
A Proof of Lemmas in Section 5
In this section we provide the proofs of lemmas we use in Section 5 for the proof of our main results.
We first introduce the following notations. We denote f(t) = (f(pt,x1), . . . , f(pt,xn))>. Moreover,
we define

ĝ1(t,θ, u) = −αES [∇fφ(f(pt,x), y)h(θ,x)], (A.1)
ĝ2(t,θ, u) = −αES [∇fφ(f(pt,x), y)u∇θh(θ,x)]. (A.2)

A.1 Proof of Lemma 5.1

Here we give the proof of Lemma 5.1. The following lemma summarizes some basic properties of
the activation function h(θ, u).

Lemma A.1. Under Assumptions 4.1 and 4.2, for all x and θ, it holds that |h(θ,x)| ≤
G, ‖∇θh(θ,x)‖2 ≤ G, |∆h(θ,x)| ≤ G, ‖∇θh(θ1, x) − ∇θh(θ2, x)‖2 ≤ G‖θ1 − θ2‖2,
‖∇θ

(
∇θh(θ,x) · θ

)
‖2 ≤ G, ‖∇θ∆θh(θ,x)‖2 ≤ G.

We also give the following two lemmas to characterize the difference between the Gram matrices
defined with p0 and some other distribution p that is close to p0 in 2-Wasserstein distance.

Lemma A.2. Under Assumptions 4.1 and 4.2, for any distribution p withW2(p, p0) ≤
√
d+ 1 and

any r > 0,

‖H1(p)−H1(p0)‖∞,∞ ≤ G2
[√

8d+ 10 + 2r2G2
]
W2(p, p0) + 2G2Ep0 [u2

0 1(|u0 ≥ r|)].

Lemma A.3. Under Assumptions 4.1 and 4.2, for any distribution p withW2(p, p0) ≤
√
d+ 1,

‖H2(p)−H2(p0)‖∞,∞ ≤ 2G2W2(p, p0).

The following lemma gives a tail bound with respect to our initialization distribution p0, which we
frequently utilize for truncation arguments.

Lemma A.4. The initialization distribution p0 satisfies the following tail bound:

Ep0 [u2
0 1(|u0| ≥ r)] ≤

exp(−r2/4)

2
.

We are now ready to provide the proof of Lemma 5.1.

Proof of Lemma 5.1. Here we first give the definition of R in Theorem 4.4 with specific polynomial
dependencies.

R = min
{√

d+ 1, [poly(G, log(n/Λ))n/Λ]−1
}

≤ min
{√

d+ 1,
(

8G2
√

8d+ 10 + 64G2 log(8Λ−1nG2)
)−1

n−1Λ
}
.

Note that the definition of R, the results for Lemmas A.2 and A.3 hold for all p withW2(p, p0) ≤ R.
Now by Lemma A.2, for any p withW2(p, p0) ≤ R and any r > 0,

‖H1(p)−H1(p0)‖∞,∞ ≤ G2R
√

8d+ 10 + 2r2G2R+ 2G2Ep0 [u2
0 1(|u0 ≥ r|)]. (A.3)

Choose r = 2
√

log(8Λ−1nG2), then by Lemma A.4 we have

Ep0 [u2
0 1(|u0 ≥ r|)] ≤

Λ

16nG2
. (A.4)

Moreover, by the definition of R, we have

R ≤
(

8G2
√

8d+ 10 + 16G2r2
)−1

n−1Λ. (A.5)
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Plugging the bounds on Ep0 [u2
0 1(|u0 ≥ r|)] and R given by (A.4) and (A.5) into (A.3) gives

‖H1(p)−H1(p0)‖∞,∞ ≤ G2R
√

8d+ 10 + 2r2G2R+G2Ep0 [u2
0 1(|u0 ≥ r|)] (A.6)

≤ Λ

8n
+

Λ

8n
(A.7)

=
Λ

4n
. (A.8)

By Lemma A.3, for any distribution p withW2(p, p0) ≤ R,

‖H2(p)−H2(p0)‖∞,∞ ≤ 2G2R. (A.9)

The definition of R also leads to the following bound:

R ≤ (8G2)−1n−1Λ. (A.10)

Therefore we can plug the bound (A.10) into (A.9), which gives

‖H2(p)−H2(p0)‖∞,∞ ≤
Λ

4n
. (A.11)

Combining (A.6) and (A.11) further gives

‖H(p)−H(p0)‖∞,∞ ≤ ‖H1(p)−H1(p0)‖∞,∞ + ‖H2(p)−H2(p0)‖∞,∞ ≤
Λ

2n
.

Then by standard matrix perturbation bounds, we have λmin(H(p)) ≥ λmin(H(p0)) − ‖H(p) −
H(p0)‖2 ≥ λmin(H(p0))− n‖H(p)−H(p0)‖∞,∞ ≥ Λ/2, which finishes the proof.

A.2 Proof of Lemma 5.2

Here we give the proof of Lemma 5.2. The following lemma summarizes some basic calculation on
the training dynamics. Here we remind the readers that the definitions of ĝ1(t,θ, u) and ĝ2(t,θ, u)
are given in (A.1) and (A.2) respectively.

Lemma A.5. Let pt be the solution of PDE (3.4). Then the following identity holds.

∂L(pt)

∂t
= −

∫
Rd+1

pt(θ, u)‖ĝ1(t,θ, u)‖22dθdu−
∫
Rd+1

pt(θ, u)|ĝ2(t,θ, u)|2dθdu

+ λ

∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu. (A.12)

Lemma A.5 decomposes the time derivative of L(pt) into several terms. The following two lemmas
further provides bounds on these terms. Note that by the definition in (A.1) and (A.2), Lemma A.6
below essentially serves as a bound on the first two terms on the right-hand side of (A.12).

Lemma A.6. Under Assumptions 4.1, 4.2 and 4.3, let λ0 be defined in Theorem 4.4. Then for t ≤ t∗,
it holds that∫
Rd+1

pt(θ, u)
[
|ES [(f(pt,x)− y)h(θ,x)]|2 + ‖ES [(f(pt,x)− y)u∇θh(θ,x)]‖22

]
dθdu ≥ λ2

0

2
L(pt).

Lemma A.7. Under Assumptions 4.1 and 4.2, let A1 be defined in Theorem 4.4. Then for t ≤ t∗,it
holds that ∫

Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu ≤ 2αA1

√
L(pt).

We now present the proof of Lemma 5.2, which is based on the calculations in Lemmas A.5, A.6 and
A.7 as well as the application of Gronwall’s inequality.
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Proof of Lemma 5.2. By Lemma A.5, we have

∂L(pt)

∂t
= −

[ ∫
Rd+1

pt(θ, u)‖ĝ1(t,θ, u)‖22dθdu+

∫
Rd+1

pt(θ, u)|ĝ2(t,θ, u)|2dθdθdu
]

︸ ︷︷ ︸
I1

+ λ

∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇ · ĝ1 −∇ · ĝ2]dθdu︸ ︷︷ ︸
I2

., (A.13)

For I1, we have

I1 = 4α2

∫
Rd+1

pt(θ, u)
[
|ES [(f(pt,x)− y)h(θ,x)]|2 (A.14)

+ ‖ES [(f(pt,x)− y)u∇θh(θ,x)]‖22
]
dθdu (A.15)

≥ 2α2λ2
0L(pt), (A.16)

where the equation follows by the definitions of ĝ1(t,θ, u), ĝ2(t,θ, u) in (A.1), (A.1), and the
inequality follows by Lemma A.6. For I2, we directly apply Lemma A.7 and obtain

I2 ≤ 2A1αλ
√
L(pt). (A.17)

Plugging the bounds (A.16) and (A.17) into (A.13) yields

∂L(pt)

∂t
≤ −2α2λ2

0L(pt) + 2A1αλ
√
L(pt). (A.18)

Now denote V (t) =
√
L(pt)−A1λα

−1λ−2
0 . Then (A.18) implies that4

∂V (t)

∂t
≤ −α2λ2

0V (t).

By Gronwall’s inequality we further get

V (t) ≤ exp(−α2λ2
0t)V (0).

By V (0) =
√
L(p0)−A1λα

−1λ−2
0 ≤

√
L(p0) ≤ 1, we have√

L(pt) ≤ exp(−α2λ2
0t) +A1λα

−1λ−2
0 . (A.19)

This completes the proof.

A.3 Proof of Lemma 5.3

In this subsection we present the proof of Lemma 5.3.

Lemma A.8. Under Assumptions 4.1, 4.2 and 4.3, let λ0 be defined in Theorem 4.4. Then for t ≤ t∗
the following inequality holds

DKL(pt||p0) ≤ 2A2
2α
−2λ−4

0 + 2A2
2A

2
1λ

2λ−4
0 t2.

If λ 6= 0, the KL distance bound given by Lemma A.8 depends on t, we can give a tighter bound by
the monotonically deceasing property of Q(pt) given by the following lemma, which states that the
energy functional is monotonically decreasing during training. Note that this is not a new result, as it
is to some extent an standard result, and has been discussed in Mei et al. [28, 27], Fang et al. [17].

Lemma A.9. Let pt be the solution of PDE (3.4). Then Q(pt) is monotonically deceasing, i.e.,

∂Q(pt)

∂t
≤ 0. (A.20)

4The derivation we present here works as long as L(pt) 6= 0. A more thorough but complicated analysis can
deal with the case when L(pt) = 0 for some t. However for simplicity we omit the more complicated proof,
since loss equaling to zero is a trivial case for a learning problem.
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Proof of Lemma 5.3. Notice that for λ = 0, Lemma A.8 directly implies the conclusion. So in the
rest of the proof we consider the situation where λ > 0. Denote t0 = A−1

1 α−1λ−1, we consider two
cases t0 ≥ t∗ and t0 < t∗ respectively.

If t0 ≥ t∗, then for t ≤ t∗ we have t ≤ t0
DKL(pt||p0) ≤ 2A2

2α
−2λ−4

0 + 2A2
2A

2
1λ

2λ−4
0 t2

≤ 2A2
2α
−2λ−4

0 + 2A2
2A

2
1λ

2λ−4
0 t20

= 4A2
2α
−2λ−4

0

≤ 4A2
2α
−2λ−4

0 + 4A2
1λα

−2λ−4
0 ,

where the first inequality is by Lemma A.8 and the second inequality is by t ≤ t0.

If t0 < t∗, then for t ≤ t0, we also have

DKL(pt||p0) ≤ 4A2
2α
−2λ−4

0 ≤ 4A2
2α
−2λ−4

0 + 4A2
1λα

−2λ−4
0 .

For t0 < t ≤ t∗, consider Q(pt) = L(pt) + λDKL(pt||p0). The monotonically deceasing property
of Q(pt) in Lemma A.9 implies that,

DKL(pt||p0) ≤ λ−1Q(pt) ≤ λ−1Q(pt0). (A.21)

Now we bound Q(pt0). We first bound L(pt0). Squaring both sides of the result of Lemma 5.2 and
applying Jensen’s inequality now gives

L(pt) ≤ 2 exp(−2α2λ2
0t) + 2A2

1λ
2α−2λ−4

0 . (A.22)

Plugging t0 = A−1
1 α−1λ−1 into (A.22) gives

L(pt0) ≤ 2 exp(−2α2λ2
0t0) + 2A2

1λ
2α−2λ−4

0

= 2 exp
(
− 2A−1

1 λ−1αλ2
0

)
+ 2A2

1λ
2α−2λ−4

0

≤ 4A2
1λ

2α−2λ−4
0 , (A.23)

where the last inequality is by exp(−2z) = [exp(−z)]2 ≤ [1/z]2 for any z > 0. We then bound
DKL(pt0 ||p0). By Lemma A.8, we have

DKL(pt0 ||p0) ≤ 2A2
2α
−2λ−4

0 + 2A2
2A

2
1λ

2λ−4
0 t20 = 4A2

2α
−2λ−4

0 . (A.24)

Plugging (A.23) and (A.24) into (A.21) gives

DKL(pt||p0) ≤ λ−1Q(pt0) = λ−1L(pt0) +DKL(pt0 ||p0) ≤ 4A2
2α
−2λ−4

0 + 4A2
1λα

−2λ−4
0 .

This completes the proof.

A.4 Proof of Lemma 5.5

Proof of Lemma 5.5. Our proof is inspired by the Rademacher complexity bound for discrete distri-
butions given by Meir and Zhang [29]. Let γ be a parameter whose value will be determined later in
the proof. We have

Rn(FKL(M)) =
α

γ
· Eξ

[
sup

p:DKL(p||p0)≤M

∫
Rd+1

γ

n

n∑
i=1

ξiuh(θ,xi)p(θ, u)dθdu

]

≤ α

γ
·

{
M + Eξ log

[∫
exp

(
γ

n

n∑
i=1

ξiuh(θ,xi)

)
p0(θ, u)dθdu

]}

≤ α

γ
·

{
M + log

[∫
Eξ exp

(
γ

n

n∑
i=1

ξiuh(θ,xi)

)
p0(θ, u)dθdu

]}
,

where the first inequality follows by the Donsker-Varadhan representation of KL-divergence [14],
and the second inequality follows by Jensen’s inequality. Note that ξ1, . . . , ξn are i.i.d. Rademacher
random variables. By standard tail bound we have

Eξ exp

[
γ

n

n∑
i=1

ξiuh(θ,xi)

]
≤ exp

[
γ2

2n2

n∑
i=1

u2h2(θ,xi)

]
.
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Therefore

Rn(FKL(M)) ≤ α

γ
·

{
M + log

[∫
exp

(
γ2

2n2

n∑
i=1

u2h2(θ,xi)

)
p0(θ, u)dθdu

]}
.

Now by the assumption that h(θ,x) ≤ G, we have∫
exp

(
γ2

2n2

n∑
i=1

u2h2(θ,xi)

)
p0(θ, u)dθdu ≤

∫
exp

(
γ2G2

2n
u2

)
p0(θ, u)dθdu

=
1√
2π
·
√

2π

1− γ2G2n−1

=

√
1

1− γ2G2n−1
.

Therefore we have

Rn(FKL(M))) ≤ α

γ
·

[
M + log

(√
1

1− γ2G2n−1

)]
.

Setting γ = G−1
√
Mn and applying the inequality log(1− z) ≥ −2z for z ∈ [0, 1/2] gives

Rn(FKL(M))) ≤ Gα√
Mn

·

[
M + log

(√
1

1−M

)]
≤ 2Gα

√
M

n
.

This completes the proof.

A.5 Proof of Lemma 5.6

Proof of Lemma 5.6. We first introduce the following ramp loss function, which is frequently used
in the analysis of generalization bounds [7, 23] for binary classification problems.

`ramp(y′, y) =

{
0 if y′y ≥ 1/2,
−2y′y + 1, if 0 ≤ y′y < 1/2,
1, if y′y < 0.

Then by definition, we see that `ramp(y′, y) is 2-Lipschitz in the first argument, `ramp(y, y) = 0,
|`ramp(y′, y)| ≤ 1, and

`0-1(y′, y) ≤ `ramp(y′, y) ≤ |y′ − y| (A.25)

for all y′ ∈ R and y ∈ {±1}. By the Lipschitz and boundedness properties of the ramp loss, we
apply the standard properties of Rademacher complexity [8, 30, 33] and obtain that with probability
at least 1− δ,

ED[`ramp(f(x), y)/2] ≤ ES [`ramp(f(x), y)/2] + 2Rn(FKL(M)) + 3

√
log(2/δ)

2n

for all f ∈ FKL(M). Now we have

ED[`0-1(f(x), y)] ≤ 2ED[`ramp(f(x), y)/2]

≤ ES [`ramp(f(x), y)] + 4Rn(FKL(M)) + 6

√
log(2/δ)

2n

≤ ES [|f(x)− y|] + 4Rn(FKL(M)) + 6

√
log(2/δ)

2n

≤
√

ES [|f(x)− y|2] + 4Rn(FKL(M)) + 6

√
log(2/δ)

2n
.

Here the first and third inequalities follow by the first and second parts of the inequality in (A.25)
respectively, and the last inequality uses Jensen’s inequality. This completes the proof.
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B Proof of Lemmas in Appendix A
In this section we provide the proof of technical lemmas we use in Appendix A.

B.1 Proof of Lemma A.1

Here we provide the proof of Lemma A.1, which is essentially based on direct calculations on the
activation function and the assumption that ‖x‖2 ≤ 1.

Proof of Lemma A.1. By h(θ,x) = h̃(θ>x), we have the following identities.

∇θh(θ,x) = h̃′(θ>x)x, ∆h(θ>x) =
∑
i=1

h̃′′(θ>x)x2
i = h̃′′(θ>x)‖x‖22, ∇θh(θ,x) · θ = h̃′(θ>x)θ>x.

By |h̃(z)| ≤ G in Assumption 4.2 and ‖x‖2 ≤ 1 in Assumption 4.1, we have

|h(θ,x)| ≤ G,

which gives the first bound. The other results can be derived similarly, which we present as follows.
By |h̃′(z)| ≤ G and ‖x‖2 ≤ 1, we have

‖∇θh(θ,x)‖2 = ‖h̃′(θ>x)x‖2 ≤ G,

which gives the second bound. By |h̃′′(z)| ≤ G and ‖x‖2 ≤ 1, we have

|∆h(θ,x)| = |h̃′′(θ>x)‖x‖22| ≤ G.

Moreover, based on the same assumptions we also have

‖∇θh(θ1,x)−∇θh(θ2,x)‖2 = ‖h̃′(θ>1 x)x− h̃′(θ>2 x)x‖2
≤ |h̃′(θ>1 x)− h̃′(θ>2 x)|
≤ G|θ>1 x− θ>2 x|
≤ G‖θ>1 − θ>2 ‖2.

Therefore the third and fourth bounds hold. Applying the bound |
(
zh̃′(z)

)′| ≤ G and ‖x‖2 ≤ 1
gives the fifth bound:

‖∇θ

(
∇θh(θ,x) · θ

)
‖2 = ‖∇θ

(
h̃′(θ>x)θ>x

)
‖2 = ‖x‖2

∣∣(zh̃′(z))′|z=θ>x

∣∣ ≤ G.
Finally, by |h̃′′′(z)| ≤ G and ‖x‖2 ≤ 1, we have

‖∇θ∆θh(θ,x)‖2 = ‖∇θh̃
′′(θ>x)‖2‖x‖22 ≤ |h̃′′′(θ>x)|‖x‖32 ≤ G.

This completes the proof.

B.2 Proof of Lemma A.2

The following lemma bounds the second moment of a distribution p that is close to p0 in 2-Wasserstein
distance.
Lemma B.1. ForW2(p, p0) ≤

√
d+ 1, the following bound holds:

Ep(‖θ‖22 + u2) ≤ 4d+ 4

The following lemma is a reformulation of Lemma C.8 in Xu et al. [38]. For completeness, we
provide its proof in Appendix B.

Lemma B.2. ForW2(p, p0) ≤
√
d+ 1, let g(u,θ) : Rd+1 → R be a C1 function such that√

∇ug(u,θ)2 + ‖∇θg(u,θ)‖2 ≤ C1

√
u2 + ‖θ‖22 + C2,∀x ∈ Rd

′

for some constants C1, C2 ≥ 0. Then∣∣Ep[g(u,θ)]− Ep0 [g(u0,θ0)]
∣∣ ≤ (2C1

√
d+ 1 + C2

)
W2(p, p0).
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Proof of Lemma A.2. Let π∗ be the optimal coupling ofW2(p, p0). Then we have∣∣H1(p)i,j −H1(p0)i,j
∣∣ =

∣∣Eπ∗ [u2∇θh(θ,xi) · ∇θh(θ,xj)]− Eπ∗ [u2
0∇θh(θ0,xi) · ∇θh(θ0,xj)]

∣∣
≤
∣∣Eπ∗ [(u2 − u2

0)∇θh(θ, xi) · ∇θh(θ, xj)]
∣∣︸ ︷︷ ︸

I1

+
∣∣Eπ∗[u2

0

(
∇θh(θ, xi) · ∇θh(θ, xj)−∇θh(θ0, xi) · ∇θh(θ0, xj)

)]∣∣︸ ︷︷ ︸
I2

.

(B.1)

We first bound I1 as follows.

I1 ≤ G2Eπ∗ [|u2 − u2
0|]

≤ G2
√
Eπ∗ [(u− u0)2]

√
Eπ∗ [(u+ u0)2]

≤ G2W2(p, p0)
√

2Ep[u2] + 2Ep0 [u2
0]

≤ G2W2(p, p0)
√

8d+ 10, (B.2)

where the first inequality is by ‖∇θh(θ, xi)‖2 ≤ G in Lemma A.1, the second inequality is by
Cauchy-Schwarz inequality, the third inequality is by Jensen’s inequality and the last inequality is by
Lemma B.1. Next, We bound I2 in (B.1). For any given r > 0 we have

I2 ≤ Eπ∗
[
u2

0 1(|u0 < r|)
∣∣∇θh(θ, xi) · ∇θh(θ, xj)−∇θh(θ0, xi) · ∇θh(θ0, xj)

∣∣]
+ Eπ∗

[
u2

0 1(|u0 ≥ r|)
∣∣∇θh(θ, xi) · ∇θh(θ, xj)−∇θh(θ0, xi) · ∇θh(θ0, xj)

∣∣]
≤ r2Eπ∗

[∣∣∇θh(θ, xi) · ∇θh(θ, xj)−∇θh(θ0, xi) · ∇θh(θ0, xj)
∣∣]+ 2G2Eπ∗ [u2

0 1(|u0 ≥ r|)],
(B.3)

where the second inequality is by ‖∇θh(θ, xi)‖2 ≤ G Lemma A.1. We further bound the first term
on the right-hand side of (B.3),

Eπ∗
[∣∣∇θh(θ, xi) · ∇θh(θ, xj)−∇θh(θ0, xi) · ∇θh(θ0, xj)

∣∣]
≤ Eπ∗

[∣∣∇θh(θ, xi) ·
(
∇θh(θ, xj)−∇θh(θ0, xj)

)∣∣]
+ Eπ∗

[∣∣∇θh(θ0, xj) ·
(
∇θh(θ, xi)−∇θh(θ0, xi)

)∣∣]
≤ 2G2W2(p, p0), (B.4)

where the last inequality is by ‖∇θh(θ,x)‖2 ≤ G and ‖∇θh(θ,x)−∇θh(θ0,x)‖2 ≤ G‖θ− θ0‖2
in Lemma A.1. Plugging (B.4) into (B.3) yields

I2 ≤ 2r2G2W2(p, p0) + 2G2Eπ∗ [u2
0 1(|u0 ≥ r|)]. (B.5)

Further plugging (B.2) and (B.5) into (B.1), we obtain∣∣H1(p)i,j −H1(p0)i,j
∣∣ ≤ G2W2(p, p0)

√
8d+ 10 + 2r2G2W2(p, p0)

+ 2G2Ep0 [u2
0 1(|u0 ≥ r|)].

This finishes the proof.

B.3 Proof of Lemma A.3

Here we provide the proof of Lemma A.3, which is essentially based on a direct application of
Lemma A.1 and the definition of 2-Wasserstein distance.

Proof of Lemma A.3. Denote Ĥi,j(θ, u) = h(θ,xi)h(θ,xj), then we have H2(p)i,j =

Ep[Ĥi,j(θ, u)]. Calculating the gradient of Ĥi,j(θ, u), we have

∇uĤi,j(θ, u) = 0, ‖∇θĤi,j(θ, u)‖2 ≤ 2‖∇θh(θ,xi)‖2|h(θ,xj)| ≤ 2G2,

where the second inequality is by Lemma A.1 . Applying Lemma B.2 gives

|H2(p)i,j −H2(p0)i,j | ≤ 2G2W2(p, p0).

This finializes our proof.
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B.4 Proof of Lemma A.4

Lemma A.4 gives a tail bound on p0, which is essentially a basic property of Gaussian distribution.
For completeness we present the detailed proof as follows.

Proof of Lemma A.4. By the definition of p0 we have

Ep0 [u2
0 1(|u0| ≥ r)] =

2√
2π

∫ ∞
r

u2
0 exp(−u2

0/2)du0 =
2√
π

∫ ∞
r2/2

t1/2 exp(−t)dt

Now by the fact that 4z/π ≤ exp(z),∀z ∈ R, we have

Ep0 [u2
0 1(|u0 ≥ r|)] ≤

∫ ∞
r2/2

exp(−t/2)dt =
1

2
exp

(
− r2

4

)
,

which finalizes our proof.

B.5 Proof of Lemma A.5

We first introduce some notations on the first variations. For i ∈ [n], ∂f(t)i∂pt
, ∂L(pt)

∂pt
, ∂DKL(pt||p0)

∂pt
and

∂Q(pt)
∂pt

are defined as follows.

∂f(t)i
∂pt

: = αuh(θ,xi), (B.6)

∂L(pt)

∂pt
: = ES

[
∇y′φ

(
f(pt,x), y

)
· αuh(θ,x)

]
, (B.7)

∂DKL(pt||p0)

∂pt
: = log(pt/p0) + 1, (B.8)

∂Q(pt)

∂pt
: =

∂L(pt)

∂pt
+ λ

∂DKL(pt||p0)

∂pt

= ES
[
∇y′φ

(
f(pt,x), y

)
· αuh(θ,x) + λ log(pt/p0) + λ

]
. (B.9)

The following lemma summarizes some direct calculations on the relation between these first
variations defined above and the time derivatives of f(t)i, L(pt), DKL(pt||p0) and Q(pt). Note
that these results are well-known results in literature, but for completeness we present the detailed
calculations in Appendix C.3.

Lemma B.3. Let ∂f(t)i∂pt
, ∂L(pt)

∂pt
, ∂DKL(pt||p0)

∂pt
, ∂Q(pt)

∂pt
be the first variations defined in (B.6), (B.7),

(B.8) and (B.9). Then

∂[f(t)i − yi]
∂t

=

∫
Rd+1

∂f(t)i
∂pt

dpt
dt
dθdu,

∂L(pt)

∂t
=

∫
Rd+1

∂L(pt)

∂pt

dpt
dt
dθdu,

∂DKL(pt||p0)

∂t
=

∫
Rd+1

∂DKL(pt||p0)

∂pt

dpt
dt
dθdu,

∂Q(pt)

∂t
=

∫
Rd+1

∂Q(pt)

∂pt

dpt
dt
dθdu.

The following lemma summarizes the calculation of the gradients of the first variations defined in
(B.7), (B.8) and (B.9).
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Lemma B.4. Let ∂L(pt)
∂pt

, ∂DKL(pt||p0)
∂pt

and ∂Q(pt)
∂pt

be the first variations defined in (B.7), (B.8) and
(B.9). Then their gradients with respect to u and θ are given as follows:

∇u
∂L(pt)

∂pt
= −ĝ1(t,θ, u),∇θ

∂L(pt)

∂pt
= −ĝ2(t,θ, u),

∇u
∂DKL(pt||p0)

∂pt
= u+∇θ log(pt),∇θ

∂DKL(pt||p0)

∂pt
= θ +∇θ log(pt),

∇∂Q(pt)

∂pt
= ∇∂L(pt)

∂pt
+ λ∇∂DKL(pt||p0)

∂pt
.

Moreover, the PDE (3.4) can be written as
dpt
dt

= ∇ ·
[
pt(θ, u)∇∂Q(pt)

∂pt

]
.

Proof of Lemma A.5. By Lemma B.3, we have the following chain rule
∂L(pt)

∂t
=

∫
Rd+1

∂L(pt)

∂pt

dpt
dt
dθdu

=

∫
Rd+1

∂L(pt)

∂pt
∇ ·
[
pt(θ, u)∇∂Q(pt)

∂pt

]
dθdu

= −
∫
Rd+1

pt(θ, u)

[
∇∂L(pt)

∂pt

]
·
[
∇∂Q(pt)

∂pt

]
dθdu

= −
∫
Rd+1

pt(θ, u)

[
∇∂L(pt)

∂pt

]
·
[
∇∂L(pt)

∂pt

]
dθdu︸ ︷︷ ︸

I1

− λ
∫
Rd+1

pt(θ, u)

[
∇∂L(pt)

∂pt

]
·
[
∇∂D(pt||p0)

∂pt

]
dθdu︸ ︷︷ ︸

I2

, (B.10)

where the second and last equation is by Lemma B.4, the third inequality is by apply integration by
parts. We now proceed to calculate I1 and I2 based on the calculations of derivatives in Lemma B.4.
For I1, we have

I1 =

∫
Rd+1

pt(θ, u)‖ĝ1(t,θ, u)‖22dθdu+

∫
Rd+1

pt(θ, u)|ĝ2(t,θ, u)|2dθdθdu. (B.11)

Similarly, for I2, we have

I2 =

∫
Rd+1

pt(θ, u)[−ĝ1(t,θ, u)] · [u+∇u log(pt)]dθdu

+

∫
Rd+1

pt(θ, u)[−ĝ2(t,θ, u)] · [θ +∇θ log(pt)]dθdu

= −
∫
Rd+1

pt(θ, u)[ĝ1(t,θ, u) · u+ ĝ2(t,θ, u)θ]dθdu

−
∫
Rd+1

[ĝ1(t,θ, u) · ∇upt(t,θ, u) + ĝ2(t,θ, u) · ∇θpt(t,θ, u)]dθdu

= −
∫
Rd+1

pt(θ, u)[ĝ1(t,θ, u) · u+ ĝ2(t,θ, u)θ]dθdu

+

∫
Rd+1

pt(t,θ, u)[∇u · ĝ1(t,θ, u) +∇θ · ĝ2(t,θ, u)]dθdu, (B.12)

where the second equation is by pt∇ log(pt) = ∇pt and the third equation is by applying integration
by parts. Plugging (B.11) and (B.12) into (B.10), we get

∂L(pt)

∂t
= −

∫
Rd+1

pt(θ, u)‖ĝ1(t,θ, u)‖22dθdu−
∫
Rd+1

pt(θ, u)|ĝ2(t,θ, u)|2dθdθdu

+ λ

∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu.
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This completes the proof.

B.6 Proof of Lemma A.6

Here we prove Lemma A.6, which is based on its connection to the Gram matrix of neural tangent
kernel.

Proof of Lemma A.6. We first remind the readers of the definitions of the Gram matrices in (3.6).
Let b(pt) = (f(pt,x1) − y1, . . . , f(pt,xn) − yn)> ∈ Rn. Then by the definitions of H1(pt) and
H2(pt) in (3.6), we have∫

Rd+1

pt(θ, u)
[
|ES [(f(pt,x)− y)h(θ,x)]|2dθdu =

1

n2
b(pt)

>H1(pt)b(pt),∫
Rd+1

pt(θ, u)
[
‖ES [(f(pt,x)− y)u∇θh(θ,x)]‖22

]
dθdu =

1

n2
b(pt)

>H2(pt)b(pt).

Therefore by (3.6) we have∫
Rd+1

pt(θ, u)
[
|ES [(f(pt,x)− y)h(θ,x)]|2 + ‖ES [(f(pt,x)− y)u∇θh(θ,x)]‖22

]
dθdu

=
1

n2
b(pt)

>H(pt)b(pt). (B.13)

By the definition of t∗, for t ≤ t∗ we haveW2(pt, p0) ≤ R, and therefore applying Lemma 5.1 gives

1

n2
b(pt)

>H(pt)b(pt) ≥
Λ‖b(pt)‖22

2n2
=
λ2

0

2
L(pt), (B.14)

where the equation follows by the definition of b(pt). Plugging (B.14) into (B.13) completes the
proof.

B.7 Proof of Lemma A.7

Lemma B.5. Under Assumptions 4.1 and 4.2, for all W(p, p0) ≤
√
d+ 1 and x the following

inequality holds. ∣∣Ep[uh(θ,x) + u∇h(θ,x) · θ − u∆h(θ,x)
]∣∣ ≤ A1,

where A1 is defined in Theorem 4.4.

The proof of Lemma A.7 is based on direct applications of Lemma B.5. We present the proof as
follows.

Proof of Lemma A.7. We have the following identities:

ĝ1(t,θ, u) = −ES [∇fφ(f(pt,x), y)αh(θ,x)],

ĝ2(t,θ, u) = −ES [∇fφ(f(pt,x), y)αu∇θh(θ,x)],

∇u · ĝ1(t,θ, u) = 0,

∇θ · ĝ2(t,θ, u) = −ES [∇fφ(f(pt,x), y)αu∆h(θ,x)].

Base on these identities we can derive∣∣∣∣ ∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu

∣∣∣∣
=

∣∣∣∣αES[∇fφ(f(pt,x), y)Ept
[(
uth(θt,xi) + ut∇h(θt,xi) · θt − ut∆h(θt,xi)

)]]∣∣∣∣
≤ 2αA1ES [|f(pt,x)− y|]

≤ 2αA1

√
L(pt),

where the first inequality is by Lemma B.5, the second inequality is by Jensen’s inequality.
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B.8 Proof of Lemma A.8

The following lemma summarizes the calculation on the time derivative of DKL(pt||p0).
Lemma B.6. Let pt be the solution of PDE (3.4). Then the following identity holds.

∂DKL(pt||p0)

∂t
= −λ

∫
Rd+1

pt(θ, u)‖θ +∇θ log(pt)‖22 − λ
∫
Rd+1

pt(θ, u)|u+∇u log(pt)|2

+

∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu.

In the calculation given by Lemma B.6, we can see that the (potentially) positive term in ∂DKL(pt||p0)
∂t

naturally coincides with the corresponding term in ∂L(pt)
∂t given by Lemma A.5, and a bound of it has

already been given in Lemma A.7. However, for the analysis of the KL-divergence term, we present
the following new bound, which eventually leads to a sharper result.
Lemma B.7. Under Assumptions 4.1 and 4.2, let A2 be defined in Theorem 4.4. Then for t ≤ t∗,it
holds that∫

Rd+1

p(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu ≤ 2αA2

√
L(pt)

√
DKL(pt||p0).

Proof of Lemma A.8. By Lemma B.6,
∂DKL(pt||p0)

∂t
= −λ

∫
Rd+1

pt(θ, u)‖θ +∇θ log(pt)‖22 − λ
∫
Rd+1

pt(θ, u)|u+∇u log(pt)|2

+

∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu

≤ 2A2α
√
L(pt)

√
DKL(pt||p0), (B.15)

where the inequality is by Lemma B.7. Notice that
√
DKL(p0||p0) = 0,

√
DKL(pt||p0) is differen-

tiable at
√
DKL(pt||p0) 6= 0 and from (B.15) the derivative

∂
√
DKL(pt||p0)

∂t
=
∂DKL(pt||p0))

∂t

1

2
√
DKL(pt||p0)

≤ A2α
√
L(pt),

which implies √
DKL(pt||p0) ≤

∫ t

0

A2α
√
L(ps)ds

≤ A2α

∫ t

0

exp(−α2λ2
0s) +A1λα

−1λ−2
0 ds

≤ A2α
−1λ−2

0 +A2A1λλ
−2
0 t,

where the second inequality holds due to Lemma 5.2. Squaring both sides and applying Jensen’s
inequality now gives

DKL(pt||p0) ≤ 2A2
2α
−2λ−4

0 + 2A2
2A

2
1λ

2λ−4
0 t2.

This completes the proof.

B.9 Proof of Lemma A.9

Proof of Lemma A.9. By Lemma B.3, we get
∂Q(pt)

∂t
=

∫
Rd+1

∂Q(pt)

∂pt

dpt
dt
dθdu

=

∫
Rd+1

∂Q(pt)

∂pt
∇ ·
[
pt(θ, u)∇∂Q(pt)

∂pt

]
dθdu

= −
∫
Rd+1

pt(θ, u)

∥∥∥∥∇∂Q(pt)

∂pt

∥∥∥∥2

2

dθdu

= −
∫
Rd+1

pt(θ, u)‖ĝ2 − λθ − λ∇θ log(pt)‖22 −
∫
Rd+1

pt(θ, u)|ĝ1 − λu− λ∇u log(pt)|2

≤ 0,
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where the third equation is by applying integration by parts and the fourth equation is by Lemma
B.4.

C Proof of Auxiliary Lemmas in Appendix B
C.1 Proof of Lemma B.1

Proof of Lemma B.1. Let π∗(p0, p) be the coupling that achieves the 2-Wasserstein distance between
p0 and p. Then by definition,

Eπ∗(‖θ‖22 + u2) ≤ Eπ∗(2‖θ − θ0‖22 + 2‖θ0‖22 + 2(u− u0)2 + 2u2
0)

≤ 2R2 + 2d+ 2

≤ 4d+ 4,

where the last inequality is by the assumption thatW2(p, p0) ≤
√
d+ 1. This finishes the proof.

C.2 Proof of Lemma B.2

Proof of Lemma B.2. By Lemma C.8 in Xu et al. [38], we have that∣∣∣∣Ep[g(u,θ)]− Ep0 [g(u0,θ0)]

∣∣∣∣ ≤ (C1σ + C2)W2(p, p0),

where σ2 = max{Ep[u2 + θ2],Ep0 [u2
0 + θ2

0]}. Then by Lemma B.1, we get σ ≤ 2
√
d+ 1.

Substituting the upper bound of σ into the above inequality completes the proof.

C.3 Proof of Lemma B.3

Proof of Lemma B.3. By chain rule and the definition of f(t), we have

∂[f(t)i − yi]
∂t

=
d

dt

∫
Rd+1

αuh(θ,xi)pt(θ, u)dθdu

=

∫
Rd+1

αuh(θ,xi)
dpt
dt

(θ, u)dθdu

=

∫
Rd+1

∂f(t)i
∂pt

dpt
dt
dθdu,

where the last equation follows by the definition of the first variation ∂f(t)i
∂pt

. This proves the first
identity. Now we bound the second identity,

∂L(pt)

∂t
= ES

[
∇y′φ

(
f(pt,x), y

) d
dt
f(pt,x)

]
= ES

[
∇y′φ

(
f(pt,x), y

) d
dt

∫
Rd+1

αuh(θ,x)pt(θ, u)dθdu

]
= ES

[
∇y′φ

(
f(pt,x), y

) ∫
Rd+1

αuh(θ,x)
dpt(θ, u)

dt
dθdu

]
=

∫
Rd+1

∂L(pt)

∂pt

dpt
dt
dθdu,

where the last equation follows by the definition of the first variation ∂L(pt)
∂pt

. This proves the second

identity. Similarly, for ∂DKL(pt||p0)
∂t , we have

∂DKL(pt||p0)

∂t
=

d

dt

∫
pt log(pt/p0)dθdu =

∫
dpt
dt

log(pt/p0) +
dpt
dt
dθdu =

∫
Rd+1

∂DKL(pt||p0)

∂pt

dpt
dt
dθdu.

23



Notice that Q(pt) = L(pt) + λDKL(pt||p0), so we have

∂Q(pt)

∂t
=
∂L(pt)

∂t
+ λ

∂DKL(pt||p0)

∂t

=

∫
Rd+1

∂L(pt)

∂pt

dpt
dt
dθdu+ λ

∫
Rd+1

∂DKL(pt||p0)

∂pt

dpt
dt
dθdu

=

∫
Rd+1

∂Q(pt)

∂pt

dpt
dt
dθdu,

where the last equation is by the definition ∂Q(pt)
∂pt

= ∂L(pt)
∂pt

+ λ∂DKL(pt||p0)
∂pt . This completes the

proof.

C.4 Proof of Lemma B.4

Proof of Lemma B.4. By Lemma B.3,we have

∇u
∂L

∂pt
= ∇uES

[
∇y′φ

(
f(pt,x), y

)
αuh(θ,x)

]
= −ĝ1(t,θ, u),

∇θ
∂L

∂pt
= ∇θES

[
∇y′φ

(
f(pt,x), y

)
αuh(θ,x)

]
= −ĝ2(t,θ, u),

∇u
∂DkL(pt||p0)

∂pt
= ∇u(log(pt/p0) + 1) = u+∇u log(pt),

∇θ
∂DkL(pt||p0)

∂pt
= ∇θ(log(pt/p0) + 1) = θ +∇θ log(pt).

This proves the first four identities. For the last one, by the definition

∇∂Q(pt)

∂pt
= ∇∂L(pt)

∂pt
+ λ∇∂DKL(pt||p0)

∂pt
,

we have

∇ ·
[
pt(θ, u)∇∂Q(pt)

∂pt

]
= ∇ ·

[
pt(θ, u)∇ ∂L

∂pt

]
+ λ∇ ·

[
pt(θ, u)∇∂DKL(pt||p0)

∂pt

]
= −∇u · [pt(θ, u)ĝ1]−∇θ · [pt(θ, u)ĝ2] + λ∇u · [pt(θ, u)u]

+ λ∇θ · [pt(θ, u)θ] + λ∇ · [pt∇ log(pt)]

= −∇u · [pt(θ, u)g1(t,θ, u)]−∇θ · [pt(θ, u)g2(t,θ, u)] + λ∆[pt(θ, u)]

=
dpt
dt
,

where the third equation is by the definition g1(t,θ, u) = ĝ1(t,θ, u)−λu, g2(t,θ, u) = ĝ2(t,θ, u)−
λθ and pt∇ log(pt) = ∇pt.

C.5 Proof of Lemma B.5

Here we give the proof of Lemma B.5.

Proof of Lemma B.5. The proof is based on the smoothness properties of h(θ,x) given in Lemma
A.1. We have ∣∣Ep[(uh(θ,x) + u∇h(θ,x) · θ − u∆h(θ,x)

)]∣∣
≤ Ep

[
|u|G+G|u|‖θ‖2 +G|u|

]
= GEp[|u|‖θ‖2] + 2GEp[|u|]

≤ GEp
[
u2 + ‖θ‖22

2

]
+ 2G

√
Ep[u2],
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where the first inequality is by |h(θ,x)| ≤ G, ‖∇θh(θ,x)‖2 ≤ G and |∆h(θ,x)| ≤ G in Lemma
A.1, the second inequality is by Young’s inequality and Cauchy-Schwartz inequality. Now by
W(p, p0) ≤

√
d+ 1 and Lemma B.1, we have∣∣∣Ep[(uh(θ,x) + u∇h(θ,x) · θ − u∆h(θ,x)

)]∣∣∣
≤ 2G(d+ 1) + 4G

√
d+ 1

= A1.

This completes proof.

C.6 Proof of Lemma B.6

Proof of Lemma B.6. By Lemma B.3, we have
∂DKL(pt||p0)

∂t
=

∫
Rd+1

∂DKL(pt||p0)

∂pt

dpt
dt
dθdu

=

∫
Rd+1

∂DKL(pt||p0)

∂pt
∇ ·
[
pt(θ, u)∇∂Q(pt)

∂pt

]
dθdu

= −
∫
Rd+1

pt(θ, u)

[
∇∂DKL(pt||p0)

∂pt

]
·
[
∇∂Q(pt)

∂pt

]
dθdu

= −λ
∫
Rd+1

pt(θ, u)

[
∇∂DKL(pt||p0)

∂pt

]
·
[
∇∂DKL(pt||p0)

∂pt

]
dθdu

−
∫
Rd+1

pt(θ, u)

[
∇∂DKL(pt||p0)

∂pt

]
·
[
∇∂L(pt)

∂pt

]
dθdu, (C.1)

where the second and last equations are by Lemma B.4, the third inequality is by applying integration
by parts multiple times. We further calculate by Lemma B.4,∫

Rd+1

pt(θ, u)

[
∇∂DKL(pt||p0)

∂pt

]
·
[
∇∂DKL(pt||p0)

∂pt

]
dθdu

=

∫
Rd+1

pt(θ, u)‖θ +∇θ log(pt)‖2 +

∫
Rd+1

pt(θ, u)|u+∇u log(pt)|22. (C.2)

Moreover, for the second term on the right-hand side of (C.1) we have∫
Rd+1

pt(θ, u)

[
∇∂DKL(pt||p0)

∂pt

]
·
[
∇∂L(pt)

∂pt

]
dθdu

=

∫
Rd+1

pt(θ, u)[−ĝ1(t,θ, u)] · [u+∇u log(pt)]dθdu

+

∫
Rd+1

pt(θ, u)[−ĝ2(t,θ, u)] · [θ +∇θ log(pt)]dθdu

= −
∫
Rd+1

pt(θ, u)[ĝ1(t,θ, u) · u+ ĝ2(t,θ, u)θ]dθdu

−
∫
Rd+1

[ĝ1(t,θ, u) · ∇upt(t,θ, u) + ĝ2(t,θ, u) · ∇θpt(t,θ, u)]dθdu

= −
∫
Rd+1

pt(θ, u)[ĝ1(t,θ, u) · u+ ĝ2(t,θ, u)θ]dθdu

+

∫
Rd+1

pt(t,θ, u)[∇u · ĝ1(t,θ, u) +∇θ · ĝ2(t,θ, u)]dθdu, (C.3)

where the second equation is by pt∇ log(pt) = ∇pt and the third equation is by applying integration
by parts. Then plugging (C.2) and (C.3) into (C.1), we get

∂DKL(pt||p0)

∂t
= −λ

∫
Rd+1

pt(θ, u)‖θ +∇θ log(pt)‖22 − λ
∫
Rd+1

pt(θ, u)|u+∇u log(pt)|2

+

∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu.

This completes the proof.
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C.7 Proof of Lemma B.7

Proof of Lemma B.7. We remind the readers the definitions of ĝ1 and ĝ2 in (A.1) and (A.1). We have∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇u · ĝ1 −∇θ · ĝ2]dθdu

= 2αES
[
(f(pt,x)− y)

∫
Rd+1

(
uh(θ,x) + u∇θh(θ,x) · θ − u∆h(θ,x)

)
pt(θ, u)dθdu

]
.

Denote I(θ, u,x) = uh(θ,x) + u∇θh(θ,x) · θ − u∆h(θ,x), then we have

|∇uI(θ, u,x)| = |h(θ,x) +∇θh(θ,x) · θ −∆h(θ,x)| ≤ G‖θ‖2 + 2G, (C.4)

where the inequality holds by Lemma A.1. Similarly, we have

‖∇θI(θ, u,x)‖2 = ‖u∇θh(θ,x) + u∇θ

(
∇θh(θ,x) · θ

)
− u∇θ∆θh(θ,x)

)
‖2

≤ 3G|u|. (C.5)

Therefore, combining the bounds in (C.4) and (C.5) yields√
∇uI(θ, u,x)2 + ‖∇θI(θ, u,x)‖22 ≤ 4G

√
u2 + ‖θ‖22 + 2G.

By Lemma B.2, we have that

Ept [I(θt, ut,x)]− Ep0 [I(θ0, u0,x)] ≤
[
8G
√
d+ 1 + 2G

]
W(p0, pt)

≤ A2

√
DKL(pt||p0),

where the last inequality is by Lemma 5.4 and A2 = 16G
√
d+ 1 + 4G. By Ep0 [I(θ0, u0,x)] =

Ep0 [u0]Ep0 [h(θ0,x) +∇θh(θ0,x) · θ0 −∆θh(θ0,x)] = 0, we further have

Ept [I(θt, ut,x)] ≤ A2

√
DKL(pt||p0). (C.6)

Then we have ∫
Rd+1

pt(θ, u)[ĝ1 · u+ ĝ2 · θ −∇ · ĝ1 −∇ · ĝ2]dθdu

= 2αES
[
(f(pt,x)− y)Ept [I(θt, ut,x)]

]
≤ 2αA2

√
DKL(pt||p0)

√
L(pt),

where the last inequality is by (C.6) and Cauchy-Schwarz inequality. This completes the proof.
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