
Figure 1: Timescales estimated in MT model (revised after bug fix). Colormap follows Fig. 3 in main text.

We thank the reviewers for their insights and suggestions. Due to limited space, we will address more minor comments1

in the camera-ready version should this paper be accepted. All references follow the main paper.2

Common queries: Voxel timescale estimate Tv & negative β. As noted in supplementary section 1.3, there was a3

typo in the main text where Eq. 6 defines Tv. We use β2
p , making Tv agnostic to β′s sign. Further, the visualization4

suggested by reviewer 3 (plotting Tv vs. βp) is shown in Supplementary Fig. 1B. This demonstrates the relationship5

between |β| and Tv , serving as a proof of concept. Literature as ground truth/Inaccuracy of δ-sum: Firstly, section6

4 demonstrates the inability of δ-sum to down-sample long timescale representations, causing these features to be highly7

correlated with word rate. We also find that AC voxels assigned long timescales by δ-sum are, in fact, well predicted8

by low-level models like word rate and acoustic spectrum, which change rapidly across time [4; Tang, Hamilton and9

Chang, 2017]. Taken together, this evidence strongly suggests that long Tv estimates by δ-sum are false and caused10

by the down-sampling confound. For precuneus and PFC, we find that δ-sum, in contrast, assigns shorter timescales11

than AC, going against the known language temporal hierarchy. Leave-One-Out cross-validation for interpolation12

weights a. The model learns a weight ai on each word wi to interpolate word activations W across time (Eq. 3). We13

solve for a in a = φ−1W by ridge regression. The ridge coefficient is estimated by leaving one word out at a time and14

measuring accuracy of interpolating its activation from other words. Encoding model fits rely on cross-validation.15

To find regularization coefficients for β, we bootstrapped the regression procedure 50 times for each encoding model.16

In each bootstrap, a random set of 5000 TRs (125 blocks of 40 consecutive TRs) were removed from training set (2617

stories) and used as validation data. Ridge coefficients were picked based on the validation set’s prediction performance,18

averaged across bootstraps [4, 7]. Final model performance was computed on a separate test set (1 story).19

R#1: Merits of timescale estimator over previous methods. To estimate timescale by manipulating context length,20

separate encoding models are first built for each CL. A voxel’s CL preference is then computed as the center of mass of21

the encoding performance curve across different CLs. As discussed in the supplement, if the performance across CLs is22

similar (curve is flat, Supp. Fig 1A), the voxel has a large center-of-mass, artificially inflating the CL preference. This23

is the case with many AC voxels (Fig. 5). In comparison, our timescale estimation procedure is based on direct control24

of timescales in LMs, and predicts short-timescales in primary AC. Brain areas integrate speech over 14s. Prior work25

[2, 3, 8, 23] demonstrates through different experiments and methods that some brain regions integrate information over26

long timescales, on the order of several seconds. Transformer LMs: The main contribution of this paper is to use LMs27

with explicitly interpretable timescales to make detailed inferences about the brain. To the best of our knowledge, this is28

currently lacking in Transformer-based LMs. While we observe slightly better encoding performance with Transformer29

LMs (work under submission), to investigate the temporal hierarchy we are restricted to coarse CL preference estimates.30

Cross-subject consistency: The histograms in Figs. 4-5 compare different timescale estimation procedures across31

all 6 subjects. We found a bug in the colormap limits for subject S1, and show updated flatmaps in Fig. 1 here. The32

patterns are highly similar across subjects, as are the drawbacks of the other methods shown in the supplementary33

flatmaps. Permutation test: Block-wise permutation tests are entirely appropriate for assessing significance of model34

predictions in this setting, and account for temporal autocorrelation. An average of 6.8% of voxels in a subject are35

significant according to this test, demonstrating that non-permuted data doesn’t always provide a better fit.36

R#2: Restricting CL: The context length was restricted based on the back-propagation-through-time (BPTT) length in37

the baseline model upon which the interpretable LM was based (Merity et al. [21]).38

R#3: Kernel choice: In practice, many kernels could be used for interpolation. However, the RBF kernel 1) generalizes39

to the δ-sum method when ε→∞ (this was a typo in the main text) and 2) has a kernel width that can be directly linked40

to timescale. These properties are not exhibited by other commonly used alternatives, like polyharmonic spline kernels.41

LM Performance: Perplexity on WikiText2 test set (lower is better): 68.33 ± 0.12. Baseline LSTM (no timescale42

specification): 70.23± 0.24. These values are comparable to Merity et al. [21].43


