
A Details of mmTS for Exponential Families

For a matrix (vector) M , we let Mi denote its i-th row (element). Using this notation, we can write
θ = (θs)s∈S as a vector of parameters, one for each latent state; each θs parameterizes the reward
under latent state s. We want to show that the sampling step in mmTS can be done tractably when the
conditional reward distribution and model prior are in the exponential family.

First, we assume that we can write the conditional reward likelihood as,

P (r | a, x, s; θ) = exp
[
φ(r, a, x)>η(θs)− ψ(a, x)>g(θs)

]
,

where φ(r, a, x) and ψ(a, x) are sufficient statistics of the observed data, η(θs) are the natural
parameters, and g(θs) satisfies ψ(a, x)>g(θs) = log

∑
r φ(r, a, x)>η(θs), which is the log-partition

function. Note that this assumption excludes rewards that are complex functions of the model
parameters; however, it still handles all the non-contextual or linear bandit settings of prior work.

Then, we assume the prior over model parameters θ factors as P1(θ) =
∏
s∈S P1(θs). The prior over

θs is assumed to be the conjugate prior of the likelihood and have the general form,

P1(θs) = h(φs,1,ms,1) exp
[
φ>s,1η(θs)−m>s,1g(θs)

]
,

where φs,1,ms,1 are parameters controlling the prior, and h(φs,1,ms,1) is the normalizing factor.

Recall that Ht = (X`, A`, R`)
t−1
`=1 is the history up to round t. For round t, we can write the joint

posterior as,

Pt(s, θ) = P1(s)P1(θ)P (Ht | s; θ)

∝ P1(s)

∏
s′ 6=s

P1(θs′)

P1(θs)P (Ht | θs) ∝ P1(s)

∏
s′ 6=s

P1(θs′)

Pt(θs) . (7)

Given latent state s, we are only concerned with computing the posterior over the conditional model
parameters θs, denoted Pt(θs). This is given by,

Pt(θs) ∝ P1(θs)P (Ht | θs) (8)

∝ P1(θs)

t−1∏
`=1

exp
[
φ(R`, A`, X`)

>η(θs)− ψ(A`, X`)
>g(θs)

]
∝ h(φs,1,ms,1) exp

φ>s,1η(θs)−m>s,1g(θs) +

(
t−1∑
`=1

φ(R`, A`, X`)

)>
η(θs)−

(
t−1∑
`=1

ψ(A`, X`)

)>
g(θs)


∝ h(φs,1,ms,1) exp

(φs,1 +

t−1∑
`=1

φ(R`, A`, X`)

)>
η(θs)−

(
ms,1 +

t−1∑
`=1

ψ(A`, X`)

)>
g(θs)

 .
The general form for an exponential family likelihood is still retained. The prior-to-posterior conver-
sion simply involves updating the prior parameters with sufficient statistics from the data. Specifically,
updated parameters φs,t ← φs,1 +

∑t−1
`=1 φ(R`, A`, X`) and ms,t ← ms,1 +

∑t−1
`=1 ψ(A`, X`) form

the conditional posterior Pt(θs) = h(φs,t,ms,t) exp
[
φ>s,tη(θs)−m>s,tg(θs)

]
. Finally, the marginal

posterior of s is given by,

Pt(s) ∝ P1(s)P (Ht | s) ∝ P1(s)

∫
θs

P1(θs)P (Ht | θs)dθs

∝ P1(s)

∫
θs

h(φs,1,ms,1) exp
[
φ>s,tη(θs)−ms,tg(θs)

]
dθs

∝ P1(s)
h(φs,1,ms,1)

h(φs,t,ms,t)
.

(9)
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The ratio on the right can be easily computed by tracking the posterior parameters. In practice, the
marginal posterior can also be updated incrementally as

Pt(s) ∝ P (s | Ht−1)P (Rt−1 | At−1, Xt−1, s)

∝ P (s | Ht−1)

∫
θs

P (θs | Ht−1)P (Rt−1 | At−1, Xt−1, s; θ)dθs

∝ Pt−1(s)
h(φs,t−1,ms,t−1)

h(φs,t,ms,t)
,

(10)

where the second term is efffectively the posterior predictive of the observations of round t− 1.

Thus, for all states s, and parameters θ, the posterior probabilities Pt(s) and Pt(θs) have analytic,
closed-form solutions. Thus, sampling from the joint posterior can be done tractably by sampling
state s from its marginal posterior, then conditional parameters θs from their posterior.

B Pseudocode of mmTS for Gaussians

Next, we provide specific variants of mmTS when both the model prior and conditional reward
likelihood are Gaussian. This is a common assumption for Thompson sampling algorithms [3, 4, 2].
In this case, the joint posterior Pt consists of Gaussians. We adopt the notation that N (r | µ, σ2) ∝
exp[−(r − µ)2/2σ2] is the Gaussian likelihood of r given mean µ and variance σ2.

We detail algorithms for two cases: Algorithm 4 is for a multi-armed bandit with independent arms
(no context), and Algorithm 5 is for a linear bandit problem. In the first case, we have that θs ∈ RK
are the mean reward vectors where µ(a, s; θ) = θs,a. In the other case, we assume that context is
given by x ∈ RK×d where xa ∈ Rd is the feature vector for arm a. Then, we have that θs ∈ Rd
are rank-d vectors such that µ(a, x, s; θ) = x>a θs. Both algorithms are efficient to implement, and
perform exact sampling from the joint posterior.
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Algorithm 4 Independent Gaussian mmTS (No Context)

1: Input:
2: Prior over model parameters P1(θs) = N (θ̄s, σ

2
0I),∀s ∈ S

3: Prior over latent states P1(s)

4: for t← 1, 2, . . . do
5: B Step 1: sample latent state from marginal posterior.
6: Sample Bt ∼ Pt

7: B Step 2: sample model parameters from conditional posteriors.
8: For each s ∈ S, sample θ̂s ∼ N (θ̃s, diag(σ̃)), where

σ̃a ←
(
σ−20 +

∑t−1
`=1 1{A` = a}σ−2

)−1
,

θ̃s,a ← σ̃a

(
σ−20 θ̄s,a + σ−2

∑t−1
`=1 1{A` = a}R`

)
9: Select At ← arg maxa∈A θ̂Bt,a

10: B Step 3: update marginal posterior.
11: Observe Rt. Update

Pt(s) ∝ Pt−1(s)N (R` | θ̃s,A` , σ̃A` + σ2)

Algorithm 5 Linear Gaussian mmTS

1: Input:
2: Prior over model parameters P1(θs) = N (θ̄s,Σ0),∀s ∈ S
3: Prior over latent states P1(s)

4: for t← 1, 2, . . . do
5: B Step 1: sample latent state from marginal posterior.
6: Sample Bt ∼ Pt

7: B Step 2: sample model parameters from conditional posteriors.
8: Define

Vt ← I +

t−1∑
`=1

X`,A`X
>
`,A`

, Ft ←
t−1∑
`=1

X`,A`R`

9: For each s ∈ S, compute β̂ ← V −1t Ft, and Σ̂← σ2V −1t

10: For each s ∈ S, sample θ̂s ∼ N (θ̃s, Σ̃), where

Σ̃←
(

Σ−10 + (t− 1)Σ̂−1
)−1

, θ̃s ← Σ̃
(

Σ−10 θ̄s + (t− 1)Σ̂−1β̂
)

11: Select At ← arg maxa∈AX
>
`,aθ̂Bt

12: B Step 3: update marginal posterior.
13: Observe Rt. Update

Pt(s) ∝ Pt−1(s)N (R` | X>`,A` θ̃s, X
>
`,A`

Σ̃X`,A` + σ2)
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C Proofs

Our proofs rely on the following concentration inequality, which is a straightforward extension of the
Azuma-Hoeffding inequality to sub-Gaussian random variables.
Lemma 1. Let (Yt)t∈[n] be a martingale difference sequence with respect to filtration (Ft)t∈[n], that
is E [Yt | Ft−1] = 0 for any t ∈ [n]. Let Yt | Ft−1 be σ2-sub-Gaussian for any t ∈ [n]. Then for any
ε > 0,

P

(∣∣∣ n∑
t=1

Yt

∣∣∣ ≥ ε) ≤ 2 exp

[
− ε2

2nσ2

]
.

Proof. For any λ > 0, which we tune later, we have

P

(
n∑
t=1

Yt ≥ ε

)
= P

(
n∏
t=1

eλYt ≥ eλε
)
≤ e−λεE

[
n∏
t=1

eλYt

]
.

The inequality is by Markov’s inequality. From the conditional independence of Yt given Ft−1, the
right term becomes

E

[
n∏
t=1

eλYt

]
= E

[
E
[
eλYn | Fn−1

] n−1∏
t=1

eλYt

]
≤ eλ

2σ2

2 E

[
n−1∏
t=1

eλYt

]
≤ enλ

2σ2

2 .

We use that Yn | Fn−1 is σ2-sub-Gaussian in the first inequality, and recursively repeat for all rounds
in the second. So we have

P

(
n∑
t=1

Yt ≥ ε

)
≤ min

λ>0
e−λε+

nλ2σ2

2 .

The minimum is achieved at λ = ε/(nσ2). Therefore

P

(
n∑
t=1

Yt ≥ ε

)
≤ exp

[
− ε2

2nσ2

]
.

Now we apply the same proof to P (−
∑n
t=1 Yt ≥ ε), which yields a multiplicative factor of 2 in the

upper bound. This concludes the proof.

C.1 Proof of Theorem 1

Recall that s∗ ∈ S, θ∗ ∈ Θ are the true latent state and model. Let µ(a, x) = µ(a, x, s∗; θ∗) be the
true mean rewards given observed context and action. Let

Et =

{
∀s ∈ S :

∣∣∣∣∣
t−1∑
`=1

1{B` = s} (µ(A`, X`)−R`)

∣∣∣∣∣ ≤ σ√6Nt(s) log n

}
(11)

be the event that the total realized reward under each played latent state is close to its expectation.
Let E = ∩nt=1Et be the event that this holds for all rounds, and Ē be its complement. We can rewrite
the expected n-round regret by

R(n) = E
[
1
{
Ē
}
R(n)

]
+ E [1{E}R(n)]

≤ E

[
1
{
Ē
} n∑
t=1

µ(At,∗, Xt)− µ(At, Xt)

]

+ E

[
1{E}

n∑
t=1

(µ(At,∗, Xt)− Ut(At,∗))

]
+ E

[
1{E}

n∑
t=1

(Ut(At)− µ(At, Xt))

]
,

(12)

where we use the regret decomposition in Eq. (5) in the inequality.

Our first lemma is that the probability of Ē occurring is low. Without context, the lemma would
follow immediately from Hoeffding’s inequality. Since we have context generated by some random
process, we instead turn to martingales.
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Lemma 2. Let Et be defined as in Eq. (11) for all rounds t, E = ∩nt=1Et, and Ē be its complement.
Then P

(
Ē
)
≤ 2|S|n−1.

Proof. We see that the choice of action given observed context depends on past rounds. This is
because the upper confidence bounds depend on which latent states are eliminated, which depend on
the history of observed contexts.

For each latent state s and round t, let Tt,s be the rounds where state s was chosen until round t. For
round ` ∈ Tt,s, let Y`(s) = µ(A`, X`, s`; θ∗)−R`. Observe that Y`(s) | X`, H` is σ2-sub-Gaussian.
This implies that (Y`(s))`∈Tt,s is a martingale difference sequence with respect to context and history
(X`, H`)`∈Tt,s , or E [Y`(s) | X`, H`] = 0 for all rounds ` ∈ Tt,s.

For any round t, and state s ∈ S, we have that Tt,s is a random quantity. First, we fix |Tt,s| =
Nt(s) = u where u < t and yield the following due to Lemma 1,

P

∣∣∣∣∣∣
∑
`∈Tt,s

Y`(s)

∣∣∣∣∣∣ ≥ σ√6u log n

 ≤ 2 exp [−3 log n] = 2n−3 .

So, by the union bound, we have

P
(
Ē
)
≤

n∑
t=1

∑
s∈S

t−1∑
u=1

P

∣∣∣∣∣∣
∑
`∈Tt,s

Y`(s)

∣∣∣∣∣∣ ≥ σ√6u log n

 ≤ 2|S|n−1 .

The first term in Eq. (12) is small because the probability of Ē is small. Using Lemma 2, and that
total regret is bounded by n, we have, E

[
1
{
Ē
}
R(n)

]
≤ nP

(
Ē
)
≤ 2|S|.

For round t, the event µ(At,∗, Xt) ≥ Ut(At,∗) occurs only if s∗ /∈ Ct also occurs. By the design of
Ct in mUCB, this happens only if Gt(s∗) > σ

√
6Nt(s) log n. Event Et says that the opposite is true

for all states, including true state s∗. So, the second term in Eq. (12) is at most 0.

Now, consider the last term in Eq. (12). Let Ts = {t ≤ n : Bt = s} denote the set of rounds where
latent state s is selected. We have,

E

[
1{E}

n∑
t=1

(Ut(At)− µ(At, Xt))

]
= E

[
1{E}

∑
s∈S

∑
t∈Ts

(µ(At, Xt, s)− µ(At, Xt))

]

= E

[
1{E}

∑
s∈S

∑
t∈Ts

(µ(At, Xt, s)−Rt +Rt − µ(At, Xt))

]

≤ E

[
1{E}

∑
s∈S

(
Gn(s) +

∑
t∈Ts

(Rt − µ(At, Xt))

)]
≤
∑
s∈S

(
1 + 2σ

√
6Nn(s) log n

)
.

For the first inequality, we use that the last round t′ where state s is selected, we have an upper-
bound on the prior gap Gt′(s) ≤ σ

√
6Nt′(s) log n. Accounting for the last round yields an

upper-bound of σ
√

6Nn(s) log n + 1. For the last inequality, we use E occurring to bound∑
t∈Ts (Rt − µ(At, Xt)) ≤ σ

√
6Nn(s) log n.

This yields the desired bound on total regret,

R(n) ≤ 3|S|+ 2σ
√

6 log n

(∑
s∈S

√
Nn(s)

)

≤ 3|S|+ 2σ

√
6|S| log n

∑
s∈S

Nn(s) = 3|S|+ 2σ
√

6|S|n log n,

where the last inequality comes from the Cauchy–Schwarz inequality.
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C.2 Proof of Corollary 1

The true latent state S∗ ∈ S is random under Bayes regret. In this case, we still assume that we
are given the true model θ∗, so only S∗ ∼ P1 for known P1. We also have that the optimal action
At,∗ = arg maxa∈A µ(a,Xt, S∗; θ∗) is random not only due to context, but also S∗.

We define Ut(a) = arg maxs∈Ct µ(a,Xt, S∗; θ∗) as in mUCB. Note the additional randomness due to
S∗. We can rewrite the Bayes regret as BR(n) = E [R(n;S∗, θ∗)] , where the outer expectation is
over S∗ ∼ P1. The expression inside the expectation can be decomposed as

R(n, S∗, θ∗) = E

[
1
{
Ē
} n∑
t=1

µ(At,∗, Xt, S∗)− µ(At, Xt, S∗)

]

+ E

[
1{E}

n∑
t=1

(µ(At,∗, Xt, S∗)− Ut(At,∗))

]
+ E

[
1{E}

n∑
t=1

(Ut(At)− µ(At, Xt, S∗))

]
,

where E, Ē are defined as in Appendix C.1, and we use the decomposition in Eq. (6).

Each above expression can be bounded exactly as in Theorem 1. The reason is that the original upper
bounds hold for any S∗, and therefore also in expectation over S∗ ∼ P1. This yields the desired
Bayes regret bound.

C.3 Proof of Theorem 2

The only difference in the analysis is that we need to incorporate the additional error due to model
misspecification.

Let E = {∀a ∈ A, x ∈ X , s ∈ S : |µ̂(a, x, s)− µ(a, x, s)| ≤ ε} be the event that model θ̂ has
bounded misspecification and Ē be its complement. Also let E, Ē be defined as in Appendix C.1.

If E does not hold, then the best possible upper-bound on regret is n; fortunately, we assume in the
theorem that the probability of that occurring is bounded by δ. So we can bound the expected n-round
regret as

R(n) = E
[
1
{
Ē
}
R(n)

]
+ E

[
1
{
Ē, E

}
R(n)

]
+ E [1{E, E}R(n)]

≤ δn+ E

[
1
{
Ē, E

} n∑
t=1

µ(At,∗, Xt)− µ(At, Xt)

]

+ E

[
1{E, E}

n∑
t=1

(µ(At,∗, Xt)− Ut(At,∗))

]
+ E

[
1{E, E}

n∑
t=1

(Ut(At)− µ(At, Xt))

]
,

(13)

where we use the regret decomposition in Eq. (5).

The second term in Eq. (13) is small because the probability of Ē is small. Using Lemma 2, and that
total regret is bounded by n, we have, E

[
1
{
Ē, E

}
R(n)

]
≤ nP

(
Ē
)
≤ 2|S|.

If E occurs, the event µ(At,∗, Xt)−Ut(At,∗) > ε for any round t occurs only if s∗ /∈ Ct also occurs.
By the design of Ct in mmUCB, this happens if Gt(s∗) ≥ σ

√
6Nt(s) log n. Since

Gt(s∗) =

t−1∑
`=1

1{B` = s∗} (µ̂(A`, X`)− ε−R`) ≤
t−1∑
`=1

1{B` = s∗} (µ(A`, X`)−R`) ,

we see that event Et says that the opposite is true for all states, including true state s∗. Hence, the
third term in Eq. (13) is bounded by εn.
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Now, consider the last term in Eq. (13). Let Ts = {t ≤ n : Bt = s} denote the set of rounds where
latent state s is selected. We have,

E

[
1{E, E}

n∑
t=1

(Ut(At)− µ(At, Xt))

]

= E

[
1{E, E}

∑
s∈S

(∑
t∈Ts

µ̂(At, Xt, s)− µ(At, Xt)

)]

= εn+ E

[
1{E, E}

∑
s∈S

∑
t∈Ts

(µ̂(At, Xt, s)− ε−Rt +Rt − µ(At, Xt))

]

≤ εn+ E

[
1{E, E}

∑
s∈S

(
Gn(s) +

∑
t∈Ts

(Rt − µ(At, Xt))

)]
≤ εn+

∑
s∈S

(
1 + 2σ

√
6Nn(s) log n

)
.

For the first inequality, we use that the last round t′ where state s is selected, we have an upper-
bound on the prior gap Gt′(s) ≤ σ

√
6Nt′(s) log n. Accounting for the last round yields and

upper-bound of σ
√

6Nn(s) log n + 1. For the last inequality, we use E occurring to bound∑
t∈Ts (Rt − µ(At, Xt)) ≤ σ

√
6Nn(s) log n.

This yields the desired bound on total regret,

R(n) ≤ δn+ 3|S|+ 2εn+ 2σ
√

6 log n

(∑
s∈S

√
Nn(s)

)

≤ δn+ 3|S|+ 2εn+ 2σ

√
6|S| log n

∑
s∈S

Nn(s) = δn+ 3|S|+ 2εn+ 2σ
√

6|S|n log n,

where the last inequality comes from the Cauchy–Schwarz inequality.

C.4 Proof of Corollary 2

Both latent state S∗ ∈ S and model θ∗ ∈ Θ are random, and drawn as S∗, θ∗ ∼ P1, where the prior
P1 is known. In this case, the true model θ∗ is not known to us.

Using marginalized means µ̄(a, x, s), and ε, δ > 0 as defined in the statement of the corollary, we
write,

Gt(s) =

t−1∑
`=1

1{B` = s} (µ̄(A`, X`, s)− ε−R`) ,

and Ut(a) = arg maxs∈Ct µ̄(a,Xt, s). This is in contrast to Gt(s) and Ut(a) in mmUCB, which use
µ̂(a, x, s) from a single model. Conceptually though, both µ̂(a, x, s) and µ̄(a, x, s) are just ε-close
point estimates of µ(a, x, s) due to the assumptions made about the true model θ∗ in the theorem and
corollary, respectively.

We can rewrite the Bayes regret as BR(n) = E [R(n;S∗, θ∗)] , where the outer expectation is over
S∗, θ∗ ∼ P1. The expression inside the expectation can be written as,

R(n;S∗, θ∗) ≤ δn+ E

[
1
{
Ē, E

} n∑
t=1

µ(At,∗, Xt, S∗; θ∗)− µ(At, Xt, S∗; θ∗)

]

+ E

[
1{E, E}

n∑
t=1

(µ(At,∗, Xt, S∗; θ∗)− Ut(At,∗))

]
+ E

[
1{E, E}

n∑
t=1

(Ut(At)− µ(At, Xt, S∗; θ∗))

]
,

where E , E, Ē are defined as in Appendix C.3, and we use the decomposition in Eq. (6).

The expressions can be bounded exactly as in Theorem 2. The upper bound is worst-case and holds
for any S∗, θ∗, and thus also holds after taking an expectation over the prior S∗, θ∗ ∼ P1. This
bounds the Bayes regret, as desired.
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