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Abstract

Many recent reinforcement learning (RL) methods learn stochastic policies with
entropy regularization for exploration and robustness. However, in continuous
action spaces, integrating entropy regularization with expressive policies is chal-
lenging and usually requires complex inference procedures. To tackle this problem,
we propose a novel regularization method that is compatible with a broad range
of expressive policy architectures. An appealing feature is that, the estimation of
our regularization terms is simple and efficient even when the policy distributions
are unknown. We show that our approach can effectively promote the exploration
in continuous action spaces. Based on our regularization, we propose an off-
policy actor-critic algorithm. Experiments demonstrate that the proposed algorithm
outperforms state-of-the-art regularized RL methods in continuous control tasks.

1 Introduction

Reinforcement learning (RL) algorithms have achieved remarkable success, notably in video
games [32| 31} 21] and robotic control [26] 33} [19]. However, traditional approaches to solving
RL problems—that is, maximizing the cumulative rewards—often lead to deterministic policies
[42], which are undesirable in many practical scenarios compared to their stochastic counterparts
(54,17, 33,1150 104 11941204 152, [7]]. For example, stochastic policies are often better initializers for new
tasks [[17,116] and are more robust in unexpected situations [[17, 20l 52]] than deterministic policies.

In order to learn stochastic policies, many methods draw on the entropy-regularized RL framework
[34} 17, (19 118, 25 [7136]], which augments the standard RL objective (cumulative rewards) with an
entropy term. Commonly used entropy terms for regularization include Shannon entropy [17} |19}
18151 and Tsallis entropy [25} 24, [7]]. The former can improve both sample efficiency and stability
[19, 20]], while the latter can find a stochastic policy close to the optimal policy of the standard RL
[52![7]. However, in continuous control tasks, many entropy-regularized methods [20, 125]] express
policies by Gaussian distributions, which can hardly represent complex behaviors [17} 45| 28]].

To tackle this problem, recent methods use expressive policy representations instead[[17, [18 151} 28]].
Soft Q-learning [17] parameterizes the policies by a sampling network to capture multi-modal
behaviors. Haarnoja et al. [[18] proposed to use latent space policies to learn hierarchical policies.
However, these methods often requires complex training procedures [43}[19]. Soft Q-learning [[17]]
trains the sampling network by Stein variational gradient descent [27]], which involves complicated
variational inference [[19, 45]]. Training latent space policies [18] requires calculating the probability
density with normalizing flows [38} 9], which leads to an expensive computational cost.

To address this challenge, we propose a novel sample based regularization (SBR) method, which
is simple, efficient, and compatible with a broad range of expressive policy representations. The
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major novelty of SBR is that, it promotes stochasticity by encouraging sampled actions away from
each other, which does not require calculating the probability density. Based on SBR, we propose an
off-policy algorithm, namely, actor-critic with generalized energy distance (ACED). Experiments
on six MuJoCo benchmarks show that ACED achieves stable performance improvement compared
with the state-of-the-art regularized RL algorithm. Moreover, we evaluate ACED with several policy
architectures [[11} 38} 45]] and empirically show that it can effectively improve the performance. We
provide all proofs in the supplementary material.

2 Preliminaries

Notation: We consider an infinite-horizon discounted Markov decision process (MDP) with a
continuous action space. An MDP is defined by a tuple (S, A, P,r,7), where S C R™ is a
continuous state space, A C R"™ is a compact action space that contains more than one action,
P:8 x AxS — [0,00) represents the probability density function that is corresponding to the
transition probability, 7 : S X A — [Ruin, Rmax] is a reward function, v € (0, 1) is a discount factor.
Let 7 : S — A be a stationary policy, where A is a set of some Borel probability measures on 4.
That is, 7(+|s) € A measures the probability of actions at state s. For convenience, we overload the
notation and let 7(+|s) also denote the corresponding probability density function (PDF) without
ambiguity. Let IT denote the set of all possible policies. Equations and inequalities between functions
are pointwise. For example, we say v < v if v(s) < v/(s) for any s € S. Maximum and supremum
of a function are also pointwise. For instance, v* = sup,cr; ™ means v*(s) = sup, g v" (s) for
any s € S. Given a (random) vector z, [z]; denotes its ith element. Given a distribution ¢ and an
arbitrary random vector X that obeys ¢, [g]; stands for the distribution of [X];.

Regularized RL: Regularized RL adds a regularization term to the standard RL objective (expected
discounted return). That is, the regularized RL aims to solve the following problem

7 £ argmaxE Z r(se, ar) + oF (m(- St)))] ;
mell t=0

where 7 : A — R is a regularization term and « > 0 is a hyperparameter. We can define the
regularized state-action value function () and state value function V' by

Q7 (s,a) [Zv (81, ar) + ayF (m(+]s141)))

SO:S,GO:G] , (1)

Vo (8) = Eann(ls) [Qa (s, 0)] + aF (n(]5)). 2)

The optimal Q-value function is defeind by Q7, = sup ..y @F and V;; = sup .y V.¥. When o = 0,
the regularized RL is essentially equivalent to the standard RL. In this condition, we omit the « in
our notation. For example, Q* denotes the optimal state-action value function in standard RL.

3 From Entropy Regularization to Sample-Based Regularization

In this section, we focus on the regularization for control tasks, whose action spaces are continuous.
First, we discuss a limitation of entropy regularization in Section [3.1} Then, we propose a sample-
based regularization to alleviate the limitation in Section[3.2] Finally, We provide several instances of
our regularization in Section[3.3] and then discuss their properties in Section [3.4]and Section[3.3]

3.1 Limitations of Entropy Regularization

Entropy-regularized RL often faces a dilemma between simple policy architectures, whose represen-
tational power is limited, and complex training procedures, whose costs are expensive.

Existing entropy regularizers take a general form of E,(.s) [f(7(a|s))] [52]. For example, Shannon
entropy is given by E, . (.|s) [log 7(a|s)]. Most entropy-regularized algorithms [20, 25] estimate this
kind of regularization terms by empirical average. This estimation method requires simple probability
density functions for efficient calculation. Therefore, popular entropy-regularized methods [20, 25]]
often represent policies by simple distributions, such as Gaussians. However, recent work has



shown several disadvantages of simple policy representations, such as inefficient exploration [8]],
convergence to sub-optimal solutions [48] and lack of ability to capture multiple goals [17].

Some entropy-regularized methods use sophisticated policy architectures for strong representation
power. However, they often require complex inferences to optimize policy [[L7] or inefficient
calculations to estimate entropy terms [45]. For example, normalizing flow policies [51]] requires a
serial procedure to calculate the probability density, which brings a non-negligible extra cost.

Moreover, there are plenty of policy architectures that are hardly compatible with entropy-regularized
RL, such as Dirac mixtures, whose (generalized) PDF is a convex combination of Dirac delta functions.
Improving the compatibility of regularized RL with various policy architectures can promote future
research on policy architectures and potentially improve the performance of regularized RL.

3.2 Sample-Based Regularization (SBR)

To alleviate the limitation described in Section we propose sample based regularization (SBR),
which does not require the PDFs to estimate regularization terms. SBR takes the following form:

F(WH‘S)) £ EGNTI'("S) [f(a)} + Eu,a’w‘n-(-ls) [g(av al)} ) (3)

where both f : A — Rand g : A x A — R are bounded continuous functions. We can estimate the
regularization term simply and efficiently by an unbiased estimator

R 1 & . 1 N o
F(m(ls)) = N Z fla') + N_1 Z gla',a’) |, “)
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where N is the number of samples and {a’}Y ; are sampled from 7(-|s).

According to the equation [3] our regularization consists of two parts. In the first part, the function f
defines an extra state-independent reward, which can represent the tendency to explore according to a
priori knowledge. In the second part, the function g models the mutual effect between performed
actions. We can promote stochasticity by encouraging selected actions away from each other.
Therefore, g(a, a’) should be positively correlated to the distance between a and a’.

In order to make our regularizers analyzable in continuous action spaces, we make two assumptions.
Assumption 1. The set A is weakly closed. That is, if (¢;)32, weakly converges to q, then q € A.

Assumption 2. The function Q7 (s, -) is L-Lipschitz for all s € S and 7 € IL

Assumption [T] usually holds in practice, e.g., when A is the set of all Dirac delta distributions.
Assumption E] is commonly-used in literature 37, 22] for the smoothness of the Q-value function.

Under these two assumptions, we show the optimality condition in our regularized RL framework.
Theorem 1. Under Assumption([l|and[2] the optimal policy m}, must exist, and for any state it satisfies

7o (-|s) = argmaxE,q [Q4 (s, a)] + aF(q). (5)
qeEA

3.3 Instances of Sample-Based Regularization

In this part, we first introduce generalized energy distance (GED) and then propose two instances of
SBR by using GED. GED is commonly used to test the equality of two distributions [39,44]. Given
two probability measures ¢, p € A, their generalized energy distance d, is defined by

dg(0,9) £ 2Borgymp (Gl = Yl3)] = Eaarng [$(llz — 2113)] = Eyrns [¢(lly = ¢'lID]  (©)

where the function ¢ : R — R is nonnegative and its derivative ¢’ is completely monotone [3]]. That
is, ¢(z) > 0and (—1)"¢™*1)(2) > 0 hold for all z > 0 and nonnegative integers n. Previous work
(3] has shown that d is a distance metric on A and provided some instances of function ¢ (see Table
. Based on GED, we can further define d2 by d(q,p) = 3= d2([q]:, [p];). We can show that ds
is also a distance metric on a specific space A (see Theorem [2).

Theorem 2. Assume that any distribution q € A is a product of its margin distributions. Then d¢ is
a metric on the set of probability measures A.



Table 1: Several examples of function ¢.

Function ¢  Condition Function ¢ Condition
o(z) = 2" 0<kr<l o(z) =log(l1+kz) 0<k
#(z) =5 0<k Pp(z)=1—e"* 0<k

Table 2: Instances of sample-based regularization. We omit the constant term in F(q). For example,

we omit the constant term B, o/~ [6([|a — a'[|5)] when using F(q) = —d(q,u).
F(g) f(a) g(a,a’)
~d3(q,u)  —2Eqnu [¢([la—d'|3)] ¢(lla—d'[I3)

~B(a,0) 250 Bama [0 (), — [@1)7)] 200 ((al, - [0,)%)

Note that the Shannon entropy of a distribution g can be regarded as the KL divergence of the uniform
distribution « from the distribution g (added by an constant). Inspired by this fact, we define two
regularization terms via d(g,u), where d can be dg or d,. Then, the regularization term takes the
form of SBR (see Table . In practice, the first regularization di requires sampling from a uniform
distribution to approximate f, which leads to a large estimation variance. In the contrast, we can
solve the closed-form expression of the function f when using d2, which helps to reduce variance.

3.4 Theoretical Results

We provide our theoretical results for dy in this subsection while similar results for qu can be found
in Appendix [A] First, we show that we can control the stochasticity of the optimal policies by tuning
« and provide a sufficient condition that ensures the optimal policies to be stochastic.

Theorem 3. Assume that the optimal policy 7}, exists for all o > 0 and the uniform distribution

belongs to the set of probability measures A. If we use the regularizer F(q) = —di(q, u), then we
d

have 7% (-|s) —% w for all states when o — .

Theorem 4. Suppose the action space A is convex and the set A contains all Borel probability
measures on A. Under Assumption |2| if we use the regularizer F(q) = —di(q, u) and choose

function ¢ such that im,_,q+ 2a/2¢'(2) > L, then 75(+|s) will never be a Dirac delta distribution.

Theorem [3]states that GED-based regularizers can bring active exploration when « is large enough.
We illustrate Theorem [3|in Figure[I] Theorem[d]shows that we can ensure the stochasticity of the
optimal policies by choosing proper function ¢, e.g., ¢(z) = 2" with 0 < x < 0.5.

Finally, we compare the performance of 7, and 7* in the original MDP.

Theorem 5. Assume that the optimal policy ], exists and the action space satisfies diam(A) < U.
If we use the regularizer F(q) = —di(q, w), then we have

2
1—7

*

(6(U?) = $(0)) < V™= < V™. (7)

Theorem [5] proposes a bound on the performance gap between the policy 7}, and the policy 7*. It
shows that the gap depends on A = ¢(U?) — ¢(0). Therefore, though larger A can encourage actions
away from each other better, it may lead to worse performance of 7.

3.5 Discussion on Regularization Terms

We discuss the properties of SBR intuitively and provide some empirical results in continuous-armed
bandit tasks. In this part, we consider an additional regularizer that is based on Gini mean difference

(GMD) [53]. This regularizer is given by F(q) = Eq a/~q [|@ — @'[], and thus it is essentially the
second part of GED-based regularizer when ¢(z) = 2°-5. Our discussion includes three parts.
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Figure 1: Learned policy distributions in continuous-armed bandit tasks. The action space is a
closed interval [—1, 1]. Figures (a), (b) and (d) correspond to GED-based regularization and figure
(c) to regularization that is based on Gini mean difference (GMD) [53]. The dashed lines represent
reward functions, and the solid lines denote the PDFs of learned policy distributions. When using
GED-based regularization, the exploration becomes more active as « increases. However, when using
GMD-based regularization, the performed actions gather near the boundary. Moreover, The subfigure
(d) shows that GED-based regularization helps to capture multiple modes of near-optimal behaviors.

Promoting stochasticity We compare different instances of SBR under different o (see Figure|[T)).
The GED-based regularization can effectively promote the stochasticity of learned policies while the
GMD-based regularization does not perform well. Indeed, the GMD-based regularizer is the second
part of the GED-based regularizer when ¢(z) = 2°-5. These results demonstrate that the first part of
our regularizer (3) is significant for exploration. Compared with Figure [1a|and[1b} using ¢ = 2%-2
performs better than ¢(z) = 2% in avoiding central tendency. A potential reason is that the value of
#(z) = 2925 increases faster than the value of ¢(z) = 2°5 as z increases near the point z = 0.

Learning multimodal behaviors Consider a bandit task that takes optimal actions at +0.7 and
suboptimal action at 0. We illustrate the optimal policy with GED-based regularizer in Figure [Id]
The result shows GED-based regularizer helps to capture multiple near-optimal behaviors. We further
provide an experiment in a 2D multi-goal environment to show this property (see Appendix [C).

Incorporating geometric information Entropy regularizers mainly take account of the probability
density but ignore the geometric information—how close two performed actions might be—to some
extent [4]. In contrast, GED-based regularizers attach importance to the geometric information since
their second parts encourage large distances between performed actions. We note that the geometric
information is important in exploration. For example, considering the action space .4 = [0, 10],
the entropy of the uniform distribution over [0, 1] equals to that of the uniform distribution over

U}il [i —0.1,4], while in practice we prefer to choose the latter as the exploration policy.

Algorithm 1 ACED
Input: ¢17 w27 0
1t apy = Y1,y < P2, D
2: for each iteration do
for each environment step do
ap ~ m(-[s¢)
se+1 ~ P([se, ar)
D “— D U {St, at, T(St, (lt), St+1}

4 Algorithm

In this section, we propose the actor critic with
generalized energy distance (ACED), an off-
policy RL algorithm that uses a GED-based 3
regularizer. We show the pseudo code in Algo- 4
rithm[I] We use neural networks to represent 5
the regularized Q-function ), and the policy g:

8

7y, Where 1 and 6 are the parameters. We end for

update these parameters by Adam [23]. We : for each training step do )

also use the target Q-value network ¢); whose 9: Vi < by — BoVq () fori = 1,2
- . . 10: 0+ 60— p3.VJ:(0)

parameters 1) is updated in a moving average 1 0 a—BaVa(@)

fashion [26]. As with SAC [19], we use the 12: bi T _"f (1 “ Yoy fori = 1,2

clipped double Q-learning [12] and the auto- ] 3: end f(l)r Vi T)witort =4,

matic tuning for the hyperparameter « [20]]. ] 4: end for

In this work, we use the regularizer —d%(q7 u).  Output: 1,19, 0
The reason is that we can calculate the explicit
expression of the function f by integral, while using the regularizer —di(q, u) may require an
approximation of the function f. We detail our candidates for function ¢ and policy representation in
Appendix B] In Section|[5.1} we show that using ¢(z) = z%2° with a simple Dirac mixture policy can

achieve state-of-the-art performance in the continuous control benchmarks.




Given @), g and «, we train ), by minimizing the regularized Bellman residual

Talb) = Ep |5 (r(susa0) +1Vi(su) — Quls)’| ®)

where D denotes the replay pool, the expectation Ep is actually the empirical average and the value
function V; is implicitly parameterized through the target Q-function parameters via Equation @)

We apply the reparameterization trick to train mg. Given (Jy and o, we maximize the objective
Jr(0) = Ep [Eqmny(|s) [Qu(st, ae)] + aF (mo(]s¢))] - )

We apply a gradient-based method to automatically tune the hyperparameter « similarly to SAC [20].
That is, given the current policy 7y, we tune o by minimizing the objective

Jol@) = aBp [F(n([s:)) = T, (10)

where T is the target value of the regularization term. That is, we adjust the hyperparameter a to
make Ep [F(7(-|s;))] approximately equal to the target value 7" in expectation.

We use a minibatch to calculate the estiamted gradient V.Jg (1), V.J,(0) and V.J,(c), and use the
Equation (@) to estimate the regularization term and its gradient. We note that the extra time cost of
multiple sampling is negligible (shown in Table[d) since this procedure can be easily parallelized.

There are three differences between ACED and SAC: 1) ACED is compatible with a broader range of
policy architectures compared with SAC; 2) ACED uses GED-based regularizers while SAC uses
entropy regularizers; 3) ACED does not need to calculate probability density while SAC needs to.

5 Experiments

Our experiments have three goals: 1) to test whether ACED can achieve state-of-the-art performance;
2) to show the computational efficiency of ACED; 3) to analyze the effect of each component in
ACED. More experiments can be found in Appendix [C]

In this section, we consider three GED-based regularizers, including power-0.25 (¢(z) = 2°2%),
power-0.5 (¢(z) = 2°) and log (¢(z) = log z). We take into account four policy architectures,
including squashed Gaussian (SG) [[19], Dirac mixtures (DM), noisy networks (NN) [11] and
generative models (GM) [[14}[30]. For completeness, we provide details of experiments, including the
implementation of different policy architectures, in the supplementary material.

5.1 Comparative Evaluation

We compare our algorithms with state of the art on six continuous control tasks in the MuJoCo
control suite [49]. Our baselines include soft actor critic algorithm (SAC) [20], the state-of-the-art
regularized RL methods; twin delayed deep deterministic policy gradient algorithm (TD3) [12], the
state-of-the-art method that learns a deterministic policy; and deep deterministic policy gradient
(DDPG) [26], an efficient off-policy algorithm. We stress that we did not tune the hyperparameters.

We report the results in Table [3|and Figure[2] All results are reported over six random seeds. Table
[3|shows that all four variants of ACED outperform SAC in terms of averaged relative performance.
Furthermore, we find that ACED outperforms SAC even when using the same policy architectures. We
discuss the potential reasons in Appendix [C| Figure[2]shows that ACED achieves stable improvement
in sample efficiency compared to SAC. Moreover, ACED achieves the best final performance
compared with all baselines except on the Swimmer-v2 task.

5.2 Computational Efficiency

We compare computational efficiency between ACED and SAC (see Table[d). We evaluate these two
algorithms with different policy representations, including squashed Gaussian [20]] and normalizing
flow (NF) [28]]. To avoid the impact of implementation on computing efficiency, we implement SAC
using the same code framework as ACED. Results show that ACED can achieve higher computational
efficiency than SAC, especially when using a complex policy architecture (NF). The main reason is
that ACED does not need to compute the probability density. Moreover, using N = 32 requires only
a little extra time compared with using N = 2 because the sampling is highly parallel.



Table 3: Relative performance of ACED compared to SAC. We report the best performance in
2000k-step training. The percentage corresponds to the ratio of the best score of ACED to that of
SAC. Each variant is named with the rule "policy architecture"+"function ¢". For each task, we bold
the best performance and use the corresponding variant to plot the ACED curve in Figure[2] This
table shows the stable performance improvement of ACED compared to SAC.

Variant HCheetah Ant Walker2d Swimmer Hopper Humanoid Average
DM-+log 119.8% 128.6%  109.6% 76.3% 96.3% 117.5% 108.0%
SG+log 121.2% 125.4%  102.8% 91.9% 97.8% 123.1% 110.4%
DM-+power-0.25 116.7% 122.2%  94.9% 97.5% 113.4% 118.7% 110.6%
SG+power-0.25  108.5% 135.2% 101.5% 100.1% 103.6%  123.3% 112.0%
Average 116.6% 127.8%  102.2% 91.4% 102.8%  120.6% 110.2%
Ant-v2 HalfCheetah-v2 Humanoid-v2
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Figure 2: ACED versus SAC, TD3, DDPG on 6 Mujoco environments. The solid curves correspond
to the mean and the shaded region to the standard deviation over 6 random seeds. We smooth curves
uniformly for visual clarity. ACED (red curve) outperforms our baselines in most of benchmark tasks.

5.3 Ablation Study

We first analyze the sensitivity of ACED to the hyperparamter N. Then, we evaluate ACED with
different regularizers and policy architectures. We report results for HalfCheetah-v?2 in this subsection
below and provide other results in Appendix [C| We run each experiment with at least three seeds.

Sample number ACED uses multiple samples to estimate the regularization term. In Figure[3a] we
show the performance of ACED with different /V. Results demonstrate that ACED is insensitive to
the hyperparameter N. Therefore, we recommend to use N = 2 for computational efficiency.

Policy architecture ACED is compatible with a broad range of policy architectures. We evaluate
ACED with four architectures (see details in Appendix [B). Also, we provide performance without
regularization. Figure [3b|shows that ACED can effectively improve the performance for all policy
architectures. One of the main reasons is that GED-based regularization can promote the stochasticity
and then bring active exploration. Therefore, GED-based regularizers are promising alternatives to
entropy regularization for promoting stochasticity.

Regularization term We evaluate ACED with four different regularizers. In this experiment,
internal energy [43] corresponds to the second part of the regularization term power-0.25. Figure
shows that using regularizers log and power-0.25 achieve similar final performance while internal
energy and power-0.5 achieve relatively poor performance. These results demonstrate that the first
part of SBR is also significant for exploration. Moreover, the results demonstrate that choosing
function ¢ according to Theorem@] can potentially improve exploration, since both ¢(z) = log z and
¢(z) = 2025 satisfy that lim,_,o+ /7¢'(z) = oo while ¢(z) = 2°° does not satisfy it.



Table 4: Comparison of computational efficiency between ACED and SAC in HalfCHeetah-v2 task.
We run each experiments with one GPU (Nvidia Geforce RTX 2080Ti) and report the wall-clock
time for 2000k-step training. Performance comparison for NF policies can be found in Appendix E}

Algorithm ACED SAC
Policy SG(N=2) SG(IN=32) NFWIN=2) SG NF
Time (h) 9.80+0.04 11.14+1.25 12.27+0.80 10.05 +£0.05 18.75+0.03
g 12500 - e s € 12500 — Dut ] 15000
2 10000 e 2 ‘__D*f'h'_k’f% S
— / 8 100004 —— sSG = - E
g 7500 / O o] === $G(a=0) -——=23NG ooy =20 @ 10000
I / = () — e g
@ 5000 L. A M (o= —— power-0.25
3‘ 2500 a>) - NN( P g 5000 power-0.5
- CAR : c < 2500 NN (a = 0) 3: interal_energy
o}/ [T SACMAX ol == SACMAX o —— SAC-MAX
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Figure 3: Learning curves in HalfCheetah-v2 task. (a) ACED is insensitive to the hyperparameter V.
We recommend to use N = 2 to reduce computational cost. (b) We evaluate four variants of ACED
with different policy architectures. All the four variants outperform SAC. Moreover, the performance
improvement is significant compared to algorithms without regularization (o« = 0). (c) ACED is
sensitive to the choice of regularizers. We have provided suggestions on the choice in SectionE}

6 Related Work

In this section, we discuss related work, including regularization in RL and policy representations in
continuous action spaces.

Regularization in RL Many RL methods use entropy regularization to learn stochastic policies
[41, 140, 33, [34] [19] [1'/7]. Recent work introduces entropy regularization into approximate policy
iteration approaches [19} 25| 152]] and shows the improvement in sample efficient and stability
[19,120]. Neu et al. [35] provide a unified view that considers entropy-regularized MDPs as a convex
optimization problem. Ahmed et al. [[1] analyze the impact of entropy regularization and empirically
show that the entropy regularization smooth the optimization landscape. Yang et al. [52] propose
a entropy-like regularzer form (shown in Section [3.1) and provide suggestions on the choice of
regularizers. Geist et al. [13] provide generic theoretical results for regularized policy iteration.

Policy Representations in Continuous Action Spaces Previous work often present policies by
simple parametric distributions, such as Gaussian [40} 41], Beta [6] and Delta [26l [12]]. Representing
policies by mixture distributions can capture moltimodal behaviors. The application of Gaussian
mixture to SAC is widely studied [19} [18]]. Many methods use Dirac mixtures by discretizing the
action spaces [47, 2, [29]. Implicit distributions are commonly used in GAN [14}/30] and have been
introduced into policy representation recently [45} 48]]. Moreover, recent work use normalizing flow
policies in both on-policy [46]] and off-policy RL algorithms [S1} 128, [18]].

7 Conclusion

In this paper, we present a simple and efficient regularization method called Sample-Based Reg-
ularization (SBR). An appealing feature of SBR is that, we can estimate the regularization terms
without knowing PDFs of policy distributions. Moreover, we propose several instances of SBR based
on generalized energy distance and analyze their properties in continuous action spaces. Based on
SBR, we present the actor critic with generalized energy distance (ACED), an off-policy regularized
reinforcement learning algorithm. Our experiments show that ACED is comparable and often sur-
passes state of the art in six MuJoco benchmarking tasks. Our experiments demonstrate that SBR can
improve the performance for a broad range of policy architectures. Theoretical analyses on the effect
of policy architectures on performance are exciting avenues for future work.
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Broader Impact

This work focuses on promoting stochasticity for expressive policies via sample-based regularization.
It has the following potential positive impact: a). it encourages future research on more expressive
policy architectures; b). it proposes a novel sample-based regularization method, which inspires
future work to find more efficient regularizers in regularized RL algorithm; c). it promotes the
application of RL algorithms in more complex control tasks. However, any reinforcement learning
method runs the risk of being applied to military activities. Our work is no exception.
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