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A Extending WDC to constant expansion (Proof of Theorem 3.2)

In this section we prove Theorem Fix € > 0. Let W € R™** have rows w1, . .., w, ~ N(0,1)¥,
Recall from Section [5]that we have the matrix inequality

GW,E(IJJ) j W$7xW+,y j GW,—e(mvy)' (4)

So it suffices to upper bound Gw,_.(z,y) and lower bound Gw (z,y). The two arguments are
essentially identical, and we will focus on the former. We seek to prove that with high probability
over W, for all z,y € S*~1 simultaneously,

Gw,—e(2,y) 2 nQuy + enly.

Moreover we want this to hold whenever n > Ck for some constant C' = C(e). We'll use two
standard concentration inequalities:

Lemma A.1. Suppose that k < n. Then
1. |W|| < 3v/n with probability at least 1 — e~"/2.

2. maX;ep ||will, < V2K with probability at least 1 — ne k/8,

Proof. See [20] for a reference on the first bound. The second bound is by concentration of chi-
squared with k£ degrees of freedom. O

Let © be the set of matrices M € R™** such that || M || < 3\/n and max;e, || M;||, < v/2k. Define
the random variable § = W|(W € ©).

Fix v € S*~1. For any M € ©, define

1
fu(z,y) = EUTGM,%(% y)u

and define g(z,y) = uTngu. We check that f and g satisfy the three conditions of Theorem
with appropriate parameters.

Lemma A.2. Forany x,y € R* with ||z||,, |ly|l, > 1/2,
Pr(fo(z,y) < g(z,y) + 3] > 1 — dexp(—Cné?).

Proof. We first consider fy (z,y). It is shown in the proof of Lemma 12 in [] that

€ €
E GW,fe(xay) j Qm, + < + ) 17
| V= Qe+ 30T, T 2T,
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which under our assumptions implies that E[fy (2, y)] < g(z,y) + 2e. Now expand

?Z (i) h_e(wiy) (wiw)?.

3

Let z; = h_(w;z)h_(w;y)(wiu)?. Since h_(w;x)h_(w;y) is bounded and w;u is Gaussian,
and Ez; is bounded by a constant, it follows that z; — Ez; is subexponential with some constant
variance proxy o. Therefore by Bernstein’s inequality, for all ¢ > 0,

Pr[fW ($7 y) - EfW(Z‘, y) > t] <2 eXp(—C'n min(t, tQ))
for some constant C' > 0. Taking ¢ = ¢, we get that

Prfw (z,y) > g(x,y) + 3] < 2exp(—Cne?).
Finally, since Pr[W € ©] > 1/2, it follows that conditioning on © at most doubles the failure

probability. So
Pr(fy(z,y) > g(x,y) + 3¢] < 4exp(—Cne?)

as desired. O

Next, we show that { fas } areo is (€, 8, )-pseudo-Lipschitz where § = €2 /116 and v = 1/2.

Definition A.3. For any M € R"** t € R, and u € R¥, let Bys ., C R” be the set of points
v € R* such that

n
> IMu|(Miu)?® < tn.
i=1
The pseudo-ball By ; ,, captures the directions in which f); is Lipschitz more effectively than any
spherical ball, as the following lemma shows.

Lemma A4. Let M € R™F. Let z,y,%,§ € R*. Ify —§ € Buezjag and x — & € Byre2 /a0
then
‘fM(%y) - fﬂf(i‘7g)| <e

Proof. We have

|far (2, y) — (2, 9)] < |h_c(Miz)h_(Myy) — h_o(M;E)h_o(M;3)|(Miu)?

S|

1
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[h—c(Miy) = hee(Mi)| + |h—e(Miz) — hoe(M;T)]] (Miu)?
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where the second-to-last inequality uses that h_. is 1/e-Lipschitz, and the last inequality uses the
assumptions on y — y and z — 2. O

Next, we need to lower bound the volume of Bjy s 4.

Lemma A.5. Fixu € S*~and §,t > 0. Then {Bur.t.u }areo is (8,7)-wide for v = 6% (1 — 415t 1).
Fix M € © and uw € S*~'. Forany §,t > 0,

Vol(Bay 4., N 6B) > §%(1 — 415t1) Vol(B).



Proof. Fix M € ©. It’s clear from the definition that By ; ,, is symmetric (i.e. v € By ¢ ,, implies
—v € Byt,4) and convex (by the triangle inequality). It remains to show that

Vol(Bys t.u N 6B) > 68(1 — 416t1) Vol(B).

Writing the Vol(Bay +.,,) as a probability,

Vol(Bas.t.u N9B) _ o, Vol(Bas.u 1 0B)
Vol(B) Vol(08B)

> IMin|(Mu)® < m] .
=1

=" Pr
nedsB

Since increasing ||n|| only increases the sum, the probability over 615 is at least the probability over
the sphere {n € R¥ : ||n||, = 6}. Then

Z\M nl(M;u)? < m] > Pr lzn]Mim(Miu)? < m]

77653 lInlly =4

b [ZIMHI Miu)? < tnnmz/a]

by spherical symmetry of the Gaussian. Now we upper bound the probability of the complementary
event as

Z|M77| Miu)® > tnln]l, /51

n~N(o 1k

ne~ N(Ol

- lz Mol (Mi)? > tn ] /5

[lly = \f/2]

Pryon (ot | Simy [Manl (M) > tn |l /6 A Inlly = VE/2]

Pr(|[nlly > vk/2]
Py N1 {ZZ‘L:I |Min|(M;u)? > tn\/E/(%)]
= 1 — e—9k/128
<2 p 3o vian > i)

For each i € [n], the random variable M, is distributed as N (0, | M;]|?). Since M € ©, we have
[|M; || < V2. Thus, | M;n| has mean at most || M;|| \/2/7m < 24/k/7. So by Markov’s inequality,

[Z M| (Mu)? > tnvk /<25)} E%N(O’l)ktizf;—/l(%ml(MZU)]

S (Mw)*2\/k/m
tnvk/(26)

< 365/ (tv/m)

where the last inequality uses the assumption M € © to get || Mul||* < 9n ||ul|* = 9n. We conclude
that

IN

77~N(O 1)k

IA

Vol(Bag.¢.u N OB)

as desired. ]

Taking ¢ = € and § = €2/82 yields

1
Vol(Ba,1,0 NOB) > 3 Vol(6B).



So {far}areo is (2¢,€2/82,1/2)-pseudo-Lipschitz. Finally, we have a lemma about the smoothness
of g; see Appendix |D|for the proof.

Lemma A.6. Letx,y, %, 5 € (3/2)B\ (1/2)B. Let d = max(||x — yl|, [|Z — g||). Then

| <O/ llz =, + lly — dll,)-

1Qz,y — Qz,5

Thus, we have |g(x,y) — g(Z,7)| < Ce whenever 2,y € S*~! and & — x,§ — y € JB. Having
shown that the three conditions of Theorem [4.4] are satisfied, we can prove uniform concentration
overall z,y € SF~1.

Lemma A.7. Let e > 0. Fixu € S*~1. Then with probability at least 1 — (C/e)gke*m62 (over 0),
it holds that for all z,y € S*~1,

fo(z,y) < g(x,y) + Cen.

Proof. Apply Theorem [#.4]to the family {fas} e and random variable 6. By Lemma[A.2] we
can take p = exp(—cne?) for a constant ¢ > 0. We know that {f, ,} is (2¢,€°/82,1/2)-pseudo-
Lipschitz. By Lemma|[D.4] we can take D = Ce. The claim follows. O

Now we get a uniform bound over all u € S*~!, via a standard e-net an Lipschitz bound. Adding
notation for clarity, define

1
fu(w,y,u) = EuTGM7_6(x,y)u.
The following lemma shows that f is Lipschitz in u.
Lemma A.8. Let M € ©. Let z,y € R* and u,v € S*~. Then

|fM(.T,y,’LL) - f]u(l’,y7’l))| < 18n ||u - U”Q

Proof. We have

|.fJVI(CC’yv u) - fM(z7y7’U)| < Z h—e(Miz)h—e(Miy) |(Miu)2 - (M¢U)2|

i=1
< > IMiu - o) [Mifu + o)
i=1

< 1M (u =)l [M (u +0)]
2
<M lu =l [Ju+ vl
<18n |lu —vl,
by an application of Cauchy-Schwarz, and the bound ||M]| < 34/n. O
The matrix bound on Gy,_(z,y) follows from applying an e-net together with Lemma and
finally removing the conditioning on ©.

Theorem A.9. Let ¢ > 0. Then with probability at least 1 — (C//€)8%¢=<" — ne=k/8 over W, it
holds that for all z,y € S*~1,

"G (,9) = Qe
Proof. Let & C S*~! be an e-net of size at most (3/¢)*. By a union bound, it holds with probability
atleast 1 — (3/€)*(C/€)8 e over 6 that for all z,yy € S*~! and all u € &,
fo(z,y,u) < g(x,y,u) + 2e.
For any z,y,u € S*~! there is some v € € with [[u — v||, < €, so by Lemma
fo(x,y,u) < fo(z,y,v) + O(e) < g(x,y,v) + O(e).



But [|Qqy < 1.0

|g($,y, U) - g(m7y7v)‘ = |uTQw,yu - ’UTQ;C,yU‘ S 2 ||U - UHQ .
Thus, fo(z,y,u) < g(x,y,u) + O(e). We conclude that with probability at least 1 —
(3/€)k(C/e)8 e over O we have the desired inequality. But Pr[W € ©] > 1 —ne */8 — /2,

So the desired inequality holds with probability at least 1 — (3/€)*(C /e)8*e=cn<" — pe=h/8 — ¢=n/2
over W. O

We turn to the lower bound on Gyy,(xz,y). The proof is essentially identical. For fixed x, y there is
an analogous bound to Lemma [A.2}

Lemma A.10. [8] There are constants cx, i such that if n > cie 2k then for any fixed x,y €
Sk=1 we have that
Ge(@,y) = nQq,y — 2enly

with probability at least 1 — 2e~ VKM,
The same pseudo-Lipschitz bounds hold for u” G M,e(x, y)u as we proved for uTG M,—cU, and the

remaining argument is unchanged. Thus, we have the following theorem.

Theorem A.11. There is a constant c such that if n > cke=2log(e=2) then with high probability
over W, forall z,y € S*~1,
Gw.e(z,y) = nQqyy — €n.

Our main result immediately follows.

Proof of Theorem Recall that for all =,y € S¥~1,
Gw,e(%y) = WI,wW-&-,y = GW,—e(xy Y)

It follows from Theorems and that with high probability over W, for all x,y € S¥—1,
NQzy — en = WI@Wﬁy 2 nQzy + en.

Since @, and WIQEWM are both invariant under scaling by a positive constant, this inequality
then holds for all nonzero x,y € R*. So W satisfies the normalized WDC with parameter e. O

B Proof of Main Result: Theorem [1.1]

In this section, we prove Theorem We apply Theorem [3.2]together with a theorem from [10]]. To
provide the precise statement we need to introduce several more definitions. First, we introduce the
unnormalized WDC (as defined in [8]]):

Definition B.1. A matrix W € R"** is said to satisfy the unnormalized Weight Distribution
Condition (WDC) with parameter ¢ if for all nonzero x,y € R” it holds that

WEWiy = Quyl <e
where Q., = EW{ W, , (with expectation over i.i.d. N (0, 1) entries of ).
Comparing with Definition it’s clear that T satisfies the unnormalized WDC if and only if
/nW satisfies the normalized WDC. In this paper we proved results about the normalized WDC for

ease of notation, but for compressed sensing we are concerned that our weight matrices satisfy the
unnormalized WDC.

Definition B.2 ([8]])). A matrix A € R"*" satisfies the Range Restricted Isometry Condition (RRIC)
with respect to G’ and with parameter e if for all z,y, z, w € R”, it holds that

(G(2) = G()TATA(G(2) = G(w)) = (G(z) = G(y)" (G(2) = G(w))|
< el|G(x) = G 11G(z) = G(w)]l5 -

Definition B.3 ([10]). The empirical risk function is f : R¥ — R defined by

F(2) = 5 14G() ~ 2.



Let ALGO refer to Algorithm 1 in [10]. This algorithm is a modification of gradient descent on the
empirical risk, which given an initial point zy computes iterates x;, 2, .... The result of [10] is
a bound on the convergence rate of ALGO, assuming that the (unnormalized) WDC and RRIC are
satisfied. We restate it below. We treat network depth d as a constant for simplicity of notation; we
denote all upper-bound constants by C'.

Theorem B.4 ([10]). Suppose that W) ... W'D satisfy the (unnormalized) WDC, and A satisfies
the RRIC with respect to G, each with parameter ¢ < C. Suppose that the noise e satisfies ||e|| <
C ||z*||. Let xq be the initial point of ALGO. Then after N < C'f(xo)/ ||«*|| + iterations, the iterate
TN satisfies

lon = 2" lly < C(l2" ]| Ve + llell)
Additionally, for any i > N,
lzi1 — 2 <N oy — 2|+ Ce]
where v € (0, 1) is a constant.
Solet € € (0,C). We only need to show that the (unnormalized) WDC and RRIC are satisfied under

the conditions of Theorem[I.1] That is, we have the following assumptions (recall that k = ng and
n = ng) for constants Ko, K3:

(a) Fori € [d], the weight matrix T/ (") has dimension n; x n;_; with
ni > Koni_1e 2 log(1/€%).
Additionally, the entries are drawn i.i.d. from N(0,1/n;).

(b) The measurement matrix A has dimension m x n with m > Kze~1log(1/¢)dk log H;izl ;.
Additionally, the entries are drawn i.i.d. from N(0,1/m).

By Theorem with high probability, the weight matrices /n wm, \/7TdW(d) satisfy the
normalized WDC, so W) .. W (d) satisfy the unnormalized WDC. To show that A satisfies the
RRIC with respect to GG, we appeal to Lemma 17 in [8], which proves this exact fact (without any
assumptions about the expansion of 7).

Thus, Theorem[B.4]is applicable. This completes the proof of Theorem[I.1

C Lower bound: necessity of non-trivial expansivity

Our main result implied that constant expansion at every layer is sufficient to efficiently recover a
latent parameter, even in the presence of compressive measurements and noise. In this section we
prove a lower bound: that a factor-of-2 expansion in the input layer of the neural network is necessary
to recover the latent parameter, even in the absence of compressive measurements and noise. That is,
inverting a neural network where the input layer has expansion of less than 2 is impossible.

Note that this lower bound is against recovering the latent parameter * from measurements y =
AG(x*) (when A is the identity matrix, and therefore also when A is compressive). Expansivity may
not be necessary to recover the actual signal G(z*).

To prove this lower bound it suffices to consider a one-layer neural network
G(z) = ReLU(Wz),

where # € R* and W € R™*%, We show that if m < 2k — 1 then for any weight matrix W, there is
some signal which corresponds to multiple latent vectors. Moreover if the rows of W have bounded
{5 norm, then even approximate recovery is impossible.

Note that this bound is tight, since if the rows of W consist of the 2k signed basis vectors
{#e1,...,Lex} then G is injective.

Proposition C.1. Suppose that m < 2k — 1 and max;c(n |Will, < B. Then there are x,y € R*
with G(z) = G(y) but ||z — y||, > 1/B.



Proof. 1f rank(W) < k, then there are distinct z,y € R* with Wz = Wy, so certainly G(z) =
G(y). Otherwise, the rows of W contain a basis for R*. Without loss of generality, assume that
Wi,..., Wy span R¥, Define S = {1,...,k} and T = {k + 1,...,m}. Then the square submatrix
W is invertible. Define

-1

-1

z=(Ws)™

-1

Since W has at most k — 1 rows, it has non-trivial null space. Let v € R* be a unit vector with

Wrv = 0. Let A = ||Wgv]| . Since Wy is invertible it’s clear that A > 0. On the other hand
A < Sup;epyy) [Wiv| < B. Define

y=x+ v/

Certainly ||z — y|l, = A™* > 1/B. For any i € T, it’s clear that W;z = W,y. Moreover, fix any
i € S. Then W;x = —1, and

Wiy = Wiz + Wiv/X < =1+ [|[Wgsv||, /A <0.
Thus, ReLU(W;z) = ReLU(W,y) for all i € [m]. So G(z) = G(y). O

D Lipschitz bound for @), ,

In this appendix we show that (), , = %EWIJ:VIQy is Lipschitz (under the operator norm) as a
function of x and y.

For z € R” nonzero, let Z refer to the unit vector z/ ||z||,. For z,y € R* nonzero, define M, , €
R*** to be the matrix such that

M, y(ad + by + 2) = ay + bi

for any a,b € R and z € R¥ with z | z and z L y. Also let Z(x,y) denote the angle between
vectors x and y (always between 0 and 7).

It can be calculated that

m—ZL(x,y) I+ sinl(w,y)M

Qo = 27 27 i

This is the expression we’ll manipulate. It can be easily shown that Z(z, y) is Lipschitz, so the first
term is Lipschitz. The remaining difficulty is then in showing that (sin 8) M, ,, is Lipschitz. We start
by proving this under some weak assumptions, i.e. essentially that x, y, y are “in general position".

Lemma D.1. Let z,y,5 € S*~'. Let 0 = /(x,y) and ¢ = Z(x,7). Assume that 0,¢ & {0,7}.
Then

I(sin 6) My, — (sin ¢) Mo gl < V79 |ly = 3l -
Proof. Fix an orthonormal basis for span{z, y, ¢} in which
x = (1,0,0)
y = (cosf,sin b, 0)
7 = (cos ¢, sin ¢ cos a, sin g sin ).

Let d = |y — ||, and observe that sin®> a < d?/sin® ¢. Moreover if 3 = Z(y,§) then 3 <
22 —2cosf = 2d, so |0 — ¢| < B < 2d. Since sin and cos are 1-Lipschitz it follows that
|sinf — sin ¢| < 2d and | cos 6 — cos ¢| < 2d.

Let u € S*~1. It can be checked that in this basis,

M, yu = (u1 cos€ + ugsiné, uq sinf — uy cos 6, 0)



and
M, gu = (u1 cos ¢ + ug sin ¢ cos a + ug sin g sin v,
1 Sin ¢ cos o — Uy COS P cos? a — Uz cos ¢ sin a cos a,
U Sin ¢ sin o — ug CoS @ sin o cos o — ug cos ¢ sin? ).

Indeed, we see that M, ,u € span{z,y} and (M, u) -z = v -y and (M, 4u) -y = u -  (and
similarly for M ju). But now

((sin @) My yu — (sin qb)Mw)gu)rf

= (uy(sin O cos § — sin ¢ cos @) + ua(sin” 6 — sin® ¢ cos o) — ug sin? Psin a)

< (sinf cos — sin ¢ cos $)? + (sin? § — sin? ¢ cos a)? — sin? ¢sin? o
< (|sinf — cos | + |sin ¢ — cos ¢|)? + (| sin? 6 — sin? ¢| + |sin? 4(1 — cos® a)|)?
+sin ¢ sin® a
< 33d°.
Similarly,

(5in 0) Moy — (sin 6) My g0)3
< (sin? § — sin? ¢ cos a)? + (sin @ cos § — sin ¢ cos ¢ cos® a)? + sin? ¢ cos? ¢ sin? a cos” a
< 16d? + (| sin @ cos 6 — sin ¢ cos ¢| + | sin ¢ cos ¢ sin a|)? + d?

< 42d°
and
((sin 0) M, ,u — (sin )M, zu)3
< sin* ¢ sin? a + sin? ¢ cos? psin? o + sin? ¢ cos? ¢ sin? a cos?
< 3d°.
Therefore
|| (sin 6) M, u — (sin ¢) M, gull, < dv/79.
Since this holds for all unit vectors u, the lemma follows. O

It immediately follows that beyond relating M, ,, to M, ; we can relate M, , to Mz j.
Corollary D.2. Let z,y,%,5 € S*~L. Let = /(z,y) and 6= Z(Z,7). Assume that 0, 0¢ {0,7}.
Then

|sin )2, — (sin )Mo || < VIOl = &, + lly = ).

Proof. Either Z(x,y) # 0 or Z(y, %) # 0, since otherwise M, ,, = M 5. Without loss of generality
suppose Z(x,y) # 0. Then by the previous lemma, we can relate M ,, to M, ;. And we can relate
M, 5 to Mz ;. We get the claimed bound. L]

From this result the full claim is now easily derived.
Lemma D.3. Let z,y,%,5 € S 1. Let d = max(||x — Z||,, |y — 9ll,). Let & = Z(z,y) and
0 = £(z,7). Then

| (50 0) M., — (5i00) Mz | < 2794,

Proof. If sin @ = sin @ = 0 then the claim is clear. If both are nonzero it follows from the previous
lemma. So now suppose without loss of generality that sin # = 0 but sin¢ > 0. We’ve shown in the
previous lemma that | sin § — sin §| < 4d. Additionally, || M, ,|| < 1. Therefore

H (sin )My, — (sin6)Ms 5 H = (sin6) | My, || < 4d.
This bound is sufficient. O



Lemma Dd4. Letx,y,%,7 € (3/2)B\ (1/2)B. Let d = max(||z — y||, [|Z — g||). Then
Qe — Qagll < Oz = Zlly + lly — 9ll,)-

Proof. Let & = x/||z|| and §j = y/ ||y||. Similarly define Z and 3. Note that normalizing at most
doubles the distance. Therefore

H (sin )M, ,, — (sin @) Mz 5

(sin@) My 45 — (sin é)Mi,ﬁ H
< 2V/79(2d)
Additionally, let  and 6 be as defined previously. We have |6 — 6| < 4(2d) = 8d. Hence,

21 |Quy — Qi gl = H(é —0)I; + (sin@) M, , — (sin é)Mig

< 8d + 4V/79d.
Simplifying,
[Qz,y — Rz gl < 7d
as desired. O

E Global landscape analysis

In this section, we explain why the Weight Distribution Condition arises, by sketching the basic theory
of compressed sensing with generative priors. While our work applies to a number of different models
in compressed sensing with generative priors (see Section [3.1] for details), we limit the exposition in
this section to the global landscape analysis of the vanilla model, due to [8].

Let G : R¥ — R be a fully connected ReLU neural network of the form
G(z) = ReLUW @ (... ReLU(W @ (ReLU(W M z))) ... ).

Let 2* € R* be an unknown latent vector. We wish to recover z* (or G(z*)) from m < n noisy
linear measurements of G(z*). Specifically, for some measurement matrix A € R™*™ and noise
vector e € R™ we observe

y=AG(z") +e

The scenario of interest is that the number of measurements m is much less than the output dimension
n, but is slightly more than the latent dimension k. Each W) is a matrix with dimension n; x n;_1,
such that no = k and ny = n. The noise is arbitrary, and recovery bounds will depend on ||e]|.

The aim of [8]] is to show that the empirical squared-loss

f(@) = 5 I4G() ~

has no critical points except the true solution x*, and a rescaled vector —pgx*. Thus, gradient descent
would recover x* up to a global rescaling. This result is strengthened in subsequent work [[LO], but it
contains the main ideas, which we outline now. See Section 2 of [§]] for more details.

Ignoring issues of non-differentiability, the gradient is

T 1
(H WJ(:ﬂ”) ATA <<H WJ:)JE(”) (H WJ(rZ’)(x*)(”) l‘*>
i=d

where z() = W=D ... WMz and (2*)® = WD ... wWDg* Next, if A satisfies a certain
restricted isometry condition, it follows that AT A is approximately the identity on the range of G, so

T
(i) () () )



Next, we need to show that this approximation concentrates around its mean. Consider the second
term in the difference (the first is no more complicated):

1 d d 1
(Wi,lu))T o (Wi,i<d>)TWi,2m*)<d> o Wi}z*w”

The proof that this product concentrates is by induction on d. Each step collapses the inner-

most pair (W_E_’)QE)TWJ(:L in the product, using the Weight Distribution Condition (which bounds

(WJ(:)‘,L,)TWJ(:)y - E(WJ(F) )TWJ(:")y) to replace the pair with their expectation.

T

Finally, once the approximation for V f(z) has been further approximated by its (deterministic)
expectation, the expectation is analyzed algebraically.

F Extensions

F.1 Gaussian noise

The CS-DGP problem (Compressed Sensing with a Deep Generative Prior) can be modified to
the Gaussian noise setting, i.e. the noise vector e € R™ has distribution e ~ N(0,02)™. In this
setting it has been shown that there is an efficient algorithm estimating * up to O(U% /m) (ignoring
logarithmic terms and dependence of the depth of the network), so long as the measurement matrix A
is random and the weight matrices satisfy the Weight Distribution Condition [9]. A corollary was that
if the neural network was logarithmically expansive and had Gaussian random weights, then efficient
recovery was possible. Our result directly yields an improvement, implying that constant expansion
suffices.

F.2 One-bit recovery

One-bit recovery with a neural network prior, introduced in [[16], has the following formal statement.
Let G : R¥ — R™ be a neural network of the form

G(z) = ReLUW @ (... ReLU(W @ (ReLU(W W z))) ... ).

Let 2* € R¥ be an unknown latent vector. We wish to recover z* from m one-bit noisy measurements
of G(z*). Specifically, we observe a sign vector

y =sign(AG(z") + £+ 1)

where A € R™*" is a random measurement matrix, £ € R™ is a noise vector, and 7 € R is a
random quantization threshold. In this setting, global landscape analysis of the loss function can
be performed, and it can be shown that if each weight matrix satisfies the WDC then there are
no spurious critical points outside a neighborhood of x*, a neighborhood of some negative scalar
multiple of x*, and a neighborhood of 0 [16].

Once again, our result implies that the analysis can go through when each weight matrix has i.i.d.
Gaussian entries and constant expansion in dimension (whereas previously logarithmic expansion
was required).

F.3 Phase retrieval

Phase retrieval with a neural network prior, introduced in [7]], has the following formal statement. Let
G : R* — R” be a neural network of the form

G(z) = ReLUW @ (... ReLU(W @ (ReLU(W W x))) ... ).

Let 2* € R* be an unknown latent vector. We wish to recover z* from m phaseless noisy measure-
ments of G(z*). Specifically, we observe

y = |AG(«")]|

where A € R™*™ is a measurement matrix. As in the prior two examples, global landscape analysis
can be performed if each weight matrix satisfies the WDC (and A satisfies a certain isometry condition)
[7]. Thus, our contribution extends the analysis to Gaussian matrices with constant expansion.
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F.4 Deconvolutional neural networks

It is shown in [[14] that if G is a two-layer deconvolutional neural network with Gaussian weights and
logarithmic expansion in the number of channels, then (under certain other moderate conditions),
the empirical risk function is well-behaved. This result again applies the WDC for Gaussian random
matrices as a black box, so our result decreases the requisite expansion to a constant.
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