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A Proofs and Technical Lemmas

A.1 Proof of Lemma 2.1

Inserting A(t) as defined in (4) into (3) we arrive at

Ȧ(t) =
1

m

m∑
i=1

Eνn
[

tr (X(A∗ −A(t)))
(
Xwi(t)w

T
i (t) + wi(t)w

T
i (t)X

) ]
= Eνn

[
tr (X(A∗ −A(t))) (XA(t) +A(t)X)

] (A.1)

where we used XT = X . This proves that Ȧ(t) is equal the the rightmost equation in (5). To prove
the first equality, simply note that, from (6),

∇En(A) = −Eνn
[

tr (X(A∗ −A(t)))X
]

(A.2)

which shows that (A.1) can be written as Ȧ = −A∇En −∇EnA. �

A.2 Proof of Lemma 2.2

Equations (8) and (9) can be derived from (5) and (6) by taking their expectation over ν, owing to the
fact that the data is Gaussian and using Wick’s theorem which asserts that

Eν [Xi,jXk,l] = δi,jδk,l + δi,kδj,l + δi,lδj,k (A.3)
This gives the result since A∗ and A(t) are symmetric matrices. Note that this derivation can be
generalized to non-Gaussian data, see Ref. [1] for details. �

A.3 Proximal scheme

We note that (5) (and similarly (8) if we use the population loss in (9) instead of the empirical loss
in (6)) can be viewed as the time continuous limit of a simple proximal scheme involving the Cholesky
decomposition of A and the standard Forbenius norm as Bregman distance. We state this result as:
Proposition A.1. Given B0 ∈ Rd×d define the sequence of matrices {Bp}p∈N via

Bp ∈ arg min
B

(
2

τ
tr
(

(B −Bp−1) (B −Bp−1)
T
)

+ En(BBT )

)
(A.4)

where τ > 0 is a parameter. Then

BpB
T
p → A(t) as τ → 0, p→∞ with pτ → t (A.5)

where A(t) solves (5) for the initial condition A(0) = B0B
T
0 .
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Proof. Look for a solution to the minimization problem in (A.4) of the form

B = Bp−1 + τB̃

To leading order in τ , the objective function in (A.4) becomes

2

τ
tr
(

(B −Bp−1) (B −Bp−1)
T
)

+ En(BBT )

= 2τ tr(B̃B̃T ) + τ tr
((
Bp−1B̃

T + B̃BTp−1

)
∇En(Bp−1B

T
p−1)

)
+O(τ2)

= τ tr
(
B̃
(
B̃T +BTp−1∇En(Bp−1B

T
p−1)

))
+ τ tr

((
B̃ +∇En(Bp−1B

T
p−1)Bp−1

)
B̃T
)

+O(τ2)

which we can set to zero by choosing B̃ = B̃p with

B̃p = −∇En(Bp−1B
T
p−1)Bp−1 +O(τ)

In terms of the minimizer Bp of the orginal problem this equation can be written as

τ−1 (Bp −Bp−1) = −∇En(Bp−1B
T
p−1)Bp−1 +O(τ)

Letting τ → 0 and p→∞ with pτ → t, we deduce that Bp → B(t) solution to

Ḃ(t) = −∇En(B(t)BT (t))B(t) (A.6)

Setting A(t) = B(t)BT (t) we have

Ȧ(t) = Ḃ(t)BT (t) +B(t)ḂT (t)

= −∇En(B(t)BT (t))B(t)BT (t)−B(t)BT (t)∇En(B(t)BT (t))

= −∇En(A(t))A(t)−A(t)∇En(A(t))

which is (5).

A.4 Proof of Theorem 3.1

LetAn,d be a symmetric, positive semidefinite minimizer of the empirical loss and considerAn,d−A∗.
Since this matrix is symmetric, there exists an orthonormal basis in Rd made of its eigenvectors,
{vi}di=1. Since An,d is positive semidefinite by assumption and A∗ = w∗(w∗)T is rank one, d− 1
eigenvalues of An,d − A∗ are nonnegative, and only one can be positive, negative, or zero. Let
us order the eigenvectors vi such that their associate eigenvalues are λi ≥ 0 for i = 1, . . . , d and
λd ∈ R. Given the data vector {xk}nk=1, to be a minimizer of the empirical loss An,d must satisfy

∀k = 1, . . . , n : 0 = tr[Xk(An,d −A∗)] = 〈xk, (An,d −A∗)xk〉 =

d∑
i=1

λi|xk · vi|2 (A.7)

Let us analyze when (A.7) admits solutions that are not A∗. To this end, assume first that λd ≥ 0.
Then, as soon as n ≥ d, for each i ∈ {1, . . . , d} with probability one there is at least one k ∈
{1, . . . , n} such that xk · vi 6= 0. As a result, if λd ≥ 0, as as soon as n ≥ d, the only solution
to (A.7) is λi = 0 for all i = 1, . . . , d, i.e. An,d = A∗ a.s.

The worst scenario case is actually when λd < 0. In that case (A.7) can be written

∀k = 1, . . . , n :

d−1∑
i=1

λi|xk · vi|2 = |λd||xk · vd|2 (A.8)

This equation means that if we let x̂k = xk sign(xk ·vd) (i.e. x̂k ‖ xk but lie in the same hemisphere
as vd), then the vectors x̂k must all lie on the surface of an elliptical cone C centered around vd,
with the principal axes of the ellipsoids aligned with vi, i = 1, . . . , d− 1; the intersection of the cone
with the hyperplane x · vd = 1 is the d− 1 ellipsoid whose boundary satisfies the equation

d−1∑
i=1

λi|x · vi|2 = |λd| (A.9)
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In Rd, it takes 1
2d(d+ 1) vectors x̂k to uniquely define such a elliptical cone. This means that, in the

worst case scenario, we recover the threshold n = 1
2d(d+ 1). This worst case scenario is however

unlikely. To see why, assume that n ≥ d, and consider the convex polyhedral cone spanned by
{x̂k}nk=1, i.e. the region

Cn,d = {x : x =
∑n
k=1αkx̂k, αk ≥ 0, k = 1, . . . , n} ⊂ Rd (A.10)

In order that (A.9) have a nontrivial solution, the extremal rays of Cn,d (i.e. its edges of dimension
1) must coincide with the set {x̂k}nk=1, that is, all rays αkx̂k, αk ≥ 0 for k = 1, . . . , n must lie on
the boundary of Cn,d and none can be in the interior of Cn,d; indeed these extremal rays must also
be on the boundary of elliptical cone C. However, Theorem 3’ in [2] asserts that, if the vectors in
the set {x̂k}nk=1 are in general position (i.e. if the vectors in any subset of size no more than d are
linearly independent, which happens with probability one if xk are i.i.d. Gaussian), the number Nn,d
of extremal rays of Cn,d satisfies

EνNn,d = 2n
C(n− 1, d− 1)

C(n, d)
, C(n, d) = 2

d−1∑
k=0

(
n− 1

k

)
(A.11)

This implies that

lim
d→∞

d−1EνNbαdc,d =

{
α if α ∈ [1, 2]

2 if α ∈ (2,∞)
(A.12)

Since Nn,d ≤ n by definition, we have d−1Nbαdc,d ≤ α, which from (A.12) implies that
limd→∞ d−1Nbαdc,d = α a.s. if α ∈ [1, 2]. In turns this implies that the probability that all
the vectors in {x̂k}nk=1 be extremal ray of the cone Cn,d tends to 1 as d, n→∞ with n = bαdc and
α ∈ [0, 2]. This also means that the probability that (A.9) has solution with λd < 0 also tends to 1 in
this limit, i.e. (11) holds. Conversely, since limd→∞ d−1Nbαdc,d = 2 < α for α > 2, the probability
that Nn,d 6= n remains positive as d, n→∞ with n = bαdc and α ∈ (2,∞). This means that the
probability that (A.9) has no solution with λd < 0 is positive in this limit, i.e. (12) holds. �

A.5 Heuristic argument for arbitrary m∗ and d

Minimizers of the empirical loss satisfy:

∀k = 1, . . . , n : tr[Xk(A−A∗)] = 〈xk, (A−A∗)xk〉 = 0 (A.13)

Clearly A = A∗ is always a solution to this set of equation. The question is: how large should n be in
order that A = A∗ be the only solution to that equation? If A was an arbitrary symmetric matrix, we
already know the answer: with probability one, we need n ≥ 1

2d(d+ 1). What makes the problem
more complicated is that A is required positive semidefinite. If we assume that A∗ has rank m∗ < d,
this implies that C = A − A∗ must be a symmetric matrix with d −m∗ nonnegative eigenvalues
and m∗ eigenvalues whose sign is unconstrained, and we need to understand what this requirement
imposes on the solution to (A.13).

In the trivial case when m∗ = 0 (i.e. A∗ = 0), if we decompose A = UΛUT , where U contains its
eigenvectors and Λ is a diagonal matrix with its eigenvectors λi ≥ 0, i = 1, . . . , d, (A.13) can be
written as

∀k = 1, . . . , n :

d∑
i=1

λi(vi · xk)2 = 0 (A.14)

where vi, i = 1, . . . , d are linearly independent eigenvectors of A. In this case, since λi ≥ 0, with
probability one we only need n = d data vectors to guarantee that the only solution to this equation
is λi = 0 for all i = 1, . . . , d, i.e. A = 0. Another way to think about this is to realize that the
nonnegativity constraint on A has removed 1

2d(d−1) degrees of freedom from the original 1
2d(d+ 1)

in A.

If m∗ > 0, the situation is more complicated, but we can consider the projection of A in the subspace
not spanned by A∗, i.e. the (d−m∗)× (d−m∗) matrix A⊥ defined as

A⊥ = (V ∗)TAV ∗ (A.15)

where V ∗ is the d× (d−m∗) matrix whose columns are linearly independent eigenvectors of A with
zero eigenvalue. All the eigenvalues of A⊥ are nonnegative, and this imposes 1

2 (d−m∗)(d−m∗−1)
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constraints in the subspace where A⊥ lives. If we simply subtract this number to 1
2d(d+ 1) we obtain

nc = 1
2d(d+ 1)− 1

2 (d−m∗)(d−m∗ − 1) = d(m∗ + 1)− 1
2m
∗(m∗ + 1) (A.16)

which is precisely (13).

This argument is nonrigorous because we cannot a priori treat separately (A.13) in the subspace
spanned byA∗ and its orthogonal complement. Yet, our numerical results suggest that this assumption
is valid, at least as d→∞.

A.6 Proof of Theorem 4.1

Since (3) is a standard gradient flow, ẇi(t) = −m∂wiLn and the loss is a quartic polynomial in
the weights, we can invoke the Stable Manifold Theorem [3] to conclude that the stable manifolds
of local minimizers of Ln have codimension 0, whereas the stable manifolds of all other critical
points have codimension strictly larger than 0. As a result, the weights must converge towards
a local minimizer of the loss with probability one with respect to random initial data drawn for
any probability distribution that is absolutely continuous with respect to the Lebesgue measure on
Rmd: this is the case under our assumption on {wi(0)}mi=1. Denoting w∞i = limt→∞wi(t), since
{w∞i }mi=1 is a local minimizer of Ln, there exits δ > 0 such that

1

m

m∑
i=1

|wi −w∞i |2 ≤ δ ⇒ Ln(wi) ≥ Ln(w∞i ) (A.17)

Since the GD flow in (3) for the weights implies (5) as evolution equation for A(t) =
m−1

∑m
i=1 wi(t)w

T
i (t) by Lemma 2.1, it follows that limt→∞A(t) = A∞ = m−1

∑m
i=1 w

∞
i w∞i .

As soon as m ≥ d, any symmetric positive semidefinite A can be constructed via a set of weights
{wi}mi=1, i.e.

∀A = AT PSD ∃{wi}mi=1 : A =
1

m

m∑
i=1

wiw
T
i & Ln(w1, . . . ,wm) = 2En(A) (A.18)

This implies that A∞ must be a local minimizer of the empirical loss En(A), otherwise for any ε > 0
there would be a A such that

tr
[
(A−A∞)2

]
≤ ε & En(A) < En(A∞) (A.19)

Choosing {wi}mi=1 such that A = 1
m

∑m
i=1 wiw

T
i would contradict (A.17). This also implies (16)

since all the minimizers of the empirical loss are global minimizers by convexity, and En(A∞) =
En(A∗) = 0. �

A.7 Proof of Theorem 5.1

We begin with:

Proof of (17) in Theorem 5.1. We can follow the same steps as in the proof of Theorem 4.1, using
(7) instead of (3), and noticing that this equation is also a standard gradient flow, ẇi(t) = −m∂wi

L
on the quartic loss

L(w1, . . . ,wm) = 2E(A) with A =
1

m

m∑
i=1

wiw
T
i (A.20)

and E(A) given in 9. The only difference is that the minimizer of E(A) is now unique and given by
A∗, which guarantees (17).

This leaves us with establishing the convergence rates in (18) and (19). Their proof replies on three
Lemmas that we state first.
Lemma A.2. Let A(t) be the solution to the GD flow (8) and assume that A(0) has full rank. Then
we have

A−1(t) = E[z(t)zT (t)] (A.21)
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where z(t) ∈ Rd solves the stochastic differential equation (SDE)

dz = (tr(A−A∗))zdt− 2A∗zdt+ 2dW (t) (A.22)

Here W (t) is a standard d-dimensional Wiener process and we impose that the initial condition z(0)
be Gaussian, independent of W , with mean zero and covariance E[z(0)zT (0)] = A−1(0).
Lemma A.3. Under the conditions of Lemma A.2, we have the following identity for all t ≥ τ ≥ 0:

A−1(t) = e−2A
∗(t−τ)A−1(τ)e−2A

∗(t−τ) exp
(

2
∫ t
τ

tr(A(s)−A∗)ds
)

+ 4

∫ t

τ

e−4A
∗(t−s) exp

(
2
∫ t
s

tr(A(u)−A∗)du
)
ds

(A.23)

Lemma A.4. Under the conditions of Lemma A.2, we have

lim
t→∞

tr(A∗A−1(t)A∗) = trA∗ (A.24)

Note that, if m∗ ≥ d and A∗ is invertible, since limt→∞A(t) = A∗, we have limt→∞A−1(t) =
(A∗)−1 and (A.24) trivially holds. This equation also holds when m∗ < d, i.e. when A∗ is rank
deficient and not invertible, if we assume that A(0) = Id so that A(t) remains diagonal at all times
by Theorem 5.2 since, using the notations of this theorem, we then have

lim
t→∞

tr(A∗A−1(t)A∗) = lim
t→∞

m∗∑
i=1

(λ∗i )
2

λi(t)
=

m∗∑
i=1

λ∗i = trA∗ (A.25)

because limt→∞ λi(t) = λ∗i > 0 if i ≤ m∗. However, the dangerous case is when m∗ < d and A(t)
is not diagonal: in that case (A.24) is nontrivial.

Proof of Lemma A.2. Since A(0) has full rank, A−1(0) exists, and since A(t) solves (8), A−1(t)
satisfies

d

dt
A−1(t) = 2

[
(tr(A−A∗))A−1 +A−1(A−A∗) + (A−A∗)A−1

]
= 2(tr(A−A∗))A−1 − 2A−1A∗ − 2A∗A−1 + 4 Id

(A.26)

A direct calculation with (A.22) using Itô formula shows that E[z(t)zT (t)] solves (A.26) for the
same initial condition, i.e. (A.21) holds.

Proof of Lemma A.3. Equation (A.21) implies that

tr(A∗A−1(t)A∗) = E|A∗z(t)|2 (A.27)

Since the solution to (A.22) can be expressed as

z(t) = exp
(
−2A∗(t− τ) +

∫ t
τ

tr(A(s)−A∗)ds
)
z(τ)

+ 2

∫ t

τ

exp
(
−2A∗(t− s) +

∫ t
s

tr(A(u)−A∗)du
)
dW (s),

(A.28)

a direct calculation using this formula in (A.27) together with E[z(τ)zT (τ)] = A−1(τ) and Itô
isometry establishes (A.23).

Proof of Lemma A.4. We only need to consider the nontrivial case when A∗ is rank deficient, i.e.
m∗ < d. To begin, notice that (A.23) implies the following identity for all t ≥ τ ≥ 0:

tr(A∗A−1(t)A∗) = tr
(
A∗e−2A

∗(t−τ)A−1(τ)e−2A
∗(t−τ)A∗

)
exp

(
2
∫ t
τ

tr(A(s)−A∗)ds
)

+ 4

∫ t

τ

tr
(
A∗e−4A

∗(t−s)A∗
)

exp
(

2
∫ t
s

tr(A(u)−A∗)du
)
ds

(A.29)
Since A∗ is symmetric and positive semidefinite, its eigenvalues are nonnegative and there exists an
orthonormal basis made of its eigenvectors. Denote this basis by {v∗i }di=1 and let us order it in way
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that the corresponding eigenvalues are λ∗i > 0 for i = 1, . . . ,m∗, and λ∗i = 0 for i = m∗ + 1, . . . , d.
Then (A.29) can be written as

tr(A∗A−1(t)A∗) =

m∗∑
i=1

(λ∗i )
2(v∗i )TA−1(τ)v∗i exp

(
−4λ∗i (t− τ) + 2

∫ t
τ

tr(A(s)−A∗)ds
)

+ 4

m∗∑
i=1

(λ∗i )
2

∫ t

τ

exp
(
−4λ∗i (t− s) + 2

∫ t
s

tr(A(u)−A∗)du
)
ds

(A.30)
Since | tr(A(t) − A∗)| is bounded for all t ≥ 0, evaluating this expression at τ = 0 shows that
tr(A∗A−1(t)A∗) is also bounded i.e. we only need to consider what happens as t→∞. We have

∀t ≥ τ :

∣∣∣∣∣
∫ t
τ

tr(A(u)−A∗)du
2(t− τ)

∣∣∣∣∣ ≤ C(τ) :=
1

2
max

u∈[τ,∞)
| tr(A(u)−A∗)| <∞ (A.31)

with C(τ) decaying to zero as τ →∞ since limt→∞A(t) = A∗ by (17). This implies that the first
term at the right hand side of (A.30) can be bounded as

m∗∑
i=1

(λ∗i )
2(v∗i )TA−1(τ)v∗i exp

(
−4λ∗i (t− τ) + 2

∫ t
τ

tr(A(s)−A∗)ds
)

≤
m∗∑
i=1

(λ∗i )
2(v∗i )TA−1(τ)v∗i exp (−4λ∗i (t− τ)[1− C(τ)/λ∗i ]) .

(A.32)

Since limτ→∞ C(τ) = 0, there exists τc ≥ 0 such that C(τ) < mini=1,...,m∗ λ∗i for all τ ≥ τc, and
hence 1 − C(τ)/λ∗i > 0 for all τ ≥ τc and for all i = 1, . . . ,m∗. Therefore we can let t → ∞ at
any fixed τ ≥ τc in (A.32) to conclude that the limit of the first term at the right hand side of (A.30)
is zero, i.e.

lim
t→∞

m∗∑
i=1

(λ∗i )
2(v∗i )TA−1(τ)v∗i exp

(
−4λ∗i (t− τ) + 2

∫ t
τ

tr(A(s)−A∗)ds
)

= 0 (τ ≥ τc).

(A.33)
Similarly, to deal with the second term at the right hand side of (A.30), we can use

∀t ≥ s ≥ τ :

∣∣∣∣∣
∫ t
s

tr(A(u)−A∗)du
2(t− s)

∣∣∣∣∣ ≤ C(τ) (A.34)

with the same C(τ) as in (A.31). As a result, by taking again τ ≥ τc, we have

lim
t→∞

4

m∗∑
i=1

(λ∗i )
2

∫ t

τ

exp
(
−4λ∗i (t− s) + 2

∫ t
s

tr(A(u)−A∗)du
)
ds

≤ 4

m∗∑
i=1

(λ∗i )
2 lim
t→∞

∫ t

τ

exp (−4λ∗i (t− s)[1− C(τ)/λ∗i ]) ds

=

m∗∑
i=1

λ∗i [1− C(τ)/λ∗i ]
−1 (τ ≥ τc)

(A.35)

Therefore we have established that

lim
t→∞

tr(A∗A−1(t)A∗) ≤
m∗∑
i=1

λ∗i [1− C(τ)/λ∗i ]
−1 (τ ≥ τc) (A.36)

Since this equation is valid for any τ ≥ τc and limτ→∞ C(τ) = 0, we can now let τ → ∞ on the
right hand side of (A.36) to deduce

lim
t→∞

tr(A∗A−1(t)A∗) ≤
m∗∑
i=1

λ∗i = trA∗ (A.37)
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To get the matching lower bound, use tr
(
(A(t)−A∗)A−1(t)(A(t)−A∗)

)
≥ 0 to deduce

tr(A∗A−1(t)A∗) ≥ 2 trA∗ − trA(t) (A.38)

and take the limit as t→∞ using limt→∞ trA(t) = A∗ to obtain

lim
t→∞

tr(A∗A−1(t)A∗) ≥ trA∗ (A.39)

Taken together (A.37) and (A.39) imply (A.24).

We can now use these results to proceed with the rest of the proof of Theorem 5.1:

Proof of (18) and (19) in Theorem 5.1. The multiplicative inverse of E(A(t)) satisfies

d

dt
E−1(A(t)) = 2E−2(A(t)) tr[∇E(A(t))A(t)∇E(A(t))]. (A.40)

By convexity of E(A) we have

E(A(t)) ≤ tr[(A(t)−A∗)∇E(A(t))] = tr[(A(t)−A∗)A−1/2(t)A1/2(t)∇E(A(t))] (A.41)

where we used the positivity of A(t) as well as E(A∗) = 0. Therefore using Cauchy-Schwarz
inequality we obtain

E2(A(t)) ≤ tr[∇E(A(t))A(t)∇E(A(t))] tr
[
(A∗(t)−A∗)A−1(t)(A(t)−A∗)

]
. (A.42)

Using this inequality in (A.40) we deduce

d

dt
E−1(A(t)) ≥ 2

[
tr
(
(A(t)−A∗)A−1(t)(A(t)−A∗)

)]−1
Integrating and reorganizing gives

E(A(t)) ≤ E(A(0))

1 + 2E(A(0))
∫ t
0

[tr ((A(s)−A∗)A−1(s)(A(s)−A∗))]−1 ds
(A.43)

To proceed let us analyze the behavior of the integral in the denominator. Start by noticing that

lim
t→∞

tr
(
(A(t)−A∗)A−1(t)(A(t)−A∗)

)
= lim
t→∞

trA(t)− 2 trA∗ + lim
t→∞

tr(A∗A−1(t)A∗) = 0
(A.44)

where we used limt→∞ trA(t) = trA∗ as well as (A.24) in Lemma A.3. (A.44) guarantees that
tr
[
(A(t)−A∗)A−1(t)(A(t)−A∗)

]
is bounded for all time, i.e.

∀t ≥ 0 :
[
tr
(
(A(t)−A∗)A−1(t)(A(t)−A∗)

)]−1 ≥ C > 0 (A.45)

with

C =

[
max
t∈[0,∞)

tr
[
(A(t)−A∗)A−1(t)(A(t)−A∗)

]]−1
(A.46)

As a result

∀t ≥ 0 :

∫ t

0

tr
[
(A(s)−A∗)A−1(s)(A(s)−A∗)

]−1
ds ≥ Ct (A.47)

which from (A.43) implies the nonasymptotic bound in (18). To establish the asymptotic bound
in (19), note that (A.44) implies that∫ t

0

[
tr
(
(A(s)−A∗)A−1(s)(A(s)−A∗)

)]−1
ds grows faster than t as t→∞ (A.48)

Using this result in (A.43) implies that E(A(t)) decays faster than 1/t as t → ∞, i.e. E(A(t)) =
o(1/t) and (19) holds.
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A.8 Proof of Theorem 5.2

Since A∗ is symmetric and positive semidefinite, its eigenvalues are nonnegative and there exists
an orthonormal basis made of its eigenvectors. Denote this basis by {v∗i }di=1 and let us order
it in way that the corresponding eigenvalues are λ∗i > 0 for i = 1, . . . ,m∗, and λ∗i = 0 for
i = m∗ + 1, . . . , d. Denote by U∗ the orthogonal matrix whose columns are the eigenvectors of
A∗, so that A∗ = U∗Λ∗(U∗)T with Λ∗ = diag(λ∗1, . . . , λ

∗
d). Let Λ(t) = (U∗)TA(t)U∗. Since

A(0) = Id by assumption, Λ(0) = Id and from (8) this matrix evolves according to

Λ̇ = 2(tr(A∗ −A))(U∗)TAU∗ + 2(U∗)T (A∗ −A)AU∗ + 2(U∗)TA(A∗ −A)U∗

= 2(tr(Λ∗ − Λ))Λ + 2Λ(Λ∗ − Λ) + 2(Λ∗ − Λ)Λ.
(A.49)

This equation shows that Λ(t) remains diagonal for all times, Λ(t) = diag(λ1(t), . . . , λd(t)). Written
componentwise (A.49) is (20). �

B Additional Results

B.1 Supporting numerical results to Fig. 1
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Figure B.1: Population loss for d = 4, 8, 16 and m∗ = 4 and several values of α = n/d. The
line shown with full color are average of the logarithm of 100 simulations (300 for d = 4) and the
individual instances are shown in transparency.

In Fig. B.1 shows the average performance of GD with n = αd datapoints and a teacher with m∗
and Gaussian hidden units. The figure is intended to show a vertical cut in the dynamical phases
Fig. 1. Moving up in d at m∗ fixed we observe that on average the simulations converge when
α > αc and they do not when α > αc, i.e. there is an abrupt change of behavior when we cross the
transition. Another interesting aspect of the figure is that the first panel has m∗ ≥ d which leads to
and exponential (rather than quadratic) convergence rate in the loss, consistent to our analysis. The
dotted line is a reference line that represents the 1/t2 decay of the loss.
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B.2 Supporting numerical results to Theorem 3.1
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Figure B.2: Left panel: fraction of simulations that went below 10−5 for d = 4, 8, 16, 32. Right
panel: complement of the fraction of simulations that have a ratio between final generalization loss
and training loss that is larger then 109d.

In Fig. B.2 we present a numerical verification of Theorem 3.1. According to the theorem, as d→∞
with m∗ = 1 (so that αc = 2) the probability of finding the teacher should converge to zero for
α < 2 and to positive values for α > 2. The left panel on the figure shows the fraction of 100
simulations that achieved at least 10−5 generalization loss after 2 log2 d×107 iterations with learning
rate 0.003. The right panel shows the number of simulations for which the ratio between training and
generalization losses is larger than 10−9d−1. This second panel is meant to capture the simulations
for which we expect convergence eventually, but the number of iterations was not enough to achieve
it. In particular, we observed that when generalization fails, meaning that the training loss goes to
zero and the generalization loss stay at a high value, the convergence rate of the training loss is
exponential, contrarily to simulation where the generalization loss eventually goes to zero that have a
O(1/t2) convergence rate. Using simulations with 108 iterations is sufficient to detect the difference
between the two cases and therefore this gives us a good criterion to distinguish between successful
and unsuccessful simulations.
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Figure B.3: Final value of the training and generalization loss of several simulations with input d = 4
and n = 7 samples in the dataset. From left to right the maximum number of steps in the simulation
increases by a factor 10.

To provide more evidence of this reasoning, in Fig. B.3 we show training and generalization loss of
1000 simulations for d = 4, n = 2d− 1 and m∗ = 1. We order the simulations according to the loss
and show in the three panels three snapshots for different number of iterations. From left to right
the number of iterations increases by a factor 10 in each panel. As can be seen, the ratio between
generalization loss and training loss at the end of the training is a valid measure of success.
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B.3 Extrapolation procedure
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Figure B.4: Extrapolation of the sample complexity threshold αc = 2 for m∗ = 1 assuming a power-
law increase of the time to converge to a 10−5 value of the loss when approaching this threshold. In
the inset we show that the points lie on a line in log-log scale.

We estimate the critical value of α numerically by fixing a threshold in the population loss, 10−5, and
simulate the problem for a large set of α. Starting from the largest value in the set, as α approaches
the critical value the time needed to pass the threshold increase as a power-law ∼ |α − αc|−θ [4].
In Fig. B.4 we fit the relaxation times to cross a threshold in the population loss of 10−5 for
d = 4, 8, 16, 32 and m∗ = 1. The extrapolated thresholds αc and their 95% confidence intervals are:
for d = 4, αc = 1.6 (1.3, 1.9); for d = 8, αc = 1.8 (1.4, 2.2); for d = 16, αc = 2.2 (2.0, 2.5); and
for d = 32, αc = 2.4 (2.0, 2.8). Close to the threshold αc = 2− 1/d, namely 1.8, 1.9, 1.9, and 2.0,
as expected. The larger the input dimension, the larger the time to pass the threshold is, and as result
the smallest accessible value of α also increases. This causes a decrease in accuracy on the threshold
value, measured by the larger confidence intervals obtained assuming a t-student distribution. The
same procedure has been applied for other values of m∗ to obtain the points shown in Fig. 1.

B.4 GD in the populations loss with orthogonal teacher
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Figure B.5: Same as Fig. 1 in the main text but for a teacher with orthonormal hidden nodes. In that
case, as soon as m∗ becomes equal to or larger than d, A∗ = Id, and therefore the student equal the
teacher at initialization since A(0) = Id.

A simple special case of (20) in Theorem 5.2 is when the teacher has orthogonal hidden weights, so
that λ∗j = 1 for 1 ≤ j ≤ m∗ and λ∗j = 0 for every m∗ < j < d. (Note that the problem becomes
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Figure B.6: Phase portrait of the the Lotka-Volterra system in (B.1)-(B.2) both in linear (left panel)
and log (right panel) scales, for d = 16 and m∗ = 1. The λ- and ε-nullclines are shown in
red and orange, respectively. The flow map is show in black. The actual solution starting from
(λ(0), ε(0)) = (1, 1) is shown in blue.

trivial in that case when m∗ = d since A(t = 0) = Id = A∗.) In that case the first m∗ informative
eigenvalues are the same, λi = λ for 1 ≤ 1 ≤ d−m∗, and (22)-(23) reduce to

d

dt
log λ = (2m∗ + 4)(1− λ)− 2(d−m∗)ε, (B.1)

d

dt
log ε = 2m∗(1− λ)− 2(2 + d−m∗)ε. (B.2)

Those equations are an instance of Lotka-Volterra equations that have a long history for modeling
competing species in ecology [5, 6]—here, the informative λ and noninformative ε eigenvalues play
the role of these species. (B.1)-(B.2) have three fixed points in the (λ, ε) space: the unstable solutions
(0, 0) and (0,m∗/(2 + d−m∗)), and the stable solution (1, 0). The phase portrait of these equation
is shown in Fig. B.6.

Let us analyze (B.1)-(B.2) when d−m∗ � 1. In that case the dynamics of λ and ε has two regimes:
Initially the second term at the right hand side of these equation is the dominant term; since this
term is negative, it means that both λ and ε decrease from their initial values (λ(0), ε(0)) = (1, 1).
In the second regime, ε becomes small enough that the right hand side of (B.1) becomes positive
allowing λ to bounce back up and grow towards its asymptotic value limt→∞ λ(t) = λ∗ = 1 whereas
ε continues to decreases so that limt→∞ ε(t) = 0 converges to zero with a linear convergence rate. If
we neglect the first term at the right hand side of (B.2), this equation can be solved exactly:

ε(t) ≈ 1

1 + 2(2 + d−m∗)t
(B.3)

It turns out that this approximation is accurate in both regimes, because the first term at the right hand
side of (B.2) is always sub-dominant. In the first regime, (B.1)-(B.2) implies that λ(t) ≈ ε(t), and
this goes on until the right hand side of (B.1) changes sign, indicating the start of the second regime.
This occurs at time

t0 ≈
d−m∗

2(2 +m∗)(2 + d−m∗)
= O(1), (B.4)

similarly to the random Gaussian case discussed in the main text. Observe that at that time, we have
λ(t0) = ε(t0) = (m∗ + 2)/(d + 2), and passed that time λ(t) starts to increase again, while ε(t)
keeps decreasing. Therefore in this second regime we can neglect the last term at the right hand of
(B.1) and solve this equation with the initial condition λ(t0) = λ0 = (m∗ + 2)/(d+ 2). This gives
the logistic growth

λ(t) ≈ λ0e
2(m∗+2)(t−t0)

λ0(e2(m∗+2)(t−t0) − 1) + 1
. (B.5)

From this equation, the time for λ to reach its target λ∗ = 1 is approximately

tJ ≈
1

m∗ + 2
log

d+ 2

2(m∗ + 2)
. (B.6)
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These approximations are remarkably accurate as we can observe in Fig. B.7, where we evaluate
numerically the dynamics on the population loss (8) and compare the result with the approximation
for d = 512, m∗ = 1 and n = 2048. The left panel shows the evolution of the eigenvalues and the
right one the generalization loss. The dotted line on the left is (B.3) and on the right is (27) shown in
the main text.
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Figure B.7: Evolution of the eigenvalues in the population loss (left) and generalization loss (right).
Left panel: the solutions to (B.1)-(B.2) and the approximate solution (B.5) (dotted line). Right panel:
exact loss from (21) compared to its approximation in (29) (dotted line) valid for small and large
times. The vertical lines show the two times t0 and t0 + tJ .
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