(U)[i, j, :] = U[i, j, :] δi,j .
Note that this function can equivalently be written as an update function applied separately to each
node: diag(Ui)[j, :] = Ui[j, :]δi,j . We now have U(l+1)[i, i; :] = xl+1

i and U equal to 0 on all the
other entries, so that the induction hypothesis is verified at layer l + 1.

As any MPNN can be computed by an SMP, we conclude that SMPs are at least as powerful as
MPNNs.

SMP are strictly more powerful To prove that SMPs are strictly more powerful than MPNNs, we
use a similar argument to [22, 32]:

Lemma 6. There is an SMP network which yields different outputs for the two graphs of Fig. 3,
while any MPNN will view these graphs are isomorphic.

Figure 3: While MPNNs cannot distinguish between two regular graphs such as these ones, SMPs
can.

18



Proof. The two graphs of Fig. 3 are regular, which implies that they cannot be distinguished by the
Weisfeiler-Lehman test or by MPNNs without special node features [32]. On the contrary, consider
an SMP f made of three layers computing U (l+1)

i =
∑
vi∈Ni

U
(l)
i , followed by the trace of U (3)

as a a pooling function. As each layer can be written U (l+1) = AU (l) and U (0) = In, we have
f(A) = tr(A3). In particular f(A) = 2 for the graph on the left, while f(A) = 0 on the right.

E A more compact representation with graph coloring

In SMP, the initial local context is a one-hot encoding of each node: U (0)
i = δi ∈ Rn. When the

graph diameter ∆ is large compared to the number of layers L, the memory requirements of this
one-hot encoding can be reduced by attributing the same identifiers to nodes that are far away from
each other. In particular, no node should see twice the same identifier in its L-hop neighborhood.
To do so, we propose to build a graph G′ where all 2L-hop neighbors of G are connected, and to
perform a greedy coloring of G′ (Algorithm 1). Although the number of colors χ used by the greedy
coloring might not be optimal, this procedure guarantees that identifiers do not conflict.

Algorithm 1: Node coloring
Input: A graph G = (V,E) with n nodes, L ∈ N (number of layers.)
Output: A binary matrix U0

i ∈ Rn×χ, where χ is the number of colors.
Create the graph G′ = (V, {(i, j), d(i, j}) ≤ 2L)
c ∈ Rn ← greedy_coloring(G′)
return one_hot_encoding(c)

The one-hot encoding of the colors U0
i ∈ Rχ is then used to initialize the local context of vi. The

only change in the SMP network is that in order to update the representation that node i has of node j,
we now update Ui[cj , :] instead of Ui[j, :], where cj is the color associated to node vj . Note however
that the coloring is only useful if the graph has a diameter ∆ > 2L. This is usually the case in
geometric graphs such as meshes, but often not in scale-free networks.

F Proof of Proposition 2

We will prove by induction that any Fast SMP layer can be approximated by two blocks of PPGN. It
implies that the expressive power of Fast SMP is bounded by that of PPGN.

Recall that a block of PPGN is parameterized as:

T(l+1) = m4(m3(T(l))‖m1(T(l)) @ m2(T(l))),

where mk are MLPs acting over the third dimension of T ∈ Rn×n×c: ∀(i, j), mk(T)[i, j, :] =
mk(T[i, j, :]). Symbol ‖ denotes concatenation along the third axis and @ matrix multiplication
performed in parallel on each channel: (T @ T′)[:, :, c] = T[:, :, c] T′[:, :, c].

To simplify the presentation, we assume that:

• At each layer l, one of the channels of T(l) corresponds to the adjacency matrixA, another
contains a matrix full of ones 1n1>n and a third the identity matrix In, so that each PPGN
layer has access at all times to these quantities. These matrices can be computed by the first
PPGN layer and then kept throughout the computations using residual connections.

• The neural network can compute entry-wise multiplications �. This computation is not
possible in the original model, but it can be approximated by a neural network.

• U and T have only one channel (so that we write them U and T ). This hypothesis is not
necessary, but it will allow us to manipulate matrices instead of tensors.

Initialization Initially, we simply use the same input for PPGN as for SMP (U (0) = T (0) = In).

19



Induction Assume that at layer l we have U (l) = T (l). Consider a layer of Fast SMP:

U
(l+1)
i =

1

davg

 ∑
vj∈Ni

Û
(l)
j + Û

(l)
i W

(l)
4 �

∑
vj∈Ni

Û
(l)
j W

(l)
5

 ,

where
Û

(l)
i = U

(l)
i W

(l)
1 +

1

n
1n 1Tn U

(l)
i W

(l)
2 + 1n(c(l))> +

1

n
1i1

TU
(l)
i W

(l)
3 .

A first PPGN block can be used to compute Û (l)
i for each node. This block is parametrized by:

m1(U (l)) =
1

n
1n 1Tn, m2(U (l)) = U (l),

m3(U (l)) = U (l) W1 + 1cT + (In � U (l))W3, m4(Û , Ũ) = Û + Ũ W2 + In � (Ũ W3)

The output of this block exactly corresponds to Û (l). Then, a second PPGN block can be used to
compute the rest of the Fast SMP layer. It should be parametrized as:

m1([Û (l)]) = A / d̄, m2([Û (l)]) = Û (l),

m3([Û (l)]) = Û (l), m4(Û (l), Ũ) = Ũ + (Û (l) W4) � (Ũ W5)

By plugging these expressions into the definition of a PPGN block, we obtain that the output of this
block corresponds to U (l+1) as desired.

20



G Comparison between SMP, Provably powerful graph networks and
Ring-GNN

Figure 4: Training curves of SMP, PPGN and Ring-GNN for different cycle lengths k. NLL stands for
negative log-likelihood. Red dots indicate the epoch when SMP training was stopped. The training
loss sometimes exhibits peaks of very high value which last one epoch – they were removed for
readability. Provably powerful graph networks are much more difficult to train than SMP: their failure
is not due to a poor generalization, but to the difficulty of optimizing them. Ring-GNN works well for
small graphs, but we did not manage to train it with the largest graphs (66 or 72 nodes). We attribute
this phenomenon to an inductive bias that is less suited to the task. PPGN and SMP training time per
epoch are approximately the same, while RING-GNN is between two and three times slower.

21


