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Abstract

We propose CaSPR, a method to learn object-centric Canonical Spatiotemporal
Point Cloud Representations of dynamically moving or evolving objects. Our
goal is to enable information aggregation over time and the interrogation of object
state at any spatiotemporal neighborhood in the past, observed or not. Different
from previous work, CaSPR learns representations that support spacetime conti-
nuity, are robust to variable and irregularly spacetime-sampled point clouds, and
generalize to unseen object instances. Our approach divides the problem into
two subtasks. First, we explicitly encode time by mapping an input point cloud
sequence to a spatiotemporally-canonicalized object space. We then leverage
this canonicalization to learn a spatiotemporal latent representation using neural
ordinary differential equations and a generative model of dynamically evolving
shapes using continuous normalizing flows. We demonstrate the effectiveness of
our method on several applications including shape reconstruction, camera pose es-
timation, continuous spatiotemporal sequence reconstruction, and correspondence
estimation from irregularly or intermittently sampled observations.

1 Introduction Flow in space (CNF)
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Figure 1: CaSPR builds a point cloud repre-
sentation of (partially observed) objects con-
tinuously in both space (x-axis) and time (y-
axis), while canonicalizing for extrinsic object
properties like pose.

The visible geometric properties of objects around us
are constantly evolving over time due to object motion,
articulation, deformation, or observer movement. Ex-
amples include the rigid motion of cars on the road, the
deformation of clothes in the wind, and the articulation
of moving humans. The ability to capture and recon-
struct these spatiotemporally changing geometric object
properties is critical in applications like autonomous driv-
ing, robotics, and mixed reality. Recent work has made
progress on learning object shape representations from
static 3D observations [49, 52, 53, 62, 73] and dynamic
point clouds [9, 11, 40, 41, 45, 50, 80]. Yet, important
limitations remain in terms of the lack of temporal con-
tinuity, robustness, and category-level generalization.

In this paper, we address the problem of learning object-centric representations that can aggregate and
encode spatiotemporal (ST) changes in object shape as seen from a 3D sensor. This is challenging
since dynamic point clouds captured by depth sensors or LIDAR are often incomplete and sparsely
sampled over space and time. Furthermore, even point clouds corresponding to adjacent frames
in a sequence will experience large sampling variation. Ideally, we would like spatiotemporal
representations to satisfy several desirable properties. First, representations should allow us to
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capture object shape continuously over space and time. They should encode changes in shape due to
varying camera pose or temporal dynamics, and support shape generation at arbitrary spatiotemporal
resolutions. Second, representations should be robust to irregular sampling patterns in space and
time, including support for full or partial point clouds. Finally, representations should support
within-category generalization to unseen object instances and to unseen temporal dynamics. While
many of these properties are individually considered in prior work [11, 30, 41, 45, 68], a unified and
rigorous treatment of all these factors in space and time is largely missing.

We address the limitations of previous work by learning a novel object-centric ST representation
which satisfies the above properties. To this end, we introduce CaSPR – a method to learn Canonical
Spatiotemporal Point Cloud Representations. In our approach, we split the task into two: (1) canoni-
calizing an input object point cloud sequence (partial or complete) into a shared 4D container space,
and (2) learning a continuous ST latent representation on top of this canonicalized space. For the
former, we build upon the Normalized Object Coordinate Space (NOCS) [63, 72] which canonicalizes
intra-class 3D shape variation by normalizing for extrinsic properties like position, orientation, and
scale. We extend NOCS to a 4D Temporal-NOCS (T-NOCS), which additionally normalizes the
duration of the input sequence to a unit interval. Given dynamic point cloud sequences, our ST
canonicalization yields spacetime-normalized point clouds. In Sec. 5, we show that this allows
learning representations that generalize to novel shapes and dynamics.

We learn ST representations of canonicalized point clouds using Neural Ordinary Differential
Equations (Neural ODEs) [9]. Different from previous work, we use a Latent ODE that operates in a
lower-dimensional learned latent space which increases efficiency while still capturing object shape
dynamics. Given an input sequence, the canonicalization network and Latent ODE together extract
features that constitute an ST representation. To continuously generate novel spatiotemporal point
clouds conditioned on an input sequence, we further leverage invertible Continuous Normalizing
Flows (CNFs) [6, 24] which transform Gaussian noise directly to the visible part of an object’s
shape at a desired timestep. Besides continuity, CNFs provide direct likelihood evaluation which
we use as a training loss. Together, as shown in Fig. 1, the Latent ODE and CNF constitute a
generative model that is continuous in spacetime and robust to sparse and varied inputs. Unlike
previous work [11, 41], our approach is continuous and explicitly avoids treating time as another
spatial dimension by respecting its unique aspects (e.g., unidirectionality).

We demonstrate that CaSPR is useful in numerous applications including (1) continuous spacetime
shape reconstruction from sparse, partial, or temporally non-uniform input point cloud sequences,
(2) spatiotemporal 6D pose estimation, and (3) information propagation via space-time correspon-
dences under rigid or non-rigid transformations. Our experiments show improvements to previous
work while also providing insights on the emergence of intra-class shape correspondence and the
learning of time unidirectionality [19]. In summary, our contributions are:

1. The CaSPR encoder network that consumes dynamic object point cloud sequences and canonical-
izes them to normalized spacetime (T-NOCS).

2. The CaSPR representation of canonicalized point clouds using a Latent ODE to explicitly encode
temporal dynamics, and an associated CNF for generating shapes continuously in spacetime.

3. A diverse set of applications of this technique, including partial or full shape reconstruction,
spatiotemporal sequence recovery, camera pose estimation, and correspondence estimation.

2 Related Work
Neural Representations of Point Sets Advances in 2D deep architectures leapt into the realm of
point clouds with PointNet [52]. The lack of locality in PointNet was later addressed by a diverse set
of works [16, 17, 38, 60, 64, 67, 74, 77, 83], including PointNet++ [53] – a permutation invariant
architecture capable of learning both local and global point features. We refer the reader to Guo et
al. [28] for a thorough review. Treating time as the fourth dimension, our method heavily leverages
propositions from these works. Continuous reconstruction of an object’s spatial geometry has been
explored by recent works in learning implicit shape representations [10, 29, 43, 49].

Spatiotemporal Networks for 3D Data Analogous to volumetric 3D convolutions on video
frames [36, 69, 82], a direct way to process spatiotemporal point cloud data is performing 4D
convolutions on a voxel representation. This poses three challenges: (1) storing 4D volumes densely
is inefficient and impractical, (2) direct correlation of spatial and temporal distances is undesirable,
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and (3) the inability to account for timestamps can hinder the final performance. These challenges
have fostered further research along multiple fronts. For example, a large body of works [3, 27, 40, 75]
has addressed temporal changes between a pair of scans as per-point displacements or scene flow [70].
While representing dynamics as fields of change is tempting, such methods lack an explicit notion
of time. MeteorNet [41] was an early work to learn flow on raw point cloud sequences, however
it requires explicit local ST neighborhoods which is undesirable for accuracy and generalization.
Prant et al. [50] use temporal frames as a cue of coherence to stabilize the generation of points.
CloudLSTM [80] models temporal dependencies implicitly within sequence-to-sequence learning.
Making use of time in a more direct fashion, MinkowskiNet [11] proposed an efficient ST 4D CNN
to exploit the sparsity of point sets. This method can efficiently perform 4D sparse convolutions, but
can neither canonicalize time nor perform ST aggregation. OccupancyFlow [45] used occupancy
networks [43] and Neural ODEs [9] to have an explicit notion of time.

Our method can be viewed as learning the underlying kinematic spacetime surface of an object
motion: an idea from traditional computer vision literature for dynamic geometry registration [44].

Canonicalization Regressing 3D points in a common global reference frame dates back to 6D
camera relocalization and is known as scene coordinates [61]. In the context of learning the normal-
ized object coordinate space (NOCS), [72] is notable for explicitly mapping the input to canonical
object coordinates. Thanks to this normalization, NOCS enabled category-level pose estimation and
has been extended to articulated objects [37], category-level rigid 3D reconstruction [12, 25, 31] via
multiview aggregation [63], and non-rigid shape reconstruction either via deep implicit surfaces [79]
or by disentangling viewpoint and deformation [46]. Chen et al. [7] proposed a latent variational
NOCS to generate points in a canonical frame.

Normalizing Flows and Neural ODEs The idea of transforming noise into data dates back to
whitening transforms [22] and Gaussianization [8]. Tabak and Turner [66] officially defined nor-
malizing flows (NFs) as the composition of simple maps and used it for non-parametric density
estimation. NFs were immediately extended to deep networks and high dimensional data by Rippel
and Adams [56]. Rezende and Mohamed used NFs in the setting of variational inference [54] and
popularized them as a standalone tool for deep generative modeling e.g. [32, 65]. Thanks to their
invertibility and exact likelihood estimation, NFs are now prevalent and have been explored in the
context of graph neural networks [39], generative adversarial networks [26], bypassing topological
limitations [2, 14, 18], flows on Riemannian manifolds [23, 42, 59], equivariant flows [4, 34, 55],
and connections to optimal transport [20, 47, 71, 81]. The limit case where the sequence of transfor-
mations are indexed by real numbers yields continuous-time flows: the celebrated Neural ODEs [6],
their latent counterparts [57], and FFJORD [24], an invertible generative model with unbiased density
estimation. For a comprehensive review, we refer the reader to the concurrent surveys of [33, 48].

Our algorithm is highly connected to PointFlow [76] and C-Flow [51]. However, we tackle encoding
and generating spatiotemporal point sets in addition to canonicalization while both of these works
use CNFs in generative modeling of 3D point sets without canonicalizing.

3 Background

In this section, we lay out the notation and mathematical background required in Sec. 4.

Definition 1 (Flow & Trajectory) Let us define a d-dimensional flow to be a parametric family of
homeomorphisms φ : M× R 7→ M acting on a vector z ∈ M ⊂ Rd with φ0(z) = z (identity
map) and φt(z) = zt. A temporal subspace of flows is said to be a trajectory T (z) = {φt(z)}t if
T (z) ∩ T (y) = ∅ for all z 6= y, i.e., different trajectories never intersect [13, 18].

Definition 2 (ODE-Flow, Neural ODE & Latent ODE) For any given flow φ there exists a corre-
sponding ordinary differential equation (ODE) constructed by attaching an optionally time-dependent
vector f(z, t) ∈ Rd to every point z ∈M resulting in a vector field s.t. f(z) = φ′(z)|t=0. Starting
from the initial state z0, this ODE given by dz(t)

dt = f(z(t), t) can be integrated for time T modeling
the flow φt=T :

zT = φT (z0) = z0 +

∫ T

0

fθ(zt, t) dt, (1)

where zt , z(t) and the field f is parameterized by θ = {θi}i. By the Picard–Lindelöf theorem [13],
if f is continuously differentiable then the initial value problem in Eq (1) has a unique solution.
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Figure 2: Architecture and applications of CaSPR. Our model consumes rigid or deformable point cloud
sequences and maps them to a spatiotemporal canonical latent space whose coordinates are visualized by RGB
colors (purple box). Using a Latent ODE, it advects a latent subspace forward in time to model temporal
dynamics. A continuous normalizing flow [24] (shown in red) decodes the final latent code to 3D space by
mapping Gaussian noise to the partial or full shape at desired timesteps. CaSPR enables multiple applications
shown in green boxes. Training directions for the normalizing flow are indicated by dashed arrows.

Instead of handcrafting, Neural ODEs [9] seek a function f that suits a given objective by modeling
f as a neural network. We refer to a Neural ODE operating in a latent space as a Latent ODE.

Numerous forms of Neural ODEs model f(·) to be autonomous, i.e., time independent f(zt) ≡
f(zt, t) [9, 18, 57], whose output fully characterizes the trajectory. While a Neural ODE advects
single particles, generative modeling approximates the full target probability density which requires
expressive models capable of exact density evaluation and sampling that avoids mode collapse.

Definition 3 (Continuous Normalizing Flow (CNF)) Starting from a simple dB-dimensional base
distribution py with y0 ∈ RdB ∼ py(y), CNFs [6, 24] aim to approximate the complex target
distribution px(x) by bijectively mapping empirical samples of the target to the base using an
invertible function gβ : RdB 7→ RdB with parameters β = {βi}i. Then the probability density
function transforms with respect to the change of variables: log px(x) = log py(y)− log det∇gβ(y).
The warping function g can be replaced by an integral of continuous-time dynamics yielding a form
similar to Neural ODEs except that we now consider distributions [24]:

log px(x) = log py(y0)−
∫ T

0

Tr
(∂gβ(yt, t | z)

∂yt

)
dt, (2)

with the simplest choice that the base distribution y0 is in a d-dimensional ball, py ∼ N (0, I). Here
z ∈ Rd is an optional conditioning latent vector [76]. Note that this continuous system is non-
autonomous i.e., time varying and every non-autonomous system can be converted to an autonomous
one by raising the dimension to include time [15, 18].

4 Method

We consider as input a sequence of potentially partial, clutter-free 3D scans (readily captured by
depth sensors or LIDAR) of an object belonging to a known category. This observation is represented
as a point cloud X = {xi ∈ R3 = {xi, yi, zi} | i = 1, . . . ,M ′}. For a sequence of K potentially
non-uniformly sampled timesteps, we denote a spatiotemporal (ST) point cloud as P = {Pk}Kk=1,
where Pk = {pi ∈ R4 = {xi, yi, zi, sk} | i = 1, . . . ,Mk}, Mk is the number of points at frame
k ∈ [1,K] and at the time sk ∈ [s1, sK ] ⊂ R with M =

∑K
k=1Mk. Our goal is to explain P by

learning a continuous representation of shape that is invariant to extrinsic properties while aggregating
intrinsic properties along the direction of time. CaSPR achieves this through:

1. A canonical spacetime container where extrinsic properties such as object pose are factored out,
2. A continuous latent representation which can be queried at arbitrary spacetime steps, and
3. A generative model capable of reconstructing partial observations conditioned on a latent code.

We first describe the method design for each of these components, depicted in Fig. 2, followed by
implementation and architectural details in Sec. 4.1.

Canonicalization: The first step is canonicalization of a 4D ST point cloud sequence with the goal
of associating observations at different time steps to a common canonical space. Unlike prior work
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Figure 3: Architecture of our ST point-set canonicalization network, TPointNet++. It uses two branches that
extract ST features using a 4D PointNet and per-view 3D local features via PointNet++. These features are
combined and passed to an MLP to regress the T-NOCS points. Training is supervised via GT coordinates.
which assumes already-canonical inputs [45, 76], this step allows CaSPR to operate on raw point
cloud sequences in world space and enables multiple applications (see Fig. 2). Other previous work
has considered canonicalization of extrinsic properties from RGB images [63, 72] or a 3D point
cloud [37], but our method operates on a 4D point cloud and explicitly accounts for time labels.
Our goal is to find an injective spacetime canonicalizer cα(·) : P 7→ P × Z parameterized by
α = {αi}i, that maps a point cloud sequence P to a canonical unit tesseract P = {Pk}Kk=1, where
Pk = {pi ∈ R4 = {xi, yi, zi, tk} ∈ [0, 1] | i = 1, . . . ,Mk} and zC ∈ Z ⊂ Rd is the corresponding
canonical latent representation (embedding) of the sequence. Note that in addition to position and
orientation, P is normalized to have time in unit duration. We refer to P as Temporal-NOCS
(T-NOCS) as it extends NOCS [63, 72]. T-NOCS points are visualized using the spatial coordinate
as the RGB color in Fig. 2 and 3. Given a 4D point cloud in the world frame, we can aggregate the
entire shape from K partial views by a simple union: P =

⋃K
i=1 cα(Pi) [63]. Moreover, due to its

injectivity, cα(·) preserves correspondences, a property useful in tasks like pose estimation or label
propagation. We outline the details and challenges involved in designing a canonicalizer in Sec. 4.1.

Continuous Spatiotemporal Representation: While a global ST latent embedding is beneficial for
canonicalization and aggregation of partial point clouds, we are interested in continuously modeling
the ST input, i.e., being able to compute a representation for unobserved timesteps at arbitrary
spacetime resolutions. To achieve this, we split the latent representation: zC = [zCST, z

C
dyn] where

zCST is the static ST descriptor and zCdyn is used to initialize an autonomous Latent ODE dzt

dt = fθ(zt)

as described in Dfn. 2: z0 = zCdyn ∈ Rd. We choose to advect the ODE in the latent space (rather
than physical space [45]) to (1) enable learning a space best-suited to modeling the dynamics of the
observed data, and (2) improve scalability due to the fixed feature size. Due to the time-independence
of fθ, z0 fully characterizes the latent trajectory. Advecting z0 forward in time by solving this ODE
until any canonical timestamp T ≤ 1 yields a continuous representation in time zT that can explain
changing object properties. We finally obtain a dynamic spatiotemporal representation in the product
space: z ∈ RD = [zCST, zT ]. Due to canonicalization to the unit interval, T > 1 implies extrapolation.

Spatiotemporal Generative Model: Numerous methods exist for point set generation [1, 25, 83],
but most are not suited for sampling on the surface of a partial 4D ST point cloud. Therefore,
we adapt CNFs [24, 76] as defined in Sec. 3. To generate a novel ST shape, i.e., a sequence of
3D shapes X1 . . .XK , we simulate the Latent ODE for t = 0 . . . T and obtain representations for
each of the canonical shapes in the sequence: zt=0 · · · zt=T . We then sample the base distribution
yk ∈ RdB=3 ∼ py(y) , N (0, I) and evaluate the conditional CNF in Eq (2) by passing each
sample yk through the flow gβ(yk | zt) conditioned on zt. Note that the flow is time dependent, i.e.,
non-autonomous. To increase the temporal resolution of the output samples we pick the timesteps
with higher frequency, whereas to densify spatially, we simply generate more samples yk.

4.1 Network Architecture

We now detail our implementations of the canonicalizer cα, Latent ODE network fθ, and CNF gβ .

TPointNet++ cα(·): The design of our canonicalizer is influenced by (1) the desire to avoid ST
neighborhood queries, (2) to treat time as important as the spatial dimensions, and (3) injecting
how an object appears during motion in space into its local descriptors resulting in more expressive
features. While it is tempting to directly apply existing point cloud architectures such as PointNet [52]
or PointNet++ [53], we found experimentally that they were individually insufficient (c.f. Sec. 5).
To meet our goals, we instead introduce a hybrid TPointNet++ architecture as shown in Fig. 3 to
implement cα and canonicalize P to P . TPointNet++ contains a PointNet branch that consumes the

5



Figure 4: Canonicalization applications. Partial shape reconstruction (left section) shows pairs of GT (left) and
predicted shapes (right). Pose estimation (right section) shows GT (green, solid) and predicted (red, dashed)
camera pose based on regressed T-NOCS points. Points are colored by their T-NOCS location.

entire 4D point cloud to extract both a 1024-dimensional global feature and 64-dimensional per-point
ST features. This treats time explicitly and equally to each spatial dimension. We also use PointNet++
to extract a 512-dimensional local feature at each input point by applying it at each cross-section in
time with no timestamp. We feed all features into a shared multi-layer perceptron (MLP) to arrive at
1600-dimensional embeddings corresponding to each input point.

We use the pointwise embeddings in two ways: (1) they are passed through a shared linear layer
followed by a sigmoid function to estimate the T-NOCS coordinates P̂ which approximate the ground
truth P , and (2) we max-pool all per-point features into a single latent representation of T-NOCS
zC ∈ R1600 which is used by the Latent ODE and CNF as described below. The full canonicalizer
cα(·) can be trained independently for T-NOCS regression, or jointly with a downstream task.

Latent ODE fθ(·) and Reconstruction CNF gβ(·): The full CaSPR architecture is depicted
in Fig. 2. It builds upon the embedding from TPointNet++ by first splitting it into two parts
zC = [zCST, z0 , zCdyn]. The dynamics network of the Latent ODE fθ is an MLP with three hidden
layers of size 512. We use a Runge-Kutta 4(5) solver [35, 58] with adaptive step sizes which supports
backpropagation using the adjoint method [9]. The static feature, zCST ∈ R1536 is skip-connected and
concatenated with zT to yield z ∈ R1600 which conditions the reconstruction at t = T .

To sample the surface represented by z, we use a FFJORD conditional-CNF [24, 76] as explained
in Sec. 3 and 4 to map 3D Gaussian noise y0 ∈ RdB=3 ∼ N (0, I) onto the shape surface. The
dynamics of this flow gβ(yt, t | z) are learned with a modified MLP [24] which leverages a gating
mechanism at each layer to inject information about the current context including z and current time
t of the flow. This MLP contains three hidden layers of size 512, and we use the same solver as the
Latent ODE. Please refer to the supplement for additional architectural details.

Training and Inference: CaSPR is trained with two objectives that use the GT canonical point
cloud sequence P as supervision. We primarily seek to maximize the log-likelihood of canonical
spatial points on the surface of the object when mapped to the base Gaussian using the CNF. This
reconstruction loss is Lr = −

∑K
k=1

∑Mk

i=1 log px(xi | ztk) where xi is the spatial part of pi ∈ Pk
and the log-likelihood is computed using Eq (2). Secondly, we supervise the T-NOCS predictions
from TPointNet++ with an L1 loss Lc =

∑M
i=1 |p̂i − pi| with pi ∈ P and p̂i ∈ P̂ . We jointly train

TPointNet++, the Latent ODE, and CNF for α, θ and β respectively with the final loss L = Lr +Lc.
During inference, TPointNet++ processes a raw point cloud sequence of an unseen shape and motion
to obtain the ST embedding and canonicalized T-NOCS points. The Latent ODE, initialized by this
embedding, is solved forward in time to any number of canonical “query” timestamps. For each
timestamp, the Latent ODE produces the feature to condition the CNF which reconstructs the object
surface by the forward flow of Gaussian samples. The combined continuity of the Latent ODE and
CNF enables CaSPR to reconstruct the input sequence at any desired ST resolution.

5 Experimental Evaluations

We now evaluate the canonicalization, representation, and reconstruction capabilities of CaSPR,
demonstrate its utility in multiple downstream tasks, and justify design choices.

Dataset and Preprocessing: We introduce a new dataset containing simulated rigid motion of
objects in three ShapeNet [5] categories: cars, chairs, and airplanes. The motion is produced with
randomly generated camera trajectories (Fig. 4) and allows us to obtain the necessary inputs and
supervision for CaSPR: sequences of raw partial point clouds from depth maps with corresponding
canonical T-NOCS point clouds. Each sequence contains K = 10 frames with associated timestamps.
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Table 2: Partial surface sequence reconstruction. Chamfer (CD)
and Earth Mover’s Distances (EMD) are multiplied by 103. On the
left (10 Observed), 10 frames are given as input and all are recon-
structed. On the right, 3 frames are used as input (3 Observed), but
methods also reconstruct intermediate unseen steps (7 Unobserved).

10 Observed 3 Observed 7 Unobserved
Method Category CD EMD CD EMD CD EMD
PointFlow Cars 0.454 12.838 0.455 12.743 0.525 13.911
CaSPR-Atlas 0.492 19.528 0.540 22.099 0.530 19.635
CaSPR 0.566 10.103 0.590 11.464 0.584 11.259
PointFlow Chairs 0.799 17.267 0.796 17.294 0.950 18.442
CaSPR-Atlas 0.706 48.665 0.723 48.912 0.749 47.322
CaSPR 0.715 13.009 0.681 13.310 0.683 13.564
PointFlow Airplanes 0.251 9.500 0.252 9.534 0.281 9.814
CaSPR-Atlas 0.237 18.827 0.255 18.525 0.269 17.933
CaSPR 0.231 6.026 0.215 6.144 0.216 6.175

Figure 5: Reconstruction results. CaSPR
accurately captures occlusion boundaries
for camera motion at observed and unob-
served timesteps, unlike linear feature in-
terpolation with PointFlow.

Raw point cloud sequences are labeled with uniform timestamps from s1 = 0.0 to sK = 5.0 while
canonicalized timestamps range from t1 = 0 to tK = 1. For training, 5 frames with 1024 points are
randomly subsampled from each sequence, giving non-uniform step sizes between observations. At
test time, we use a different spatiotemporal sampling for sequences of held-out object instances: all
10 frames, each with 2048 points. Separate CaSPR models are trained for each shape category.

Evaluation Procedure: To measure canonicalization errors, T-NOCS coordinates are split into the
spatial and temporal part with GT given by X̄ and t respectively. The spatial error at frame k is
1
Mk

∑Mk

i=1 ‖x̂i − xi‖2 and the temporal error is 1
Mk

∑Mk

i=1 |t̂i − ti| . For reconstruction, the Chamfer
Distance (CD) and Earth Mover’s Distance (EMD) are measured (and reported multiplied by 103).
Lower is better for all metrics; we report the median over all test frames because outlier shapes cause
less informative mean errors. Unless stated otherwise, qualitative point cloud results (e.g., Fig. 4) are
colored by their canonical coordinate values (so corresponding points should have the same color).

Table 1: Canonicalization performance.

Method Category Spatial Err Time Err
MeteorNet Cars 0.0633 0.0001

PointNet++ No Time 0.0530 —
PointNet++ w/ Time 0.0510 0.0005

PointNet 0.0250 0.0012
TPointNet++ No Time 0.0122 —

TPointNet++ Cars 0.0118 0.0011
TPointNet++ Chairs 0.0102 0.0008
TPointNet++ Airplanes 0.0064 0.0009

5.1 Evaluations and Applications

Canonicalization: We first evaluate the accuracy
of canonicalizing raw partial point cloud sequences
to T-NOCS using TPointNet++. Tab. 1 shows me-
dian errors over all frames in the test set. The bot-
tom part evaluates TPointNet++ on each shape cat-
egory while the top compares with baselines on cars
(please see supplementary for more details). No-
tably, for spatial prediction, TPointNet++ outperforms variations of both PointNet [52] and Point-
Net++ [53], along with their spatiotemporal extension MeteorNet [41]. This indicates that our ST
design yields more distinctive features both spatially and temporally. MeteorNet and PointNet++
(with time) achieve impressive time errors thanks to skip connections that pass the input timestamps
directly towards the end of the network. Qualitative results of canonicalization are in Fig. 4.

Representation and Reconstruction: We evaluate CaSPR’s ability to represent and reconstruct
observed and unobserved frames of raw partial point cloud sequences. The full model is trained
on each category separately using both Lr and Lc, and is compared to two baselines. The first is a
variation of CaSPR where the CNF is replaced with an AtlasNet [25] decoder using 64 patches – an
alternative approach to achieve spatial continuity. This model is trained with Lc and a CD loss (rather
than Lr). The second baseline is the deterministic PointFlow [76] autoencoder trained to reconstruct
a single canonical partial point cloud. This model operates on a single timestep and receives the
already canonical point cloud as input: an easier problem. We achieve temporal continuity with
PointFlow by first encoding a pair of adjacent observed point clouds to derive two shape features,
and then linearly interpolating to the desired timestamp – one alternative to attain temporal continuity.
The interpolated feature conditions PointFlow’s CNF to sample the partial surface, similar to CaSPR.

Tab. 2 reports median CD and EMD at reconstructed test steps for each method. We evaluate two
cases: (1) models receive and reconstruct all 10 observed frames (left), and (2) models get the first,
middle, and last steps of a sequence and reconstruct both these 3 observed and 7 unobserved frames
(right). CaSPR outperforms PointFlow in most cases, even at observed timesteps, despite operating
on raw point clouds in the world frame instead of canonical. Because PointFlow reconstructs each
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Figure 7: Continuous interpolation results. From three sparse frames of input with GT canonical
points shown on top, CaSPR reconstructs the sequence more densely in space and time (middle).
Contours of the Gaussian flowed to the car surface are shown on bottom (red is highest probability).

frame independently, it lacks temporal context resulting in degraded occlusion boundaries (Fig. 5)
and thus higher EMD. CaSPR gives consistent errors across observed and unobserved frames due
to the learned motion prior of the Latent ODE, in contrast to linear feature interpolation that sees a
marked performance drop for unobserved frames. The AtlasNet decoder achieves small CD since
this is the primary training loss, but has difficulty reconstructing the correct point distribution on the
partial surface due to the patch-based approach, resulting in much higher EMD for all cases.

Table 3: Pose estimation using T-NOCS.

Method Category Trans Err Rot Err(◦) Point Err
RPM-Net Cars 0.0049 1.1135 0.0066
CaSPR 0.0077 1.3639 0.0096

RPM-Net Chairs 0.0026 0.4601 0.0036
CaSPR 0.0075 1.5035 0.0091

RPM-Net Airplanes 0.0040 0.5931 0.0048
CaSPR 0.0051 0.9456 0.0057

Multiview Reconstruction: A direct application of TPoint-
Net++ is partial shape reconstruction of observed geometry
through a union of predicted T-NOCS spatial points. Due
to the quantitative accuracy of TPointNet++ at each frame
(Tab. 1), aggregated results closely match GT for unseen
instances in all categories as shown in Fig. 4 (left).

Rigid Pose Estimation: The world–canonical 3D point
correspondences from TPointNet++ allow fitting rigid object (or camera) pose at observed
frames using RANSAC [21]. Tab. 3 reports median test errors showing TPointNet++ is com-
petitive with RPM-Net [78], a recent specialized architecture for robust iterative rigid registra-
tion. Note here, RPM-Net takes both the raw depth and GT T-NOCS points as input. Trans-
lation and rotation errors are the distance and degree angle difference from the GT transfor-
mation. Point error measures the per frame median distance between the GT T-NOCS points
transformed by the predicted pose and the input points. Qualitative results are in Fig. 4 (right).

Table 4: Reconstructing 10 observed
timesteps (left) and maintaining temporal
correspondences (right) on Warping Cars.

Reconstruction Correspondences
Method CD EMD Dist t1 Dist t10
OFlow 1.512 20.401 0.011 0.031
CaSPR 0.955 11.530 0.013 0.035

Rigid Spatiotemporal Interpolation: The full CaSPR
model can densely sample a sparse input sequence in space-
time as shown in Fig. 7. The model takes three input frames
of 512 points (corresponding GT T-NOCS points shown on
top) and reconstructs an arbitrary number of steps with 2048
points (middle). The representation can be sampled at any ST
resolution but, in practice, is limited by memory. The CNF
maps Gaussian noise to the visible surface (bottom). Points are most dense in high probability areas
(shown in red); in our data this roughly corresponds to where the camera is focused on the object
surface at that timestep.

Figure 6: Deforming
car reconstruction.

Non-Rigid Reconstruction and Temporal Correspondences: CaSPR can
represent and reconstruct deformable objects. We evaluate on a variation of
the Warping Cars dataset introduced in Occupancy Flow (OFlow) [45] which
contains 10-step sequences of full point clouds sampled from ShapeNet [5] cars
deforming over time. The sequences in this dataset are already consistently
aligned and scaled, so CaSPR is trained only using Lr.
Tab. 4 compares CaSPR to OFlow on reconstructing deforming cars at 10
observed time steps (left) and on estimating correspondences over time (right).
To measure correspondence error, we (1) sample 2048 points from the repre-
sentation at t1, (2) find their closest points on the GT mesh, and (3) advect the
samples to t10 and measure the mean distance to the corresponding GT points
at both steps. Tab. 4 reports median errors over all t1 and t10. For OFlow,
samples are advected using the predicted flow field in physical space, while for
CaSPR we simply use the same Gaussian samples at each step of the sequence.
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CaSPR outperforms OFlow on reconstruction due to overly-smoothed outputs from the occupancy
network, while both methods accurately maintain correspondences over time. Note that CaSPR
advects system state in a learned latent space and temporal correspondences naturally emerge from
the CNF when using consistent base samples across timesteps. Fig. 6 visualizes sampled point
trajectories for one sequence.

Figure 8: Cross-instance
correspondences emerge
naturally using a CNF.

Cross-Instance Correspondences: We observe consistent behavior
from the CNF across objects within a shape category too. Fig. 8 shows
reconstructed frames from various chair and airplane sequences with
points colored by their corresponding location in the sampled Gaussian
(before the flow). Similar colors across instances indicate the same part
of the base distribution is mapped there. This could potentially be used,
for instance, to propagate labels from known to novel object instances.

Learning the Arrow of Time: A desirable property of ST representa-
tions is an understanding of the unidirectionality of time [19]: how objects
evolve forward in time. We demonstrate this property with CaSPR by
training on a dataset of 1000 sequences of a single rigid car where the
camera always rotates counter-clockwise at a fixed distance (but random
height). CaSPR achieves a median CD of 0.298 and EMD of 7.114 when
reconstructing held-out sequences forward in time. However, when the
same test sequences are reversed by flipping the timestamps, accuracy drastically drops to CD 1.225
and EMD 88.938. CaSPR is sensitive to the arrow of time due to the directionality of the Latent
ODE and the global temporal view provided by operating on an entire sequence jointly.

Figure 9: Disentanglement examples on
warping cars data.

Shape & Motion Disentanglement We evaluate how
well CaSPR disentangles shape and motion as a result
of the latent feature splitting zC = [zCST, z

C
dyn]. For this

purpose, we transfer motion between two sequences by
embedding both of them using TPointNet++, then taking
the static feature zCST from the first and the dynamic feature
zCdyn from the second. Fig. 9 shows qualitative results
where each row is a different sequence; the first frame of
the shape sequence is on the left, the point trajectories of
the motion sequence in the middle, and the final CaSPR-
sampled trajectories using the combined feature are on
the right. If these features perfectly disentangle shape and
motion, we should see the shape of the first sequence with
the motion of the second after reconstruction. Apparently,
the explicit feature split in CaSPR does disentangle static
and dynamic properties of the object to a large extent.

6 Conclusion
We introduced CaSPR, a method to canonicalize and obtain object-centric representions of raw point
cloud sequences, which supports spatiotemporal sampling at arbitrary resolutions. We demonstrated
CaSPR’s utility on rigid and deformable object motion and in applications like spatiotemporal
interpolation and estimating correspondences across time and instances.

Limitations and Future Work: CaSPR leaves ample room for future exploration. We currently only
support batch processing, but online processing is important for real-time applications. Additionally,
CaSPR is expensive to train. Our canonicalization step requires dense supervision of T-NOCS labels
which may not be available for real data. While the network is well-suited for ST interpolation, the
extrapolation abilities of CaSPR need further investigation. CaSPR is object-centric, and further
work is needed to generalize to object collections and scenes. Additionally, outlier shapes can cause
noisy sampling results and if the partial view of an object is ambiguous or the object is symmetric,
TPointNet++ may predict a flipped or rotated canonical output.

Finally, using a single CNF for spatial sampling is fundamentally limited by an inability to model
changes in topology [14, 18]. To capture fine-scale geometric details of shapes, this must be addressed.
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Broader Impact
CaSPR is a fundamental technology allowing the aggregation and propagation of dynamic point
cloud information – and as such it has broad applications in areas like autonomous driving, robotics,
virtual/augmented reality and medical imaging. We believe that our approach will have a mostly
positive impact but we also identify potential undesired consequences below.

Our method will enhance the capabilities of existing sensors and allow us to build models of objects
from sparse observations. For instance, in autonomous driving or mixed reality, commonly used
LIDAR/depth sensors are limited in terms of spatial and temporal resolution or sampling patterns. Our
method creates representations that overcome these limitations due to the capability to continuously
sample in space and time. This would enable these sensors to be cheaper and operate at lower
spacetime resolutions saving energy and extending hardware lifespans. Our approach could also be
useful in spatiotemporal information propagation. We can propagate sparse labels in the input over
spacetime, leading to denser supervision. This would save manual human labeling effort.

Like other learning-based methods, CaSPR can produce biased results missing the details in the
input. In a self driving scenario, if an input LIDAR point cloud only partially observes a pedestrian,
CaSPR may learn representations that misses the pedestrian completely. If real-world systems rely
excessively on this incorrect representation it could lead to injuries or fatalities. We look forward to
conducting and fostering more research in other applications and negative impacts of our work.
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