
Fast Adversarial Robustness Certification of Nearest
Prototype Classifiers for Arbitrary Seminorms

Sascha Saralajew∗
Dr. Ing. h.c. F. Porsche AG

Weissach, Germany
sascha.saralajew@porsche.de

Lars Holdijk∗
University of Amsterdam
Amsterdam, Netherlands
larsholdijk@gmail.com

Thomas Villmann
UAS Mittweida

Mittweida, Germany,
villmann@hs-mittweida.de

Abstract

Methods for adversarial robustness certification aim to provide an upper bound on
the test error of a classifier under adversarial manipulation of its input. Current
certification methods are computationally expensive and limited to attacks that
optimize the manipulation with respect to a norm. We overcome these limitations
by investigating the robustness properties of Nearest Prototype Classifiers (NPCs)
like learning vector quantization and large margin nearest neighbor. For this
purpose, we study the hypothesis margin. We prove that if NPCs use a dissimilarity
measure induced by a seminorm, the hypothesis margin is a tight lower bound on
the size of adversarial attacks and can be calculated in constant time—this provides
the first adversarial robustness certificate calculable in reasonable time. Finally, we
show that each NPC trained by a triplet loss maximizes the hypothesis margin and
is therefore optimized for adversarial robustness. In the presented evaluation, we
demonstrate that NPCs optimized for adversarial robustness are competitive with
state-of-the-art methods and set a new benchmark with respect to computational
complexity for robustness certification.

1 Introduction

Adversarial robustness of a classifier describes its stability in classification under adversarial manipu-
lations of the input. The adversarial setting has been studied extensively in numerous settings [1–3]
but mainly found footing after the seminal paper by Szegedy et al. [4] that formalized the problem of
adversarial examples. Since that, a wide line of research has sprung concerning both the construction
of adversarial attacks [5–7] and the heuristic defense against them [8–10]. Unfortunately, while some
progress has been made [11–13], most proposed defenses have been shown to be breakable by more
advanced attacks [14–16] so that the adversarial robustness problem is far from being solved. With
the heuristic defenses at the losing side of the metaphorical arms race, provable robustness guarantees
for classifiers provide a welcome alternative [11, 12, 17]. Robustness guarantees aim to provide
the so-called robust test error (or an upper bound) of a classifier under adversarial attacks and are
therefore not dependent on the current state of adversarial attacks. However, current methods for
determining the robust test error are computationally expensive [12, 17, 18] and are often limited
to Lp-norm evaluations [11, 13, 18]. As an adverse effect, we cannot use them for the rejection of
adversarial examples regarding an arbitrary seminorm without a huge computational overhead.
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To tackle these limitations, we extend the study of robustness guarantees beyond Neural Networks
(NNs), on which most work has focused, by investigating Nearest Prototype Classifiers (NPCs) [19–
22]. For that, given a data space X , an NPC is defined by a setW of prototypes selected from the data
space X and a dissimilarity measure d : X × X → R≥0. Each prototype w ∈ W has a predefined
and fixed class label c (w) ∈ C = {1, 2, . . . , Nc}. The class assignment c∗W (x) ∈ C of a data point
x ∈ X is determined by the class label of the closest prototype w∗ (1-nearest neighbor rule):

c∗W (x) = c (w∗) with w∗ = arg min
w∈W

{d (x,w)}. (1)

Due to the fundamental interpretability of the prototypes and dissimilarity measure used, NPCs
are considered to be among the most interpretable machine learning models. This makes NPCs a
preferred choice in the medical field, where the interpretability of models is a requirement for clinical
trials [23, 24]. As a result, prototype-based principles have been adopted in a number of deep learning
fields. Amongst the most notable of those is few-shot learning [25]. In addition to this, an empirical
study has shown that NPCs are robust against adversarial attacks [26]. In summary—with the call
for interpretable machine learning models increasing, the NPC principles adopted in deep learning,
and the promising empirical robustness results—NPCs provide a worthwhile avenue for studying
guaranteed adversarial robustness.

Contributions We analyze the adversarial robustness properties of NPCs in terms of the hypothesis
margin. First, we show that if the dissimilarity measure d (x,w) is induced by a seminorm ‖·‖ (i. e.,
d (x,w) = ‖x−w‖), the hypothesis margin regarding this seminorm can be computed in constant
time during the inference—this even holds in the case of an uncountable set of prototypes. Second,
we prove that this margin is a tight lower bound on the magnitude of an adversarial attack measured
by the same seminorm—to the best of our knowledge, this presents the first robustness guarantee
that holds for an arbitrary seminorm. Third, using this result, we show that every NPC that classifies
by a seminorm and is trained by minimizing a triplet loss is inherently optimizing the adversarial
robustness with respect to this seminorm. In an experimental section, we present how these results
apply to different NPCs and that a violation of the assumptions (seminorm and triplet loss) does
not necessarily lead to adversarially robust methods. The experimental results highlight that the
derived robustness certificate is comparable with other methods in terms of guaranteed robustness but
outperforms them all when computation speed is considered.

The following section discusses related work. After that, we give a brief introduction to NPCs and
define the models we use in the evaluation. This section is followed by the main part where we
define the hypothesis margin and investigate the relation to adversarial robustness. The subsequent
experimental section shows how to apply these results and compares the derived robustness certificate
to other methods. Finally, we finish with a discussion and an outlook of the presented results.

2 Related work

Besides general theoretical work about adversarial robustness [27–30], the defense investigations
can be grouped into three areas: robustification, the research to improve the adversarial robustness
of models [8, 10, 11, 31–33]; verification (complete or exact methods), the analysis of how to
compute the robustness guarantees exact [17, 34, 35]; certification (incomplete methods), the study
of fast calculable bounds for the robustness guarantees [36–38]. It is important to distinguish
between verification methods and certification approaches. Naturally, verification approaches [17]
have a combinatorial time complexity even though there are attempts to improve the computational
complexity [39]. In contrast, certification methods [12, 40] try to return bounds for the robustness
guarantees in polynomial time. Comparing verification and certification results only in terms of the
returned robustness guarantees ignores the aspect of time complexity of the methods and is therefore
not a fair comparison. We consider this thought carefully throughout the evaluation.

The presented work focuses on both the study of fast calculable certificates for NPCs and the use of
the certificate to robustify the models. Currently, the most successful approach to robustify models
is adversarial training [4, 41, 42]. However, being dependent on an adversarial attack used during
training, adversarial training fails to provide a robustness certificate and increases the training time.
Other empirical robustification approaches [8, 9, 43, 44] struggle with similar problems or fail to
withstand stronger attacks [5, 7, 14–16, 41, 45–47]. It is therefore not surprising that several modern
approaches strive—as the work presented in this article—towards combining robustification and

2



certification. Wong et al. [12, 40] studied an approach for NNs based on convex outer adversarial
polytopes. Their method extends to arbitrary norms but is still computationally expensive and
infeasibly complex to compute for deep NNs. Randomized Smoothing yields another approach
mainly investigated for NNs despite being applicable for arbitrary classifiers [18, 48, 49]. This
approach fails to scale to arbitrary norms though and introduces a heavy computational overhead
through sampling. Besides, some work has also been done to study certification and verification for
other classification approaches like decision trees [50, 51] and support vector machines [2, 36, 52] or
to extend robustness certificates to an arbitrary Lp-norm knowing the results for a few Lp-norms [13].

Based on empirical observations, Saralajew et al. [26] discussed the relation between the margin
maximization properties of Generalized Learning Vector Quantization (GLVQ) [53] and its adversarial
robustness without providing a mathematical proof. The presented results rely on the hypothesis
margin maximization properties of Learning Vector Quantization (LVQ) [54, 55], as originally studied
by Crammer et al. [56]. There, the hypothesis margin was used to derive a generalization bound for
LVQ with the Euclidean norm. Consequently, these results are not applicable to seminorms or an
uncountable set of prototypes in arbitrary NPCs. Similarly, the work of Wang et al. [57] about the
adversarial robustness of k-nearest neighbors cannot be scaled to an arbitrary NPC even though the
results hold for an arbitrary norm. Wang et al. [58] presented a result that is similar to the hypothesis
margin but limited to L1-, L2-, and L∞-norms for the attack and L2-norms for the classifier metric.
However, their methods are orders of magnitude slower. Besides that, Yang et al. [59] proposed a
generic defense by preprocessing the dataset before training a k-nearest neighbors classifier with
adversarial pruning. In general, the method can be used to robustify NPCs, but for more than two
classes it is time-consuming and it cannot be used to robustify seminorm-based NPCs. Brinkrolf
et al. [60] studied Generalized Matrix LVQ (GMLVQ) [61] with reject options and derived an
adversarial perturbation bound needed to fool the classifier. Compared to our work, the method
requires the training of the classifier with reject options and does not provide a general framework for
the evaluation of adversarial robustness and the robustification of NPCs.

3 Nearest prototype classifiers

As already mentioned in the introduction, an NPC consists of two main building blocks: a setW of
prototypes and a dissimilarity measure d. The prototypes w ∈ W are elements of the data space X
and have a predefined class label c (w) ∈ C. Given a prototype w and an input sample x, we compute
the “distance” between these two elements by the dissimilarity d. Based on this distance, we assign
the class of the closest prototype w∗ to a given input, see Equation (1). The closest decision boundary
to a given input x is implicitly defined by the closest prototype w∗ and the closest prototype w∗ with
a different class label than w∗ based on the given dissimilarity d.

In an NPC, the determination of the closest prototype of each class is considered as the inference step.
During training, an NPC updates the prototypes and the maybe trainable dissimilarity measure. The
training can be realized by heuristic methods and loss-based optimization and is an important differ-
ence between different realizations. For example, some NPCs optimize the selection of prototypes
out of a given set of labeled data points (e. g., 1-nearest neighbor) or optimize the prototypes as free
parameters (e. g., LVQ). Following the empirical observation of Saralajew et al. [26], we focus our
analysis on the family of LVQ algorithms. These methods not only train the dissimilarity measure
but the prototypes as well. In particular, compared to 1-nearest neighbor methods, LVQ does not
only optimize the selection of prototypes out of a given training dataset but instead considers the
prototypes as fully trainable parameters. We refer to the articles of Biehl et al. [22] and Nova and
Estévez [21] for an overview and an in-depth introduction to LVQ and NPCs.

Generalized learning vector quantization GLVQ provides an LVQ version that can be trained by
an empirical risk minimization and satisfies the convergence condition [53]. Because the method
is trained by a gradient-based approach, the dissimilarity measure has to be differentiable almost
everywhere. Except for this condition, the dissimilarity measure can be chosen freely (e. g., squared
Euclidean distance). Given a training dataset T of labeled inputs (x, c (x)), we fix the number
of prototypes per class, initialize the prototypes, and optimize the prototypes by minimizing the
following averaged loss function:

1

#T
∑

(x,c(x))∈T

µ (x, c (x)) =
1

#T
∑

(x,c(x))∈T

d (x,w+)− d (x,w−)

d (x,w+) + d (x,w−)
, (2)
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where w+ is the closest prototype to x of the correct class c (x) with respect to d and w− is the
closest prototype to x of an incorrect class. The expression µ (x, c (x)) ∈ [−1, 1] is called the relative
distance difference and returns negative values if and only if x is correctly classified.

Generalized tangent learning vector quantization The Generalized Tangent LVQ (GTLVQ)
algorithm is a version of GLVQ where a tangent distance is used [62]. The prototypes in GTLVQ are
defined as elements of affine subspaces of the data space X = Rn. In other words, we can consider
GTLVQ as an NPCs with infinitely many prototypes, approximating variations within the classes.
The dissimilarity of a given data point x to the k-th affine subspace is measured in terms of the
smallest Euclidean distance dE :

min {dE (x, tk + Bkθ) | θ ∈ Rm} = dE
(
x, tk + BkB

T
k (x− tk)

)
, (3)

where Bk ∈ Rn×m is an m-dimensional orthonormal basis, tk ∈ Rn is a translation vector, and
tk + BkB

T
k (x− tk) determines the closest prototype at the k-th affine subspace. Given the number

of affine subspaces and the dimensionm, we optimize the bases Bk and translations tk by minimizing
Equation (2) with Equation (3) as the dissimilarity measure during training.

Robust soft learning vector quantization Robust Soft LVQ (RSLVQ) is a probabilistic version of
LVQ where the prototypes are assumed as centers in a Gaussian mixture model [63].2 The posterior
probability P (l | x) that an input x belongs to a certain class l ∈ C is computed by

P (l | x) =

∑
w:c(w)=l exp

(
−d2E (x,w)

)∑
w exp (−d2E (x,w))

. (4)

The prototypes are determined by minimizing the cross-entropy loss between the predicted probability
vector p (x) = (P (1 | x) , . . . , P (Nc | x))

T and the true probability vector (one-hot encoding) of a
labeled input (x, c (x)). Considering Equation (4), we observe that the calculation of the probabilities
follows a softmax squashing. Together with the cross-entropy loss, this makes the RSLVQ algorithm
highly similar to the design and training of classification layers in NNs.

4 Hypothesis margin maximization and adversarial robustness certification

In this section, we define the hypothesis margin for NPCs and derive some of its properties. For
instance, we show that the hypothesis margin can be easily computed, lower bounds adversarial
perturbations, and can be optimized during training. We refer the reader to Section A of the
supplementary material for a visualization of the defined concepts and their properties in R2.

4.1 Definition and calculation of the hypothesis margin

Margins are a common tool to measure the confidence of a classifiers decision. For example, the
sample margin—the distance of a sample to the closest decision boundary—is used in the optimization
of support vector machines. In the context of NPCs, the sample margin is defined as follows.

Definition 1 (sample margin). Given a setW of prototypes and a dissimilarity d. The sample margin
ofW with respect to a set S of inputs is the maximum radius r such that the following condition holds:
If we define a ball with radius r induced by d around each sample x of S, each point within a ball
has the same assigned class label as the center x of the ball. In symbols, we write margins (S,W).

As a decision boundary is implicitly defined by two prototypes of different classes, this margin
definition is cumbersome for NPCs. In particular, given two prototypes wi and wj of different
classes, a decision boundary is defined by those elements x ∈ X for which d (x,wi) = d (x,wj).
Therefore, depending on the dissimilarity d, the calculation of the decision boundary can be difficult.
The hypothesis margin offers an alternative and more suitable concept for NPCs.

2Compared to the other NPC methods, RSLVQ is a probabilistic version of a prototype-based classifier and
not an NPC according to our definition. However, for simplicity, we consider RSLVQ as NPC in the following
comparisons because it uses prototypes with fixed class labels and a dissimilarity. But note that it classifies and
trains according to a probabilistic approach.
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Definition 2 (hypothesis margin). Given a setW of prototypes and a dissimilarity d. The hypothesis
margin of W with respect to a set S of inputs is the maximum radius r such that the following
condition holds: If we define a ball with radius r induced by d around each prototype, every change
in the position of the prototypes within its ball does not change the class labels assigned to the inputs
of S . In symbols, we write marginh (S,W).

We assume in these definitions—and in general—that the class label assignments to S byW are
unambiguous and well-defined. This means that input samples do not lie on a decision boundary as
otherwise the class assignments would be ill-defined. Additionally, a ball is always assumed as an
open set. With the class assignments considered as unambiguous, this is not a limitation.

With the next theorem, we provide a formula to compute the hypothesis margin of a sample using
only one additional floating-point operation after the inference of the NPC. This theorem is valid for
seminorms and, thus, holds for all NPCs where the dissimilarity is induced by a seminorm.

Definition 3 (seminorm). Given a vector space V over a field F of the real or complex numbers, a
seminorm ‖·‖ is a function ‖·‖ : V −→ R that satisfies the following conditions for all x,y ∈ V and
α ∈ F : ‖x‖ ≥ 0 (nonnegativity); ‖αx‖ = |α| ‖x‖ (absolute homogeneity); ‖x + y‖ ≤ ‖x‖+ ‖y‖
(triangle inequality).

Theorem 1. Let the data space X be a vector space over a field of the real or complex numbers,
d (x,w) = ‖x−w‖ be a dissimilarity induced by a seminorm ‖·‖, and x ∈ X be an input. Then,
the hypothesis margin of the setW of prototypes with respect to x can be computed by

marginh ({x} ,W) =
1

2
(‖x−w∗‖ − ‖x−w∗‖) , (5)

where w∗ denotes the closest prototype to x and w∗ denotes the closest prototype to x with a different
class label than the class label of w∗.

A proof of the theorem can be found in the supplementary material Section B. Based on this theorem,
we have a surprisingly simple rule to compute the hypothesis margin after the inference with only
one additional floating-point operation and, therefore, in constant time.

4.2 Hypothesis margin lower bounds the adversarial perturbation

Given an input sample x ∈ X with the class label c (x), an adversarial example x̃ of the sample
x is defined by an adversarial perturbation δ of x such that x̃ = x + δ is a point on the decision
boundary or in the classification region of a different class than c (x). Frequently, the computation of
an adversarial perturbation is treated as an optimization problem by searching for a perturbation with
minimum magnitude:

min
δ
‖δ‖ such that c∗W (x̃) 6= c (x) and x̃ = x + δ ∈ X . (6)

We should note that the magnitude of the adversarial perturbation is measured in terms of a seminorm
‖·‖ and that the adversarial example has to be an element of the input space X . Sometimes additional
conditions are placed upon the adversarial example (e. g., it has to be a sample of a certain class, an
element of a subset of X , etc.). Frequently, the optimization task of Equation (6) is intractable and,
hence, the optimal perturbation can only be approximated. A procedure that generates adversarial
examples is called an adversarial attack. An adversarial attack that only creates adversarial examples
with a maximum perturbation ‖δ‖ less than or equal a given bound ε > 0 is called ε-limited
adversarial attack.

The next theorem and corollary provide a statement about the relation between the sample and the
hypothesis margin—see Section C of the supplementary material for the proofs.

Theorem 2. Let the data space X be a vector space over a field of the real or complex numbers,
d (x,w) = ‖x−w‖ be a dissimilarity induced by a seminorm ‖·‖, and S be a set of inputs. Then,
the hypothesis margin of W with respect to S yields a lower bound on the sample margin of W with
respect to S:

marginh (S,W) ≤ margins (S,W) . (7)

Corollary 1. Given a labeled data point (x, c (x)) that is correctly classified by an NPC according
to Theorem 2 and a corresponding adversarial perturbation δ that changes the assigned class label.
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Then, the following inequality is true and has tight bounds (existence of data points for which the
equality is true):

marginh ({x} ,W) ≤ margins ({x},W) ≤ ‖δ‖ . (8)

A direct result of this corollary is that we can use the hypothesis margin to reject adversarial examples
with perfect recall during inference. Similar to Wong and Kolter [40, Corollary 2]: If a sample x has
a hypothesis margin greater than a certain threshold ε, then there exists no original sample that can be
perturbed with an ε-limited adversarial attack such that its classification changes. Thus, x is certified
to be not an adversarial example. In Section 5, we investigate the related false rejection rate.

4.3 Hypothesis margin maximization leads to adversarially robust models

We can now define a signed version of the hypothesis margin that incorporates a given class label.
Definition 4 (signed hypothesis margin). Given a labeled input sample (x, c (x)) and a setW of
prototypes. The signed hypothesis margin of an input sample is

marginch (x, c (x) ,W) =

{
marginh ({x} ,W) if x is correctly classified,
−marginh ({x} ,W) otherwise.

(9)

Note that based on Theorem 1, the signed hypothesis margin is lower bounded by the absolute
distance difference4 (x):

4 (x) =
∥∥x−w−

∥∥− ∥∥x−w+
∥∥ ≤ 2 ·marginch (x, c (x) ,W) , (10)

where the equality holds if w+ is equal to w∗ or w∗ (see Equation (2) for the definition of w+ and
w−). Given a labeled test dataset T and a setW of prototypes—based on Equation (10)—we can
calculate an upper bound on the robust test error under ε-limited adversarial attacks by

errorε (T ,W) =
# {(x, c (x)) ∈ T | ‖x−w−‖ − ‖x−w+‖ ≤ 2ε}

#T
. (11)

Therefore, by maximizing 4 (x), we maximize the number of correctly classified samples with a
large margin. Moreover, by Corollary 1, we can say that maximizing4 (x) maximizes the robustness
against adversarial examples or, in other words, minimizing −4 (x) maximizes the adversarial
robustness. Furthermore, the expression −4 (x) is, in fact, a triplet loss. Consequently, to optimize
an NPC for attacks less than ε-limited adversarial attacks one might optimize

1

#T
∑

(x,c(x))∈T

ReLU
(∥∥x−w+

∥∥− ∥∥x−w−
∥∥+ 2ε

)
. (12)

How does this result apply to the realizations proposed in Section 3? The result above states that as
long as we optimize an NPC with a triplet loss, the NPC becomes adversarially robust. However,
it is also known that optimizing an NPC with a triplet loss could lead to instabilities in training,
which is the reason for the normalization in Equation (2). This normalization impacts the trade-off
between large and small margins, but the loss still performs a margin maximization and optimizes for
adversarial robustness. Additionally, this result remains true if squared seminorms are used to avoid
the possible computation of the square root because the following holds:∥∥x−w+

∥∥2 − ∥∥x−w−
∥∥2 =

(∥∥x−w+
∥∥+

∥∥x−w−
∥∥) (∥∥x−w+

∥∥− ∥∥x−w−
∥∥) .

Consequently, we can expect that GLVQ and GTLVQ models become adversarially robust during
training. In contrast, due to the softmax squashing and the cross-entropy loss, we cannot guarantee
that RSLVQ models are robust against adversarial attacks.

5 Experiments

In order to verify the presented theoretical results, we performed an experimental analysis on the
MNIST [64] and CIFAR-10 [65] datasets. By training several NPCs, we show that the certificate
provided by Equation (11) is tight and applies to different Lp-norms. We compare the certificate
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Table 1: Comparison of NPCs trained with the L∞-norm against state-of-the-art methods. Dashes
“–” indicate that the quantity is not calculable or reported.

Dataset Class Model CTE [%] LRTE [%] URTE [%]

MNIST
ε = 0.3

C
er

tif
y GLVQ (128 ppc) 3.66 16.39 20.58

RSLVQ (128 ppc) 1.70 100.00 –
RT [50, Table 3] 2.68 12.46 12.46

CAP [12, Table 2 “Small”] 14.87 – 43.10

V
er

if
y RS [39, Table 3 “RS+”] 2.67 7.95 19.32

IBP [33, Table 4] 1.66 6.12 8.05

CIFAR-10
ε = 8/255

C
er

tif
y GLVQ (64 ppc) 59.35 79.54 79.62

RSLVQ (128 ppc) 54.71 99.04 –
RT [50, Table 3] 58.46 74.69 74.69

CAP [12, Table 2 “Resnet”] 71.33 – 78.22

V
er

if
y RS [39, Table 3 “RS+”] 59.55 73.22 79.73

IBP [33, Table 4] 50.51 65.23 67.96

with other methods for guaranteed robustness to highlight that NPCs have comparable guaranteed
robustness against adversarial attacks. Particularly, the robust NPCs outperform all other methods in
terms of the computational complexity for deriving the certificate. Based on this property, we show
that NPCs are the first methods able to perform “real-time” adversarial rejection during inference.

For the L∞-norm, we compare GLVQ and RSLVQ with ReLU Stability training (RS) [39], Interval
Bound Propagation (IBP) [33], Robust Trees (RT) [50], and Convex outer Adversarial Polytope
(CAP) [12]. Out of these four, CAP and RT are certification methods. IBP and RS are robustification
approaches analyzed by a verification approach.3 For the L2-norm, we compare GLVQ and GTLVQ
with CAP, Stability Training with Noise (STN) [49], and randomized Smoothing (Smooth) [18].
Except for RT, all benchmark methods are based on NNs. Unless otherwise stated, all NPCs are
trained by optimizing their respective loss function with stochastic gradient descent, see Section 3.
We report the number of prototypes per class (ppc) and the subspace dimension m in the tables.

In Table 1 and Table 2, the results of the comparison are presented. We report the Clean Test Error
(CTE) and an Upper bound on the Robust Test Error (URTE). For the L∞-norm, see Table 1, we
also present a Lower bound on the Robust Test Error (LRTE), obtained using the Projected Gradient
Descent (PGD) attack [41], and compare NPCs with certification and verification methods. Both
LRTE and URTE are evaluated regarding ε-limited adversarial attacks—for example, for NPCs, the
URTE regarding a certain ε is calculated by Equation (11). The ε’s are selected in accordance with
reported results in the literature. To compare space and time complexity of the certification methods,
we present the number of trainable parameters (#param.) and the number of forward passes4 (forw.
pass.) required to certify an input in the L2-norm setting, see Table 2—all methods presented there
are certification methods. Further details about the experimental setting, together with additional
results, can be found in the supplementary material Section D and Section E. Moreover, besides the
evaluation on image datasets, we provide in the supplementary material Section F an evaluation and
comparison of NPCs with robust tree-based methods on tabular data. The source code for training
and evaluation is available at https://github.com/saralajew/robust_NPCs.

Results of the comparison As expected, there is a large difference in robustness between the NPCs
trained with a triplet loss (GLVQ and GTLVQ) and those trained with a different loss (RSLVQ), see
Table 1. In addition to not being able to provide a guarantee, RSLVQ is not empirically robust—as
shown by the trivial LRTE. GLVQ and GTLVQ, on the other hand, do provide a nontrivial robustness
certificate comparable to, or even better than, the results of an NN trained with CAP as presented
in Table 1 and Table 2. In combination with the small gap between LRTE and URTE in Table 1,

3For clarification, IBP also provides a certificate (see Table 3 in the referenced publication), but we refer
to the robustness results achieved by a verification approach to compare with strong adversarial robustness
results—note Footnote 4 in the referenced publication regarding possible overestimation of the reported errors.

4The CAP certificate is calculated using a dual network. Based on a discussion with the authors, we found
that the number of forward passes in the full network can be approximated by the presented lower bounds.
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Table 2: Comparison of NPCs trained with the L2-norm against state-of-the-art certification methods
based on NNs. Values denoted with ∗ were estimated from figures from the original publication.
GTLVQ† was trained with the loss function from Equation (12) with an ε value of 1.58.

Dataset Model CTE [%] URTE [%] Forw. pass. #param.

MNIST
ε = 1.58

GLVQ (256 ppc) 4.19 65.61 1 2.0 M
GTLVQ† (10 ppc, m = 12) 2.92 55.32 1 1.0 M
CAP [12, Table 4 “Large”] 11.88 55.47 ≥ 749 2.0 M

STN [49, Table 1] 1.10 31.00 100 0.7 M

CIFAR-10
ε = 36/255

GLVQ (128 ppc) 51.41 61.90 1 3.9 M
GTLVQ (1 ppc, m = 100) 40.53 55.96 1 3.1 M

CAP [12, Table 2 “Resnet”] 38.80 48.04 ≥ 3073 4.2 M
STN [49, Table 1] 19.50 34.40 100 1.4 M

Smooth [18, Figure 6 top, 0.12] 18∗ 27∗ 100100 1.7 M
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Figure 1: Different results on the MNIST test dataset of GLVQ models trained with the L∞-norm.
Left: URTE after training with different losses. Middle: Evolution of CTE, GLVQ loss, and URTE
(ε = 0.3) during training. Right: Ratio of falsely rejected samples by the hypothesis margin.

this implies that the bound based on the hypothesis margin is not only formally but also empirically
tight. However, the results from the same table show that the robust NPCs do not improve over the
other models trained for high robustness but are reasonably close in terms of the URTE. Compared to
current state-of-the-art robustness certification methods based on randomized smoothing (STN and
Smooth) presented in Table 2, there is a considerable deficit in terms of URTE. However, it must
be noted that these methods are not deterministic and require extensive sampling to compute the
certificate (and prediction). To illustrate, Smooth [18, Section 4] takes 15 seconds to certify a sample
from CIFAR-10, while GLVQ certifies the entire test dataset during this time. This difference is also
depicted in Table 2 by the number of forward passes needed to certify a single input.

Some notes on training adversarially robust NPCs We considered two triplet losses for training
GLVQ and GTLVQ: the ReLU clipped absolute distance difference loss of Equation (12) and the
GLVQ loss of Equation (2). While the ReLU loss optimizes for predetermined ε in ε-limited attacks,
the GLVQ loss does not. Despite the former being more similar to other certification methods, we
found that using the GLVQ loss often results in the highest guaranteed robustness for almost all ε’s,
as shown in Figure 1 (left). Second, all NPCs are trained without early stopping based on plateauing
CTE. Optimizing a triplet loss is directly tied to maximizing the guaranteed robustness. Hence, as
long as the triplet loss is improving, the guarantee improves too, see Figure 1 (middle). This is an
argument against early stopping based on plateauing CTE. Crucially, the URTE can be logged during
training as it only requires one extra floating-point operation per sample.

Real-time adversarial rejection As stated in Section 4.2, the hypothesis margin can be used to
reject adversarial examples with perfect recall. While this view on guaranteed adversarial robustness
was voiced before, it suffered from the computational overhead of certifying a sample. With the
hypothesis margin calculable with one floating-point operation after inference, it does not suffer
from the same problem. To evaluate the rejection strategy, we apply it to the MNIST test dataset
and the GLVQ model trained with the L∞-norm. The false positive rate for different values of ε is
given in Figure 1 (right). Note that the adversarial rejection strategy is guaranteed to provide perfect
recall, hence, investigating only the falsely rejected sample suffices. We find that with an ε of 0.3, the
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adversarial rejection strategy falsely rejects only 20 % of all samples. To emphasize, this is achieved
without excessive overhead and perfect recall. Further investigation of the falsely rejected samples in
supplementary Section E.3 shows that they are semantically close to the hypothetical original class.
For example, most rejected samples from the class 9 are close to a prototype of the class 4.

6 Discussion

The experimental evaluation presents us with the following results: First of all, training NPCs with a
triplet loss is an effective robustification strategy. The resulting models are empirically robust and
their guaranteed robustness is tight, nontrivial, improves over other certification methods, and yields
comparable performance even when compared with verification methods. More importantly, we
showed a large difference in computational overhead to derive the guarantees between NN certifiers
(verifiers) and the NPC certification.

There are also downsides to the work presented that we would like to clarify here. First, the method
does not improve over state of the art and we expect issues in scaling to high dimensional datasets like
ImageNet [66] without a proper feature engineering—this is a common challenge in NPCs. However,
if resources and time are scarce, none of the current state-of-the-art methods are applicable. Hence,
we do not consider not improving over these methods as a critical limitation. A second problem is
that, in principle, it would be desired to guarantee robustness for several seminorms with one NPC.
Unfortunately, the presented certificates are always related to the seminorm used to classify the data.
But if we train a robust NPC with a fixed Lp-norm, Hölder’s inequality provides a simple bound
on the size of adversarial perturbations δ regarding other Lq-norms: ‖δ‖q ≥ marginh ({x} ,W) if

q ≤ p and ‖δ‖q ≥ n
1
q−

1
p marginh ({x} ,W) otherwise. Preliminary results regarding this can be

found in the supplementary material Section E.2.

We close this section with some concluding remarks considering the importance of the generality of
the results as they hold for an arbitrary seminorm. A common subset of NPCs are those that use an
adaptive dissimilarity measure—for example, GMLVQ and LMNN [19] with a 1-nearest neighbor
rule. Both methods use the same dissimilarity measure: the quadratic form d (x,w) = ‖Q (x−w)‖2
with Q ∈ Rm×n. The matrix Q can be considered to encode the feature relevance with respect to the
classification task, which is an important characteristic—for example, it is used to identify relevant
biomarkers for malignancy of adrenal tumors [67, 68]. Based on the presented theory, both methods
are hypothesis margin maximizers regarding the seminorm ‖x‖Q = ‖Qx‖2 since both optimize
a triplet loss. Therefore, we can expect strong guaranteed robustness with respect to attacks that
optimize ‖δ‖Q. However, being robust regarding ‖δ‖Q optimized attacks does not necessarily imply
robustness regarding Lp-norms. Hence, in commonly used empirical robustness evaluation settings,
adaptive measure NPCs might seem to be non-robust—as empirically observed for GMLVQ [26].

7 Conclusion and outlook

In this work, we presented a theory to robustify and certify NPCs with respect to an arbitrary
seminorm. To the best of our knowledge, this is the most universal and practically applicable
approach with nontrivial robustness guarantees. Based on the hypothesis margin, we have proven
an efficiently calculable and tight lower bound on the robust test error of an NPC. The numerical
evaluation of this bound showed that the robustness guarantee of NPCs surpassed other NN-based
certification methods and is close to verification methods. At the same time, it significantly improved
the computational complexity. Together with their inherent interpretability [20, 22], NPCs are a great
alternative for NNs in the adversarial setting and the superior choice when compute time is restricted.

To improve the presented results, we suggest the study of NPCs in the context of ensembles (similar to
RTs [50]) and cascade models [12]. In the previous section, we discussed how robustness guarantees
can be computed for various Lp-norms simultaneously. Since these guarantees are often too weak in
practice, future work should examine whether the results of Croce and Hein [13] can be generalized to
NPCs. Additionally, further studies should cover whether the idea of the hypothesis margin—varying
parameters instead of inputs to derive a calculable margin—can be extended to NNs.
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Broader impact

With the more widespread application of machine learning methods in our everyday life, the potential
negative impact of adversarial attacks on society increases. As discussed in the introduction, neither
current empirical robustness methods nor certification or verification methods are sufficient to
eliminate this problem. For applied machine learning research in medium to large companies, the
current state-of-the-art methods for certifying or verifying adversarial robustness require a too large
investment in compute time to truly incorporate the guaranteed robustness of a model as a formal
requirement for the productization of machine learning. The theoretical robustness bound presented
in this work can however be parallelized with the accuracy evaluation of a model and can therefore be
easily incorporated in the already existing evaluation pipelines. With the upper bound on the robust
test error calculable in constant time, it is even possible to incorporate the certification of an NPC as
a metric in the training procedure—outputting the certified adversarial robustness after each epoch. A
potential application of the reduced impact on inference time is also discussed in Section 5.

Although deep neural networks frequently deliver excellent performances, the interpretability of
those networks is difficult [69]. Recently, this has led to a wide line of research into the development
of interpretable models, particularly for technical and medical applications [23, 24, 70, 71]. Having
this in mind, the consideration of NPCs, as one of the most prominent interpretable paradigms [22],
is of general interest. However, to ensure that interpretable models can be used without unwanted
negative side effects, it is important to investigate their properties to the same extent as has been done
for non-interpretable models. The investigation of the guaranteed adversarial robustness of NPCs is,
therefore, a crucial step in this transition. In addition to this, the positive definiteness of norm-based
distances can impose a significant restriction on the dissimilarity measure used in NPCs. By showing
that this is not a requirement for constructing an adversarially robust NPC, this restriction is removed.
Hence, more freedom is obtained in the selection of dissimilarity measures—for example, adaptive
dissimilarity measures, as discussed in Section 6. This allows the application of NPCs as interpretable
models in a wider variety of use cases.

To summarize, we foresee two potential areas where the theoretical work presented here could have a
direct and lasting impact on society. First, with the upper bound on the robust test error calculable
in constant-time, the certification method presented here is more suitable for direct incorporation in
the development of machine learning methods. This has been extensively discussed and evaluated in
previous sections. Second, as a side effect, with NPCs now proven to be robust against adversarial
attacks, they are better suited and more widely applicable as an interpretable alternative to NNs in
real-world applications.
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Figure 2: Visualization of the defined margins for a GLVQ model with the Euclidean distance in R2.
The softly colored dots are the training samples from the class “orange” or “blue”. The fully colored
dot is a new sample that has to be classified by the model. The two stars represent the prototypes and
thus the model weights trained by the GLVQ algorithm. The solid black line is the resulting decision
boundary. Left: The final weight configuration of the trained GLVQ model including the margins
(dashed circles) with respect to the given data sample. Right: The perturbed weight configuration that
changes the assigned class label of the new data sample. Note that the prototypes have been shifted
by a magnitude equal to the hypothesis margin.

A Visualization of the hypothesis and sample margins

In Figure 2, we visualize the effect of changing the weights of a GLVQ model by a magnitude equal
to the hypothesis margin (with respect to a given sample). We note that if we span a ball with a radius
equal to the hypothesis margin around the prototypes, the prototypes can be placed at an arbitrary
position inside these balls without changing the assigned class label of the sample. Likewise, as the
right visualization shows, we can systematically find a position for the prototypes such that they have
been shifted by a magnitude equal to the hypothesis margin such that the prototypes assign a different
class label to the given sample.

In the next sections, we use the observation that the prototypes have been shifted directly towards or
away from the data point to formally prove the calculation of the hypothesis margin and the relation
between the hypothesis and sample margin.

B Proof of Theorem 1: Calculation of the hypothesis margin

Theorem. Let the data space X be a vector space over a field of the real or complex numbers,
d (x,w) = ‖x−w‖ be a dissimilarity induced by a seminorm ‖·‖, and x ∈ X be an input. Then,
the hypothesis margin of the setW of prototypes with respect to x can be computed by

marginh ({x} ,W) =
1

2
(‖x−w∗‖ − ‖x−w∗‖) , (13)

where w∗ denotes the closest prototype to x and w∗ denotes the closest prototype to x with a different
class label than the class label of w∗.

The proof is based on the ideas used by Crammer et al. [56].

Proof. The outline of the proof is as follows:

1. Given a setW of prototypes, we define a set Ŵ of shifted prototypes in which the prototypes
are shifted to an arbitrary position within the corresponding balls of radius

r =
1

2
(‖x−w∗‖ − ‖x−w∗‖) . (14)
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Using this set of shifted prototypes, we prove that

marginh ({x} ,W) ≥ r.

2. For an arbitrary but sufficiently small ε > 0, we define a second set Ŵ of shifted prototypes
in which the prototypes are shifted by a vector of length r + ε

2 . Based on this set, we prove
that it assigns a different class label to the input x. Consequently, we can conclude that

marginh ({x} ,W) ≤ r.

Both steps together prove the theorem.

We use the following notations in the proof: Let x, w∗, and w∗ be defined as in the theorem, w
be an arbitrary prototype ofW , w� be an arbitrary prototype ofW with a class label different than
c (w∗), and r be defined as in Equation (14). With the dissimilarity induced by a seminorm, we use
the notations d (x,w) and ‖x−w‖ interchangeably.

Step 1: Let Ŵ be a set of shifted prototypes constructed by repositioning each prototype inW
to an arbitrary position within its induced ball of radius r. Formally, this is realized by defining an
arbitrary function s :W → X such that ‖s (w)‖ < r. The shifted prototype to w is obtained by

ŵ (w) = w + s (w) .

All shifted prototypes combined, provide the set Ŵ of shifted prototypes.

Given an arbitrary prototype w, we conclude that the dissimilarity between the shifted and the
non-shifted prototype is always less than r:

d (w, ŵ (w)) = ‖w − ŵ (w)‖ = ‖s (w)‖ < r.

Using the triangle inequality, we can state that the dissimilarity between a shifted prototype and the
input x is less than d (x,w) + r:

d (x, ŵ (w)) ≤ d (x,w) + d (w, ŵ (w)) ,

< d (x,w) + r. (15)

Similarly, using the triangle inequality again, we can state that

d (x, ŵ (w)) ≥ d (x,w)− d (w, ŵ (w)) ,

> d (x,w)− r. (16)

Given a prototype w� ∈ W with a different class label than c (w∗), it follows that

d (x,w�) ≥ d (x,w∗) .

Using Equation (16), we conclude

d (x, ŵ (w�)) > d (x,w�)− r ≥ d (x,w∗)− r. (17)

By the definition of r, see Equation (14), it holds that

d (x,w∗) + r = d (x,w∗) +
1

2
(d (x,w∗)− d (x,w∗)) ,

= d (x,w∗)− r. (18)

Now, combining Equation (15) for the shifted prototype ŵ (w∗) with Equation (18) and Equation (17),
we obtain

d (x, ŵ (w∗)) < d (x,w∗) + r = d (x,w∗)− r < d (x, ŵ (w�)) .

With w� being an arbitrary prototype ofW with a class label different than c (w∗), this states that
each shifted prototype ŵ (w�) has a larger dissimilarity than ŵ (w∗) to the input sample x. In other
words, the closest shifted prototype in Ŵ to x has the same class label as the closest prototype in
W—in symbols, c∗Ŵ (x) = c∗W (x). Since the shift of the prototypes ofW to the new positions in Ŵ
was arbitrary, we conclude that the hypothesis margin of W is greater than or equal to r.
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Step 2: For an arbitrary ε > 0 that is less than or equal to ‖x−w∗‖, we define a new set Ŵ of
shifted prototypes ofW by shifting each prototype by a magnitude of r + ε

2 . Therefore, we relocate
the prototypes inside balls of size r + ε. For each prototype w ∈ W , we define a unit vector with
respect to ‖·‖ by

z (w) =

{
u if ‖x−w‖ = 0,
x−w
‖x−w‖ otherwise,

(19)

where u is an arbitrary unit vector. Because the setW of prototypes assigns a class label unambigu-
ously to x, the seminorm in Equation (19) vanishes only for prototypes of the class c (w∗).

The set Ŵ of shifted prototypes is defined by the shifted prototypes ŵ (w) according to the following
equation:

ŵ (w) =

{
w +

(
r + ε

2

)
z (w) if c (w) 6= c (w∗) ,

w −
(
r + ε

2

)
z (w) otherwise.

Keeping in mind the absolute homogeneity of a seminorm, we can state that for each prototype
ŵ (w) ∈ Ŵ that has the same class label as w∗, the equality

‖x− ŵ (w)‖ =

∥∥∥∥(x−w)

(
1 +

r + ε
2

‖x−w‖

)∥∥∥∥ ,
=

(
1 +

r + ε
2

‖x−w‖

)
‖x−w‖ ,

= ‖x−w‖+ r +
ε

2
(20)

holds. Note that this equation is also valid if ‖x−w‖ = 0: From the triangle inequality, it follows
that

‖x− ŵ (w)‖ =
∥∥∥(x−w) +

(
r +

ε

2

)
u
∥∥∥ ,

≤ ‖x−w‖+
∥∥∥(r +

ε

2

)
u
∥∥∥ ,

≤ r +
ε

2
. (21)

Similarly, the triangle inequality implies that the seminorm of
(
r + ε

2

)
u is bounded by ‖x− ŵ (w)‖:∥∥∥(r +

ε

2

)
u
∥∥∥ =

∥∥∥(r +
ε

2

)
u + (x−w)− (x−w)

∥∥∥ ,
≤
∥∥∥(x−w) +

(
r +

ε

2

)
u
∥∥∥+ ‖x−w‖ ,

≤ ‖x− ŵ (w)‖ .

Therefore, we obtain
‖x− ŵ (w)‖ ≥ r +

ε

2
. (22)

The combination of Equation (21) and Equation (22) yields equality:

‖x− ŵ (w)‖ = r +
ε

2
.

Consequently, Equation (20) is valid for all prototypes ŵ (w) with the same class label as w∗.

Analogously, if ŵ (w) ∈ Ŵ has a different class label than c (w∗), the seminorm of x − ŵ (w)
becomes

‖x− ŵ (w)‖ =

∥∥∥∥(x−w)

(
1−

r + ε
2

‖x−w‖

)∥∥∥∥ ,
=

∣∣∣∣1− r + ε
2

‖x−w‖

∣∣∣∣ ‖(x−w)‖ ,

=
∣∣∣‖x−w‖ − r − ε

2

∣∣∣ . (23)
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With w∗ being the closest prototype with a class label other than c (w∗) and ε less than or equal to
‖x−w∗‖, it follows that

‖x−w�‖ − r −
ε

2
≥ ‖x−w�‖ −

1

2
(‖x−w∗‖ − ‖x−w∗‖)− 1

2
‖x−w∗‖ ,

≥ ‖x−w�‖ − ‖x−w∗‖+
1

2
‖x−w∗‖ ,

and, hence, we obtain
‖x−w�‖ − r −

ε

2
≥ 0.

This implies that the argument of the absolute value function of Equation (23) is always positive so
that

‖x− ŵ (w)‖ = ‖x−w‖ − r − ε

2
(24)

for all prototypes with a different class label than c (w∗).

Using Equation (24) for the shifted prototype ŵ (w∗), we get

‖x− ŵ (w∗)‖ = ‖x−w∗‖ −
1

2
(‖x−w∗‖ − ‖x−w∗‖)− ε

2
,

=
1

2
(‖x−w∗‖+ ‖x−w∗‖)− ε

2
. (25)

Similarly, using Equation (20) for the shifted prototype ŵ (w∗), we obtain

‖x− ŵ (w∗)‖ = ‖x−w∗‖+
1

2
(‖x−w∗‖ − ‖x−w∗‖) +

ε

2
,

=
1

2
(‖x−w∗‖+ ‖x−w∗‖) +

ε

2
. (26)

Comparing Equation (25) with Equation (26) and with ε being positive, we conclude that
‖x− ŵ (w∗)‖ < ‖x− ŵ (w∗)‖

holds. Since this implies that ŵ (w∗) is the closest prototype in the set Ŵ , the set Ŵ of shifted
prototypes assigns the class label of c (w∗) to x and thus labels x other than W—in symbols,
c∗Ŵ (x) 6= c∗W (x). Therefore, the hypothesis margin must be less than r + ε because we constructed

Ŵ by means of prototype shifts with a magnitude of size r + ε
2 . With ε > 0 arbitrarily chosen, it

follows that the hypothesis margin of W is less than or equal to r.

Now, combining the final result of Step 1 with the final result of Step 2, we obtain that the hypothesis
margin is exactly r.

C Proof of Theorem 2: Relation to the sample margin

Theorem. Let the data space X be a vector space over a field of the real or complex numbers,
d (x,w) = ‖x−w‖ be a dissimilarity induced by a seminorm ‖·‖, and S be a set of inputs. Then,
the hypothesis margin of W with respect to S yields a lower bound on the sample margin of W with
respect to S:

marginh (S,W) ≤ margins (S,W) .

The proof is based on the ideas used by Crammer et al. [56].

Proof. We prove the theorem by the following steps:

1. Given a setW of prototypes and an arbitrary radius r that fulfills the requirement
margins (S,W) < r, (27)

we define a set Ŵ of shifted prototypes such that each prototype is shifted by a vector of
length r.

2. We prove that this set Ŵ of prototypes labels the inputs of S differently thanW so that
the hypothesis margin must be less than or equal to r. Because the radius r was arbitrarily
chosen, it follows that the hypothesis margin must be less than or equal to the sample margin,
which proves the theorem.
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Step 1: Let r be an arbitrary radius such that Equation (27) holds. Because the sample margin
margins (S,W) is less than r, there exists an element x of S such that there exists another element
x̄ of X with the distance

d (x, x̄) = ‖x− x̄‖ = r (28)
that has an assigned class label different than the class label assigned to x—in symbols, c∗W (x) 6=
c∗W (x̄). Because x and x̄ are labeled differently, the closest prototypes must have different class
labels too—we denote by w∗ the closest prototype to x and by w̄∗ the closest prototype to x̄.

Based on x and x̄, we define the set Ŵ of shifted prototypes ofW by shifting each prototype w ∈ W
to the position

ŵ (w) = w + x− x̄. (29)
Due to Equation (28), the magnitude of the applied shift to a prototype is exactly r:

d (w, ŵ (w)) = ‖w −w − x + x̄‖ = r. (30)

Step 2: By Equation (29), it follows that d (x̄,w) equals d (x, ŵ (w)):
d (x̄,w) = ‖x̄−x + x︸ ︷︷ ︸

=0

−w‖ = ‖x− (w + x− x̄)‖ = d (x, ŵ (w)) . (31)

Because w̄∗ is the closest prototype to x̄, the dissimilarity of x̄ to an arbitrary prototype w� ∈ W of
a class other than c (w̄∗) is larger:

d (x̄, w̄∗) < d (x̄,w�) . (32)
Combining Equation (32) and Equation (31), we conclude that

d (x̄, w̄∗) = d (x, ŵ (w̄∗)) < d (x, ŵ (w�)) = d (x̄,w�) ,

which implies that ŵ (w̄∗) must be the closest prototype to x regarding the set Ŵ of prototypes.
Therefore, the set Ŵ of prototypes assigns a different class label thanW to x—in symbols, c∗Ŵ (x) 6=
c∗W (x). Because all prototypes w ∈ W have been shifted by the magnitude r, see Equation (30),
the hypothesis margin must be less than or equal to r. Additionally, since this result holds for an
arbitrary r according to Equation (27), the hypothesis margin must be less than or equal to the sample
margin.

Corollary. Given a labeled data point (x, c (x)) that is correctly classified by an NPC according to
Theorem 2 and a corresponding adversarial perturbation δ that changes the assigned class label.
Then, the following inequality is true and has tight bounds:

marginh ({x} ,W) ≤ margins ({x},W) ≤ ‖δ‖ .

Proof. The inequality immediately follows from Theorem 2, Definition 1 of the sample margin,
and the requirement that an adversarial perturbation changes the assigned class label. Moreover,
by Definition 1 of the sample margin, the closest adversarial example is an element at a distance
margins ({x},W) to x. Therefore, the minimum of Equation (6) is exactly margins ({x},W)—
which implies the tightness of the first lower bound. The tightness of the lower bound

marginh ({x} ,W) ≤ margins ({x},W)

is proven by showing that there exists an element x ∈ X such that the hypothesis margin is greater
than or equal to the sample margin. Together with Equation (7) of the theorem, this implies equality
and the tightness of the bound.

If x is set to be equal to an arbitrary prototype w ∈ W , then the closest prototype w∗ to x is w.
Additionally, we denote by w∗ the closest prototype with a different class label than c (w∗). The
decision boundary between these two prototypes is defined by all elements x′ ∈ X that fulfill the
following criterion:

‖x′ −w∗‖ = ‖x′ −w∗‖ .
The vector x̄ defined as

x̄ = x +
1

2
(w∗ −w∗) ,

= w∗ +
1

2
(w∗ −w∗) ,

=
1

2
(w∗ + w∗) (33)
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satisfies this decision-boundary criterion. Hence, the sample margin must be less than or equal to the
dissimilarity from x to the element x̄ from Equation (33):

margins ({x},W) ≤ d (x, x̄) = ‖x− x̄‖ . (34)

On the other hand, the seminorm ‖x− x̄‖ is equal to the hypothesis margin, see Equation (5):

‖x− x̄‖ =

∥∥∥∥w∗ − 1

2
(w∗ + w∗)

∥∥∥∥ ,
=

1

2
‖w∗ −w∗‖ ,

=
1

2
(‖w∗ −w∗‖ − ‖w∗ −w∗‖) ,

=
1

2
(‖x−w∗‖ − ‖x−w∗‖) ,

= marginh ({x},W) . (35)

Combining Equation (34) and Equation (35), we conclude margins ({x},W) ≤ marginh ({x},W)
and together with Equation (7) the equality:

margins ({x},W) = marginh ({x},W) .

This proves the tightness of the second lower bound and, therefore, the corollary.

D Experimental setup

This section presents all the required information for reproducing the results of Section 5. Additionally,
we give a detailed explanation of how we selected the state-of-the-art methods.

D.1 Configuration, training, and evaluation of the selected NPCs

Model selection In the experimental evaluation in Section 5, we considered three different NPCs:
GLVQ, GTLVQ, and RSLVQ. All methods belong to the family of LVQ algorithms. We focused on
theses methods because they optimize the prototypes as fully adjustable parameters and not merely
select the prototypes from a given set of training points (e. g., k-nearest neighbors methods). By
having access to the full data space and not only the data samples, the methods usually achieve better
classification performances with fewer prototypes than prototype selection approaches. Below, we
give a brief rationale for why we selected the specific LVQ approaches for the presented comparison.

GLVQ From the large LVQ family, GLVQ is by far the most commonly used variant. Therefore, the
analysis of GLVQ provides results that are important for many applications. Moreover, the
GLVQ loss is the standard loss function to train other LVQ variants.

GTLVQ Compared to NNs, GTLVQ is the closest in terms of CTE and was shown to be robust
against adversarial attacks before [26]. Besides, GTLVQ generalizes LVQ to the case of an
infinite number of prototypes.

RSLVQ As RSLVQ is not trained using a triplet loss and violates the seminorm assumption, the
theorems discussed in Section 4 suggest that adversarial robustness cannot be guaranteed.
Including RSLVQ in the comparison, allows for validation of this statement. Additionally,
by being trained using the cross-entropy loss, RSLVQ is a variant of LVQ that is similar to
NNs.

Initialization The prototypes of the GLVQ and RSLVQ networks were initialized by computing
class-wise a k-means, where the number of means was equal to the number of prototypes in the
respective class. For GTLVQ, we applied the following standard initialization strategy: The translation
vectors are initialized by the same method as used for GLVQ. After that, we initialized each basis Bk

using the following procedure:

1. Determine all the training samples of the correct class for which tk is the closest prototype
vector in terms of the Euclidean distance. Hence, we consider tk as a prototype vector of an
ordinary LVQ approach and determine all the training samples that belong to the receptive
field of tk.
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Table 3: Configuration of the NPCs used in the evaluation. For GTLVQ, we report the number of
prototypes per class and the subspace dimension. Moreover, the ReLU loss for the GTLVQ model
refers to the loss of Equation (12).

Norm Model MNIST CIFAR-10
Loss Prototypes Loss Prototypes

L∞ GLVQ GLVQ 128 ppc GLVQ 64 ppc

– RSLVQ cross-entropy 128 ppc cross-entropy 128 ppc

L2 GLVQ GLVQ 256 ppc GLVQ 128 ppc
GTLVQ ReLU (ε = 1.58) 10 ppc, m = 12 GLVQ 1 ppc, m = 100

2. Compute the m eigenvectors that belong to the m largest eigenvalues of the estimated
covariance matrix over these training samples.

3. Use these m eigenvectors as initialization for Bk and orthonormalize the resulting matrix if
necessary.

Training We trained each method by optimizing the reported loss function. In the case of GLVQ
with the L2-norm and GTLVQ, we used the loss function with squared Euclidean distances. This
avoids the computation of the square root. As discussed at the end of Section 4, this still optimizes
for adversarially robust models.

Each method was trained for 1000 epochs without early stopping. The optimizer was Adam [72],
with the default setting of the KERAS framework, a batch size of 128, and an initial learning rate of
0.001. During training, we monitored the validation loss and automatically adjusted the learning rate
accordingly. If the validation loss did not decrease over 10 epochs, we reduced the learning rate by a
factor of 0.9.

The datasets were normalized to the unit interval. During training, we applied basic data aug-
mentations in the form of random shifts of up to ±2 pixels and random rotations of up to ±15
degrees.

Selected hyperparameters In Table 3, the hyperparameter settings for the NPCs are presented.
To determine the number of prototypes for GLVQ and RSLVQ, we performed a grid search where
we tested the following number of prototypes per class: 1, 2, 4, 8, 16, 32, 64, 128, and 256. The
final models have been selected by the smallest URTE for GLVQ and the smallest CTE for RSLVQ.
For GTLVQ trained on MNIST, we used the configuration reported by Saralajew et al. [26]. In
contrast, the CIFAR-10 model of GTLVQ was selected by the following strategy: We defined the
number of prototypes per class to be one and varied the subspace dimension from 1 to 256. For each
configuration, we initialized the model and calculated the training accuracy. The final model was
selected as the model where the usage of a higher subspace dimension showed no improvement of
the accuracy.

Additionally, we considered both the ReLU loss function, see Equation (12), and the GLVQ loss
function, see Equation 2, for GLVQ and GTLVQ, while we only considered the cross-entropy loss
for RSLVQ. The free parameter of the ReLU loss was always set to be equal to the ε of the ε-limited
attacks against which the model should be robust.

Configuration of the PGD attack In line with earlier work [33, 39], we used the PGD attack [41]
to evaluate the empirical robustness of NPCs. We ran the PGD attack for 200 iterations and used
random starts with Gaussian noise. For each sample, the worst-case adversary was selected from
three starts. We found no evidence that performing more than three random starts had a significant
effect on the reported LRTE.

Hardware and software frameworks used The implementation of the adversarial attack was
supplied by the Python FOOLBOX5 library (version 2.4.0). All models were implemented using the

5https://foolbox.readthedocs.io/en/v2.4.0/
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Python KERAS6 library (version 2.2.4) with TENSORFLOW7 back end (version 1.12.0). Evaluation
and training were performed on an NVIDIA Tesla V100 32 GB GPU. However, the inference time of
each model was obtained using an NVIDIA RTX 2080 Ti GPU. By using a commonly used GPU for
this purpose, we hope to make a simple comparison possible.

D.2 Selection criteria for the state-of-the-art methods

Several important considerations were made when selecting the state-of-the-art certification and
verification methods for the comparison. First of all, we wanted to make a comparison with the same
number of verification and certification methods. Both approaches play an important role in the
research of guaranteed adversarial robustness and therefore require equal consideration. However, as
we explicitly focus on fast computation of the guaranteed robustness, a stronger focus was placed on
certification methods when considering L2-norm limited attacks. The STN and Smooth methods for
certification were selected based on their current state-of-the-art status among certification approaches.
As already mentioned, these methods are not deterministic and require extensive sampling. Therefore,
the derived certificates differ strongly from the proposed adversarial robustness certificates of NPCs.
For this reason, CAP was included as a method more similar to the certification of NPCs. Both
IBP and RS were chosen as verification methods because of their focus on fast verification and
robustification. RT was chosen to add a second example of guaranteed adversarial robustness outside
of NNs in addition to NPCs.

For the comparison of the results, we decided to present for each method the model with the best
guaranteed robustness. We chose not to consider ensemble or cascade models (apart from RT) because
these models accept a computational overhead for better performances. Considering our scope of fast
adversarial robustness certification, we deemed this inappropriate. We presented the CTE, LRTE (if
available), and URTE for each method, as reported in the respective papers. This was made possible
by the widespread use of the PGD attack as a measure of empirical robustness.

E Additional experimental results for Section 5

In the following, we present additional experimental results for Section 5, including an evaluation
of the presented NPCs for other ε-limited adversarial attacks, an analysis of the NPCs robustness
regarding several norm-based adversarial attacks, and an extended discussion of the presented
adversarial rejection strategy results.

E.1 Extended robustness evaluation for Section 5

In this section, we extend the robustness evaluation presented in the comparison of Section 5. For the
L∞-norm, we present results for additional threshold values ε, see Table 4. The models were trained
and selected like the models presented in the main results. We also include the verification and LRTE
results for CAP provided by Gowal et al. [33] for the evaluation of IBP. These results are denoted as
CAP-IBP. Furthermore, we included the results of evaluating a 1-nearest neighbor classifier (denoted
as 1-NN) by Wang et al. [58], see L∞-norm with ε equal to 0.1.8 For the L2-norm, we extend the
main comparison with RSLVQ, see Table 5.

In contrast to adversarial examples under the L∞-norm, no real standardized attack for evaluating the
empirical robustness under the L2-norm is available. For the L∞-norm, the PGD attack plays this
role. To provide some insights into the empirical robustness of NPCs trained to optimize L2-norm
adversarial robustness, we present in Table 5 the results of an evaluation using the Carlini & Wagner
(C&W) attack [14]. There, we present the LRTE obtained with the C&W attack for the GLVQ,
RSLVQ, and GTLVQ models and compare it with the reported results of the STN certification
method.

We used the C&W attack implementation of the Python FOOLBOX library (version 2.4.0). To deter-
mine the trade-off parameter—determining the trade-off between misclassification and perturbation
distance in the C&W attack algorithm—a binary search with 10 steps was performed. The attack

6https://www.keras.io/
7https://www.tensorflow.org/
8Note that the LRTE is not obtained by the PGD attack.
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Table 4: Comparison of NPCs trained with the L∞-norm against state-of-the-art methods. Dashes
“–” indicate that the quantity is not calculable or reported.

Dataset ε Class Model CTE [%] LRTE [%] URTE [%] Notes

M
N

IS
T

0.
1 C

er
tif

y GLVQ 3.66 6.42 6.67 GLVQ loss, 128 ppc
RSLVQ 1.70 93.97 – cross-entropy, 128 ppc
1-NN 3.41 27.06 27.06 [58, Table 3]
CAP 1.08 – 3.67 [12, Table 2 “Large”]

V
er

if
y CAP-IBP 1.08 2.89 3.01 [33, Table 4]

RS 1.32 4.87 5.66 [39, Table 3 “RS+”]
IBP 1.06 2.11 2.23 [33, Table 4]

0.
2 C

er
tif

y GLVQ 3.66 10.63 11.53 GLVQ loss, 128 ppc
RSLVQ 1.70 100.00 – cross-entropy, 128 ppc

V
er

if
y CAP-IBP 3.22 6.93 7.27 [33, Table 4]

RS 1.90 6.86 10.21 [39, Table 3 “RS+”]
IBP 1.66 3.90 4.48 [33, Table 4]

0.
3 C

er
tif

y GLVQ 3.66 16.39 20.58 GLVQ loss, 128 ppc
RSLVQ 1.70 100.00 – cross-entropy, 128 ppc

RT 2.68 12.46 12.46 [50, Table 3]
CAP 14.87 – 43.10 [12, Table 2 “Small”]

V
er

if
y CAP-IBP 13.52 26.16 26.92 [33, Table 4]

RS 2.67 7.95 19.32 [39, Table 3 “RS+”]
IBP 1.66 6.12 8.05 [33, Table 4]

C
IF

A
R

-1
0

2 /2
55 C

er
tif

y GLVQ 59.35 65.50 65.52 GLVQ loss, 64 ppc
RSLVQ 54.71 89.54 – cross-entropy, 128 ppc

CAP 31.72 – 46.11 [12, Table 2 “Resnet”]

V
er

if
y CAP-IBP 36.01 45.11 49.96 [33, Table 4]

RS 38.88 51.08 54.07 [39, Table 3 “RS+”]
IBP 29.84 45.09 49.98 [33, Table 4]

8 /2
55 C

er
tif

y GLVQ 59.35 79.54 79.62 GLVQ loss, 64 ppc
RSLVQ 54.71 99.04 – cross-entropy, 128 ppc

RT 58.46 74.69 74.69 [50, Table 3]
CAP 71.33 – 78.22 [12, Table 2 “Resnet”]

V
er

if
y CAP-IBP 71.03 78.14 79.21 [33, Table 4]

RS 59.55 73.22 79.73 [39, Table 3 “RS+”]
IBP 50.51 65.23 67.96 [33, Table 4]

used the Adam optimizer with a learning rate of 0.05 during the 1000 optimization steps, except for
RSLVQ, which ran for 3000 steps.

Results L∞-norm With respect to the additional ε values, the comparison sways in favor of the
NPCs for larger ε values as can be seen in Table 4 for the L∞-norm: For ε = 0.1 and ε = 0.2
on MNIST, the URTE of GLVQ is higher than the URTE of the certification method CAP and is
significantly higher than the robustness guarantees of the verification methods. This is no longer the
case for ε = 0.3, GLVQ now improves over CAP and is closer to verification methods with regard
to URTE. Since large ε-limited attacks are a more realistic attack model, we deem this to be an
advantageous behavior. For the CIFAR-10 dataset, the same trend is observable—regarding URTE,
GLVQ is closer to CAP and the verification methods for ε = 8/255 than for ε = 2/255.

The same holds for CAP-IBP concerning both the URTE and LRTE. Most notably, with ε = 0.3 on
MNIST, GLVQ outperforms CAP-IBP by a large margin in terms of LRTE. Despite being verified
using an exact method, this model was still trained to optimize certification. Hence, we can conclude
that in terms of LRTE, NPCs provide exceptional empirical adversarial robustness compared to other
certification methods.
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Table 5: Comparison of NPCs trained with the L2-norm against state-of-the-art methods. Dashes “–”
indicate that the quantity is not calculable or reported. Values denoted with ∗ were estimated from
figures from the original publication.

Dataset ε Model CTE [%] LRTE [%] URTE [%] Notes
M

N
IS

T

1.
58

GLVQ 4.19 32.42 65.61 GLVQ loss, 256 ppc
GTLVQ 2.92 25.86 55.32 ReLU loss, 10 ppc, m = 12
RSLVQ 1.70 84.26 – cross-entropy, 128 ppc

CAP 11.88 – 55.47 [12, Table 4 “Large”]
STN 1.10 10∗ 31.00 [49, Table 1]

C
IF

A
R

-1
0

36
/25

5

GLVQ 51.41 58.40 61.90 GLVQ loss, 128 ppc
GTLVQ 40.53 49.02 55.96 GLVQ loss, 1 ppc, m = 100
RSLVQ 54.71 75.31 – cross-entropy, 128 ppc

CAP 38.80 – 48.04 [12, Table 2 “Resnet”]
STN 19.50 30∗ 34.40 [49, Table 1]

Smooth 18∗ – 27∗ [18, Figure 5c]

Table 6: Certified robustness for the L∞-norm of NPCs trained with the L2-norm.

Dataset ε Model CTE [%] LRTE [%] URTE [%] Notes

M
N

IS
T 0.1 GLVQ (L2) 4.19 18.45 97.15 GLVQ loss, 256 ppc

GTLVQ 2.92 13.98 100.00 ReLU loss, 10 ppc, m = 12

0.3 GLVQ (L2) 4.19 89.47 100.00 GLVQ loss, 256 ppc
GTLVQ 2.92 99.2 100.00 ReLU loss, 10 ppc, m = 12

C
IF

A
R

-1
0

2/255
GLVQ (L2) 51.41 64.45 74.46 GLVQ loss, 128 ppc

GTLVQ 40.53 59.69 78.10 GLVQ loss, 1 ppc, m = 100

8/255
GLVQ (L2) 51.41 84.21 95.96 GLVQ loss, 128 ppc

GTLVQ 40.53 90.2 99.61 GLVQ loss, 1 ppc, m = 100

In comparison to the 1-NN classifier results, which is also an NPC, GLVQ has a much better
adversarial robustness even though the CTE of GLVQ is slightly worse. However, it must be noted
that the 1-NN method was not purposefully trained to be adversarial robust.

Results L2-norm Regarding RSLVQ and the L2-norm, we find the same results as presented in
the paper for the L∞-norm: RSLVQ is not robust against adversarial attacks, see Table 5. However,
the LRTE score is not trivial. On the other hand, the NPCs that optimize a triplet loss—GLVQ and
GTLVQ—are robust against adversarial examples generated by the C&W attack. It must, however,
be noted that the LRTE of NPCs is significantly higher than for state-of-the-art methods.

E.2 Multiple seminorm robustness: Evaluation of the L∞-norm robustness for L2-norm
robustified models

As discussed in Section 6, we can use Hölder’s inequality to extend the robustness guarantees between
different Lp-norms. In this section, we present some preliminary results demonstrating this. Given
the NPCs trained using the L2-norm, as presented in Section 5 and Section E.1, Table 6 presents their
adversarial robustness with regard to the L∞-norm, both empirical and guaranteed.

Results The NPCs trained to classify the MNIST dataset have trivial guaranteed robustness and
poor empirical robustness. However, if we consider the CIFAR-10 dataset, we find different results.
For small values of ε, both the empirical and guaranteed robustness against adversarial examples are
nontrivial. Interestingly, GLVQ and GTLVQ have a better LRTE with respect to the L∞-norm when
trained using the L2-norm than GLVQ has when trained using the L∞-norm directly—as can be seen
by comparing the LRTE of GLVQ on CIFAR-10 in Table 4 with the LRTE of GLVQ and GTLVQ on
CIFAR-10 in Table 6 (the latter has lower LRTE than the former).
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Table 7: The first 10 falsely rejected samples from the MNIST test dataset.

id c (x) c∗W (x) = c (w∗) c (w∗) x w∗ x∗ w∗ x∗

63 3 2 3

92 9 9 4

115 4 6 9

124 7 4 7

125 9 9 4

149 2 2 9

151 9 9 2

193 9 9 4

195 3 3 9

219 5 5 3

E.3 Extended adversarial rejection evaluation for Section 5

In Table 7, we show the first 10 falsely rejected samples from the MNIST test dataset by the adversarial
rejection strategy presented in Section 5. For each sample, we visualized the following images: the
sample x, the closest prototype w∗, a closest representation x∗ of the closest prototype w∗ in the
training dataset, the closest prototype w∗ from another class, and a closest representation x∗ of the
closest prototype w∗ from another class in the training dataset. Additionally, we present the following
information: the sample identifier (id) in the MNIST test dataset, the true label c (x) of the sample
x, the predicted class label c∗W (x) by GLVQ, and the class label c (w∗) of the prototype w∗. Note
that the predicted class label c∗W (x) is equal to c (w∗) and that the samples of class c (w∗) are the
closest samples that can alter the prediction c∗W (x). Consequently, if we consider x as a potentially
adversarially manipulated sample, the class c (w∗) is the class that contains the original sample (the
non-adversarially manipulated sample) with the highest probability.

We used a rejection threshold of 0.1. Therefore, we rejected all samples with a hypothesis margin
of less than 0.1. The rejection threshold reflects the amount of perturbation that can be expected to
be used by a malicious attacker without being detectable by other means. According to the original
definition of adversarial examples (being perturbed by an imperceptible amount of noise to humans),
the threshold can also be considered as the amount of noise that would be imperceptible to the human
eye. The threshold of 0.1 equates to roughly 6 % of the examples from the MNIST test dataset being
falsely rejected.

Results We can make several distinct considerations within the set of falsely rejected samples. First
of all, several samples are rejected despite being classified correctly by the NPC. Sample 92, for
example, is classified correctly as a nine and is still rejected. Second, we find some samples that are
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Table 8: Comparison of NPCs trained with the L∞-norm against robust boosted decision trees and
robust boosted decision stumps on tabular data. For Stumps-A, we took the versions trained with the
exact robust loss. The URTEs for Stumps-C and RT-C are robust test errors and therefore the best
possible URTEs.

Dataset ε Model CTE [%] URTE [%] Notes

breast-cancer 0.3

Stumps-A 5.1 10.9 [50, Table 1]Stumps-C 8.8 16.8

RT 0.7 6.6 [50, Table 2]RT-C 0.7 13.1

GLVQ 0.0 7.3 ReLU loss (ε = 0.45), 7 ppc,
learning rate 0.005, batch size 8

diabetes 0.05

Stumps-A 27.3 31.8 [50, Table 1]Stumps-C 23.4 30.5

RT 27.3 35.7 [50, Table 2]RT-C 22.1 40.3

GLVQ 25.3 31.8 GLVQ loss, 4 ppc, learning rate
0.0002, batch size 64

cod-rna 0.025

Stumps-A 11.2 22.6 [50, Table 1]Stumps-C 11.6 23.2

RT 6.9 21.4 [50, Table 2]RT-C 10.2 24.2

GLVQ 7.8 21.4 ReLU loss (ε = 0.05), 8 ppc,
learning rate 0.01, batch size 256

misclassified and rejected. For obvious reason, these false rejections are not as severe as the rejection
of correctly classified samples. Within this category, a further division can be made between samples
for which the class c (w∗) is the ground truth class (e. g., sample 63) and samples for which this is
not the case (e. g., sample 115).

F Robustness evaluation on tabular data

Additionally to the results on image datasets, we present a robustness evaluation on tabular data and
compare it with state-of-the-art robust boosted tree and stump methods. The datasets and the threat
models (ε parameters) were chosen in accordance with the evaluation of robust boosted tree-based
methods [50]. In particular, we used the source code provided by Andriushchenko and Hein [50] to
load, preprocess, and split the following datasets (all available in the LIBSVM library [73]):

breast-cancer a binary classification dataset (also denoted as Breast Cancer Wisconsin (Original)
dataset [74]) consisting of 546 training and 137 test samples with 10 features after removing
samples with missing values [75];

diabetes a binary classification dataset (also denoted as Pima Indians Diabetes dataset) consisting of
614 training and 154 test samples with 8 features [76];

cod-rna a binary classification task consisting of 59535 training and 271617 test samples with 8
features [77].

Compared to the image datasets that are used in the main part of the paper, these datasets are
low-dimensional and do not provide (except for cod-rna) a large number of training samples.

For each dataset, we trained a GLVQ classifier with the L∞-norm with the setting specified in
Table 8. These settings are the result of a hyperparameter optimization by grid search on the specified
parameters. With the respective setting, each model was trained several times. From all training runs,
the model with the best URTE was selected. In general, the models were trained by the following
setting:
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• initialization by applying class-wise a k-means algorithm;
• optimizing the models by ADAM with a learning rate scheduler (similar to the one used for

the image datasets) and without augmentation;
• stopping the training after 1000 training epochs.

In addition to RT models (see Section 5), we compare the achieved performances with:

• robust boosted decision stumps (denoted by Stumps-A) of Andriushchenko and Hein [50],
• robust boosted decision trees (denoted by RT-C) of Chen et al. [51], and
• robust boosted decision stumps (denoted by Stumps-C) of Chen et al. [51].

For all models, we used the results reported by Andriushchenko and Hein [50]. All models, except
for GLVQ, are ensembles.

In Table 8, we report the results of the experiments. Summarily, there is no superior method. For
example, on the breast-cancer dataset, the RT achieves the best URTE, but GLVQ has a better
accuracy and is just slightly worse in terms of URTE. On the other hand, the Stumps-C outperforms
all other models on the diabetes dataset with respect to URTE, but RT and GLVQ are close behind it.
Moreover, on the cod-rna dataset, the RT and the GLVQ classifier achieve the same and best URTE
and outperform all other models. With no clear superior method for either guaranteed robustness
or clean accuracy, GLVQ can therefore be considered as state of the art for guaranteed adversarial
robustness on tabular datasets, together with the stump- and tree-based methods.
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