A Useful Definitions \& Theorems

Throughout this paper, we use the following standard Chernoff bounds.
Lemma 22 (Absolute Chernoff Bound). Let X_{1}, \ldots, X_{n} be i.i.d. binary random variables with $\mathbb{E}\left[X_{i}\right]=\mu$ for all $i \in[n]$. Then, for any $\epsilon>0: \operatorname{Pr}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right] \leq 2 \exp \left(-2 \epsilon^{2} n\right)$.
Lemma 23 (Relative Chernoff Bound). Let X_{1}, \ldots, X_{n} be i.i.d. binary random variables and let X denote their sum. Then, for any $\epsilon \in(0,1): \operatorname{Pr}[X \leq(1-\epsilon) \mathbb{E}[X]] \leq \exp \left(-\epsilon^{2} \mathbb{E}[X] / 2\right)$.
Next, the definition of Vapnik-Chervonenkis dimension, following by Uniform convergence for statistical learning and the Fundamental Theorem of Statistical Learning.
Definition 24. [VC-dimension] Let $\mathcal{H} \subseteq\{0,1\}^{\mathcal{X}}$ be a hypothesis class. A subset $S=$ $\left\{x_{1}, \ldots, x_{|S|}\right\} \subseteq \mathcal{X}$ is shattered by \mathcal{H} if: $\left|\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{|S|}\right)\right): h \in \mathcal{H}\right\}\right|=2^{|S|}$. The VC-dimension of \mathcal{H}, denoted $V C \operatorname{dim}(\mathcal{H})$, is the maximal cardinality of a subset $S \subseteq \mathcal{X}$ shattered by \mathcal{H}.
Definition 25 (Uniform convergence for statistical learning). Let $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ be a hypothesis class. We say that \mathcal{H} has the uniform convergence property w.r.t. loss function ℓ if there exists a function $m_{\mathcal{H}}^{s l}(\epsilon, \delta) \in \mathbb{N}$ such that for every $\epsilon, \delta \in(0,1)$ and for every probability distribution D over $\mathcal{X} \times\{0,1\}$, if S is a sample of $m \geq m_{\mathcal{H}}^{s l}(\epsilon, \delta)$ examples drawn i.i.d. from to D, then, with probability of at least $1-\delta$, for every $h \in \mathcal{H}$, the difference between the risk and the empirical risk is at most ϵ. Namely, with probability $1-\delta, \forall h \in \mathcal{H}:\left|L_{S}(h)-L_{D}(h)\right| \leq \epsilon$.
Theorem 26. [The Fundamental Theorem of Statistical Learning] Let $\mathcal{H} \subseteq\{0,1\}^{\mathcal{X}}$ be a binary hypothesis class with $V \operatorname{Cdim}(\mathcal{H})=d$ and let the loss function, ℓ, be the $0-1$ loss. Then, \mathcal{H} has the uniform convergence property with sample complexity $m_{\mathcal{H}}^{U C}(\epsilon, \delta)=\Theta\left(\frac{1}{\epsilon^{2}}(d+\log (1 / \delta))\right)$.

B Proofs for Section 4

Proof. (Proof of Theorem 9)
Let $S^{m}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ be a random sample of size $m \geq m_{\mathcal{H}}(\epsilon, \delta, \psi, \gamma, \lambda)$ labeled examples drawn i.i.d. according to D.
For convenience, throughout the proof we use the following notations. We first define the quantities with respect to the distribution. For a given hypothesis $h \in H$, group $U \in \Gamma$ and interval $I \in \Lambda$, we are interested in the subpoppulation which belongs to U and for which h prediction is in I, i.e., $[x \in U, h(x) \in I]$. For this subpoppulation we define: $p(h, U, I)$ the probability of being in this subpopulation, $\mu_{y}(h, U, I)$ the average y value in the subpoppulation, and $\mu_{h}(h, U, I)$, the average prediction, i.e., $h(x)$. The three measures are with respect to the true distribution D. Formally,

$$
\begin{aligned}
& p(h, U, I):=\underset{D}{\operatorname{Pr}}[x \in U, h(x) \in I] \\
& \mu_{y}(h, U, I):=\underset{D}{\mathbb{E}}[y \mid x \in U, h(x) \in I] \\
& \mu_{h}(h, U, I):=\underset{D}{\mathbb{E}}[h(x) \mid x \in U, h(x) \in I]
\end{aligned}
$$

Similarly we denote the three empirical quantities with respect to the sample. Namely, we denote by $\hat{n}(h, U, I, S), \hat{\mu}_{y}(h, U, I, S)$ and $\hat{\mu}_{h}(h, U, I, S)$ the number of samples, empirical outcome and empirical prediction, of the subpoppulation $[x \in U, h(x) \in I]$. Formally,

$$
\begin{aligned}
& \hat{n}(h, U, I, S):=\sum_{i=1}^{m} \mathbb{I}\left[x_{i} \in U, h\left(x_{i}\right) \in I\right] \\
& \hat{\mu}_{y}(h, U, I, S):=\sum_{i=1}^{m} \frac{\mathbb{I}\left[x_{i} \in U, h\left(x_{i}\right) \in I\right]}{\hat{n}(h, I, U, S)} y_{i} \\
& \hat{\mu}_{h}(h, U, I, S):=\sum_{i=1}^{m} \frac{\mathbb{I}\left[x_{i} \in U, h\left(x_{i}\right) \in I\right]}{\hat{n}(h, I, U, S)} h\left(x_{i}\right)
\end{aligned}
$$

Then, the calibration error and the empirical calibration error can be expressed as:

$$
\begin{aligned}
& c(h, U, I)=\mu_{y}(h, U, I)-\mu_{h}(h, U, I) \\
& \hat{c}(h, U, I, S)=\hat{\mu}_{y}(h, U, I, S)-\hat{\mu}_{h}(h, U, I, S)
\end{aligned}
$$

Let C_{h} denote the collection of all interesting categories according to predictor h, namely,

$$
C_{h}:=\left\{(U, I): U \in \Gamma, I \in \Lambda, \operatorname{Pr}_{D}[x \in U] \geq \gamma, \underset{D}{\operatorname{Pr}}[h(x) \in I \mid x \in U] \geq \psi\right\}
$$

Note that every interesting category $(U, I) \in C_{h}$ has a probability of at least $\gamma \psi$, namely, for every $h \in \mathcal{H}$ and for any interesting category $(U, I) \in C_{h}$:

$$
\operatorname{Pr}_{x \sim D}[x \in U, h(x) \in I]=\operatorname{Pr}_{x \sim D}[h(x) \in I \mid x \in U] \cdot \operatorname{Pr}_{x \sim D}[x \in U] \geq \gamma \psi
$$

We define a "bad" event B^{m} over the samples, as the event there exist some predictor and some interesting category for which the generalization error is larger than ϵ.

$$
B^{m}:=\left\{S \in(\mathcal{X} \times\{0,1\})^{m}: \exists h \in \mathcal{H}, \exists(U, I) \in C_{h}:|\hat{c}(h, U, I, S)-c(h, U, I)|>\epsilon\right\}
$$

Bounding the probability that $S^{m} \in B^{m}$ by δ implies the theorem. In order to do so, we would like to have a "large enough" induced sample in every interesting category. For this purpose, we define the "good" event, $G^{m, l}$, as the event that indicates that for every predictor, each interesting category has at least l samples.

$$
G^{m, l}:=\left\{S \in(\mathcal{X} \times\{0,1\})^{m}: \forall h \in \mathcal{H}, \forall(U, I) \in C_{h}: \hat{n}(h, U, I, S) \geq l\right\}
$$

We will later set l to achieve ϵ-accurate approximation with confidence δ later. Note that $G^{m, l}$ is not the complement of B^{m}.

According to the law of total probability the following holds:

$$
\begin{aligned}
\operatorname{Pr}\left[B^{m}\right] & =\operatorname{Pr}\left[B^{m} \mid G^{m, l}\right] \operatorname{Pr}\left[G^{m, l}\right]+\operatorname{Pr}\left[B^{m} \mid \overline{G^{m, l}}\right] \operatorname{Pr}\left[\overline{G^{m, l}}\right] \\
& \leq \operatorname{Pr}\left[B^{m} \mid G^{m, l}\right]+\operatorname{Pr}\left[\overline{G^{m, l}}\right]
\end{aligned}
$$

We would like to bound each of the probabilities $\operatorname{Pr}\left[B^{m} \mid G^{m, l}\right]$ and $\operatorname{Pr}\left[\overline{G^{m, l}}\right]$ by $\delta / 2$, in order to bound the probability of B^{m} by δ. We start by bounding $\operatorname{Pr}\left[S^{m} \in B^{m} \mid S^{m} \in G^{m, l}\right]$. By using the union bound:

$$
\begin{aligned}
& \operatorname{Pr}\left[S^{m} \in B^{m} \mid S^{m} \in G^{m, l}\right] \\
& =\operatorname{Pr}\left[\exists h \in \mathcal{H}, \exists(U, I) \in C_{h}:\left|\hat{c}\left(h, U, I, S^{m}\right)-c(h, U, I)\right|>\epsilon \mid \forall h \in \mathcal{H}, \forall(U, I) \in C_{h}: \hat{n}\left(h, U, I, S^{m}\right) \geq l\right] \\
& \leq \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left|\hat{c}\left(h, U, I, S^{m}\right)-c(h, U, I)\right|>\epsilon \mid \forall h \in \mathcal{H}, \forall(U, I) \in C_{h}: \hat{n}\left(h, U, I, S^{m}\right) \geq l\right] \\
& =\sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left|\hat{c}\left(h, U, I, S^{m}\right)-c(h, U, I)\right|>\epsilon \mid \hat{n}\left(h, U, I, S^{m}\right) \geq l\right]
\end{aligned}
$$

By using the triangle inequality:

$$
\begin{aligned}
& \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left|\hat{c}\left(h, U, I, S^{m}\right)-c(h, U, I)\right|>\epsilon \mid \hat{n}\left(h, U, I, S^{m}\right) \geq l\right] \\
& =\sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left|\hat{\mu}_{y}\left(h, U, I, S^{m}\right)-\hat{\mu}_{h}\left(h, U, I, S^{m}\right)-\mu_{y}(h, U, I)+\mu_{h}(h, U, I)\right|>\epsilon \mid \hat{n}\left(h, U, I, S^{m}\right) \geq l\right] \\
& \leq \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left|\hat{\mu}_{h}\left(h, U, I, S^{m}\right)-\mu_{h}(h, U, I)\right|+\left|\mu_{y}(h, U, I)-\hat{\mu}_{y}\left(h, U, I, S^{m}\right)\right|>\epsilon \mid \hat{n}\left(h, U, I, S^{m}\right) \geq l\right]
\end{aligned}
$$

Since $a+b \geq \epsilon$ implies that either $a \geq \epsilon / 2$ or $b \geq \epsilon / 2$.

$$
\begin{aligned}
& \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left|\hat{\mu}_{h}\left(h, U, I, S^{m}\right)-\mu_{h}(h, U, I)\right|+\left|\mu_{y}(h, U, I)-\hat{\mu}_{y}\left(h, U, I, S^{m}\right)\right|>\epsilon \mid \hat{n}\left(h, U, I, S^{m}\right) \geq l\right] \\
& \leq \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left.\left|\hat{\mu}_{h}\left(h, U, I, S^{m}\right)-\mu_{h}(h, U, I)\right|>\frac{\epsilon}{2} \vee\left|\mu_{y}(h, U, I)-\hat{\mu}_{y}\left(h, U, I, S^{m}\right)\right|>\frac{\epsilon}{2} \right\rvert\, \hat{n}\left(h, U, I, S^{m}\right) \geq l\right]
\end{aligned}
$$

And by using the union-bound once again:

$$
\begin{aligned}
& \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left.\left|\hat{\mu}_{h}\left(h, U, I, S^{m}\right)-\mu_{h}(h, U, I)\right|>\frac{\epsilon}{2} \vee\left|\mu_{y}(h, U, I)-\hat{\mu}_{y}\left(h, U, I, S^{m}\right)\right|>\frac{\epsilon}{2} \right\rvert\, \hat{n}\left(h, U, I, S^{m}\right) \geq l\right] \\
& \leq \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} \operatorname{Pr}\left[\left.\left|\hat{\mu}_{h}\left(h, U, I, S^{m}\right)-\mu_{h}(h, U, I)\right|>\frac{\epsilon}{2} \right\rvert\, \hat{n}\left(h, U, I, S^{m}\right) \geq l\right] \\
& \quad+\operatorname{Pr}\left[\left.\left|\mu_{y}(h, U, I)-\hat{\mu}_{y}\left(h, U, I, S^{m}\right)\right|>\frac{\epsilon}{2} \right\rvert\, \hat{n}\left(h, U, I, S^{m}\right) \geq l\right]
\end{aligned}
$$

We would like to use Chernoff inequality (Lemma 22) to bound the probability with a confidence of $1-\delta / 2$. However, in order to do so, we must fix the number of samples, $\hat{n}\left(h, U, I, S^{m}\right)$, that h maps to a certain category (rather than using a random variable). Note that for $\hat{n}\left(h, U, I, S^{m}\right) \geq l$ the probability is maximized at $\hat{n}\left(h, U, I, S^{m}\right)=l$, so we will assume that $\hat{n}\left(h, U, I, S^{m}\right)=l$. We denote by $\left.S^{l}\right|_{(h, U, I)}$ the sub-sample with $[x \in U, h(x) \in I]$, and its size is l.

Now, in order to use Chernoff inequality, we define two random variables, $\hat{Z}_{y}(h, U, I)$ and $\hat{Z}_{h}(h, U, I)$, as follows:

$$
\begin{aligned}
\hat{Z}_{y}(h, U, I) & :=\frac{1}{l} \sum_{\left.\left(x_{i}, y_{i}\right) \in S^{l}\right|_{(h, U, I)}} y_{i} \\
\hat{Z}_{h}(h, U, I) & :=\frac{1}{l} \sum_{\left.\left(x_{i}, y_{i}\right) \in S^{l}\right|_{(h, U, I)}} h\left(x_{i}\right)
\end{aligned}
$$

and we observe that

$$
\begin{aligned}
& \mathbb{E}\left[\hat{Z}_{y}(h, U, I)\right]=\mu_{h}(h, U, I) \\
& \mathbb{E}\left[\hat{Z}_{h}(h, U, I)\right]=\mu_{y}(h, U, I)
\end{aligned}
$$

Using this notation,

$$
\begin{aligned}
\operatorname{Pr} & {\left[S^{m} \in B^{m} \mid S^{m} \in G^{m, l}\right] } \\
& \leq \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}}\left[\operatorname{Pr}\left[\left|\hat{Z}_{y}(h, U, I)-\mu_{h}(h, U, I)\right|>\frac{\epsilon}{2}\right]+\operatorname{Pr}\left[\left|\hat{Z}_{h}(h, U, I)-\mu_{y}(h, U, I)\right|>\frac{\epsilon}{2}\right]\right] \\
& \leq \sum_{h \in \mathcal{H}} \sum_{(U, I) \in C_{h}} 4 e^{-\frac{\epsilon^{2}}{2} l} \leq \frac{4|\Gamma||\mathcal{H}|}{\lambda} e^{-\frac{\epsilon^{2}}{2} l}
\end{aligned}
$$

We would like to set l so that $\operatorname{Pr}\left[S^{m} \in B^{m} \mid S^{m} \in G^{m, l}\right]$ will be at most $\delta / 2$, as follows,

$$
\frac{4|\Gamma||\mathcal{H}|}{\lambda} e^{-\frac{\epsilon^{2}}{2} l} \leq \frac{\delta}{2} \Longleftrightarrow l \geq \frac{2}{\epsilon^{2}} \log \left(\frac{8|\Gamma||\mathcal{H}|}{\delta \lambda}\right)
$$

Hence, we set

$$
l=\frac{2}{\epsilon^{2}} \log \left(\frac{8|\Gamma||\mathcal{H}|}{\delta \lambda}\right)
$$

Next, we will bound $\operatorname{Pr}\left[S^{m} \in \overline{G^{m, l}}\right]$ by $\delta / 2$.
Since $m \geq m_{\mathcal{H}}(\epsilon, \delta, \psi, \gamma, \lambda)$ and since $p(h, U, I) \geq \gamma \psi$ for any $h \in \mathcal{H}$ and $(U, I) \in C_{h}$, we know that for any $h \in \mathcal{H}$ and $(U, I) \in C_{h}$:

$$
m \geq \frac{4 l}{\gamma \psi}=\frac{8 \log \left(\frac{8|\Gamma||\mathcal{H}|}{\delta \lambda}\right)}{\epsilon^{2} \gamma \psi}
$$

Thus, the expected number of samples we have in each interesting category, is at least twice the value of l, i.e.,

$$
\mathbb{E}[\hat{n}(h, U, I, S)]=m p(h, U, I) \geq m \gamma \psi \geq 2 l
$$

Thus, using the relative version of Chernoff bound, the upper bound we have on l, and the lower bound we have on m, for any $h \in \mathcal{H}$ and for any interesting category $(U, I) \in C_{h}$, the probability that S^{m} has less than l samples in the category (U, I) is bounded by:

$$
\operatorname{Pr}[\hat{n}(h, U, I, S) \leq l] \leq \operatorname{Pr}\left[\hat{n}(h, U, I, S) \leq \frac{\mathbb{E}[\hat{n}(h, U, I, S)]}{2}\right] \leq e^{-\frac{\mathbb{E}[\hat{n}(h, U, I, S)]}{8}} \leq \frac{\lambda \delta}{2|\Gamma||\mathcal{H}|}
$$

And, by using the union bound:

$$
\operatorname{Pr}\left[S^{m} \in \overline{G^{m, l}}\right]=\operatorname{Pr}\left[\exists h \in \mathcal{H}, \exists(U, I) \in C_{h}: \hat{n}(h, U, I, S)<l\right] \leq\left|C_{h}\right| \frac{\lambda \delta}{2|\Gamma|} \leq \frac{\delta}{2}
$$

Thus, overall:

$$
\operatorname{Pr}\left[S^{m} \in B^{m}\right] \leq \operatorname{Pr}\left[S^{m} \in B^{m} \mid S^{m} \in G^{m, l}\right]+\operatorname{Pr}\left[S^{m} \in \overline{G^{m, l}}\right] \leq \delta / 2+\delta / 2=\delta
$$

as required.

C Proofs for Section 5

Proof. (Proof of Lemma 16
Let us assume that $V C \operatorname{dim}\left(\mathcal{H}_{v}\right)>d$ and let S be a sample of size $d+1$ such that \mathcal{H}_{v} shatters S.
Let us define the function $f: S \rightarrow \mathcal{Y}$ as:

$$
\forall x \in S: f(x)=v
$$

Let $T \subseteq S$ be an arbitrary subset of S. By assuming that \mathcal{H}_{v} shatters S we know that there exists $h_{v} \in \mathcal{H}_{v}$ such that:

$$
\forall x \in S: h_{v}(x)=1 \Longleftrightarrow x \in T
$$

This means that for the corresponding predictor $h \in \mathcal{H}$:

$$
\forall x \in S: h(x)=v=f(x) \Longleftrightarrow x \in T
$$

Thus, using our definition of f,

$$
\forall T \subseteq S, \exists h \in \mathcal{H}, \forall x \in S: h(x)=f(x) \Longleftrightarrow x \in T
$$

Which means that S is G-shattered by \mathcal{H}. However, since $|S|>d$, it is a contradiction to the assumption that $d_{G}(\mathcal{H}) \leq d$.

Proof. (Proof of Lemma 17)
Assume that $V C \operatorname{dim}\left(\Phi_{\mathcal{H}_{v}}\right)>d$ and let S be a sample of $d+1$ domain points and outcomes shattered by $\Phi_{\mathcal{H}_{v}}$.
Note that $y=0$ implies that $\forall h_{v} \in \mathcal{H}_{v}, \forall x \in \mathcal{X}: \phi_{h_{v}}(x, y)=0$. Thus, $\forall(x, y) \in S: y=1$ (otherwise S cannot be shattered).
Let $S_{x}=\left\{x_{j}:\left(x_{j}, y_{j}\right) \in S\right\}$. Observe that when $y=1, \forall h_{v} \in \mathcal{H}_{v}, \forall x \in \mathcal{X}: \phi_{h_{v}}(x, 1)=h_{v}(x)$. Thus, the fact that S is shattered by $\Phi_{\mathcal{H}_{v}}$ implies that S_{x} is shattered by \mathcal{H}_{v}. However, $\left|S_{x}\right|=d+1$. Thus, we have a contradiction to the assumption that $\operatorname{VCdim}\left(\Phi_{\mathcal{H}_{v}}\right)>d$.

Proof. (Proof of Lemma 18)
Let \mathcal{H}_{v} and $\Phi_{\mathcal{H}_{v}}$ be the binary prediction and binary prediction-outcome classes of \mathcal{H}.
Using Lemmas 16 and 17 , and since $d_{G}(\mathcal{H}) \leq d$, we know that $V \operatorname{Cdim}\left(\Phi_{\mathcal{H}_{v}}\right) \leq V C \operatorname{dim}\left(\mathcal{H}_{v}\right) \leq d$.
In addition, note that:

$$
\left|\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left[h\left(x_{i}\right)=v\right]-\operatorname{Pr}_{x \sim D_{U}}[h(x)=v]\right|=\left|\frac{1}{m} \sum_{i=1}^{m} h_{v}\left(x_{i}\right)-\operatorname{Pr}_{x \sim D_{U}}\left[h_{v}(x)=1\right]\right|,
$$

And
$\left|\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left[h\left(x_{i}\right)=v, y=1\right]-\underset{(x, y) \sim D_{U}}{\operatorname{Pr}}[h(x)=v, y=1]\right|=\left|\frac{1}{m} \sum_{i=1}^{m} \phi_{h, v}\left(x_{i}, y_{1}\right)-\underset{(x, y) \sim D_{U}}{\operatorname{Pr}}\left[\phi_{h, v}(x, y)\right]\right|$. and the lemma follows directly from Corollary 13 .

Proof. (Proof of Lemma 19)
Let us denote $\xi:=\psi \epsilon / 3$

$$
\frac{p_{1}}{p_{2}}-\frac{\tilde{p}_{1}}{\tilde{p}_{2}} \leq \frac{p_{1}}{p_{2}}-\frac{p_{1}-\xi}{p_{2}+\xi}=\frac{p_{1}\left(1+\xi / p_{2}\right)}{p_{2}\left(1+\xi / p_{2}\right)}-\frac{p_{1}-\xi}{p_{2}\left(1+\xi / p_{2}\right)}=\frac{\xi}{p_{2}\left(1+\xi / p_{2}\right)}\left[\frac{p_{1}}{p_{2}}+1\right]
$$

Since $p_{1}, \psi \leq p_{2}$,

$$
\frac{\xi}{p_{2}\left(1+\xi / p_{2}\right)}\left[\frac{p_{1}}{p_{2}}+1\right] \leq \frac{\xi}{p_{2}}\left[\frac{p_{2}}{\psi}+\frac{p_{2}}{\psi}\right]=\frac{2 \xi}{\psi} \leq \frac{3 \xi}{\psi}=\epsilon
$$

Similarly,

$$
\frac{\tilde{p}_{1}}{\tilde{p}_{2}}-\frac{p_{1}}{p_{2}} \leq \frac{p_{1}+\xi}{p_{2}-\xi}-\frac{p_{1}}{p_{2}}=\frac{p_{1}+\xi}{p_{2}\left(1-\xi / p_{2}\right)}-\frac{p_{1}\left(1-\xi / p_{2}\right)}{p_{2}\left(1-\xi / p_{2}\right)}=\frac{\xi}{p_{2}\left(1-\xi / p_{2}\right)}\left[1+\frac{p_{1}}{p_{2}}\right]
$$

Since $p_{1}, \psi \leq p_{2}$,

$$
\frac{\xi}{p_{2}\left(1-\xi / p_{2}\right)}\left[1+\frac{p_{1}}{p_{2}}\right] \leq \frac{\xi}{p_{2}(1-\xi / \psi)}\left[\frac{p_{2}}{\psi}+\frac{p_{2}}{\psi}\right]=\frac{2 \xi}{\psi(1-\xi / \psi)}=\frac{2 \epsilon}{3(1-\epsilon / 3)} \leq \frac{2 \epsilon}{3(1-1 / 3)}=\epsilon
$$

Thus,

$$
\left|\frac{p_{1}}{p_{2}}-\frac{\tilde{p}_{1}}{\tilde{p}_{2}}\right| \leq \epsilon
$$

Proof. (Proof of Lemma 20) Let P_{U} denote the probability of subpopulation U :

$$
\mathrm{P}_{U}:=\operatorname{Pr}_{x \sim D}[x \in U]
$$

Using the relative Chernoff bound (Lemma 23) and since $\mathbb{E}[|S \cap U|]=m \mathrm{P}_{U}$, we can bound the probability of having a small sample size in U. Namely, if $\mathrm{P}_{U} \geq \gamma$, then:

$$
\underset{D}{\operatorname{Pr}}\left[|S \cap U| \leq \frac{\gamma m}{2}\right] \leq \underset{D}{\operatorname{Pr}}\left[|S \cap U| \leq \frac{m \mathrm{P}_{U}}{2}\right] \leq e^{-\frac{m \mathrm{P}_{U}}{8}} \leq e^{-\frac{\gamma m}{8}}
$$

Thus, for any $U \in \Gamma_{\gamma}$, if $m \geq \frac{8 \log \left(\frac{|\Gamma|}{\delta}\right)}{\gamma}$, then, with probability of at least $1-\frac{\delta}{|\Gamma|}$,

$$
|S \cap U|>\frac{\gamma m}{2}
$$

Finally, using the union bound, with probability at least $1-\delta$, for all $U \in \Gamma_{\gamma}$,

$$
|S \cap U|>\frac{\gamma m}{2}
$$

Proof. (Proof of Theorem 10)
Let $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ be a sample of m labeled examples drawn i.i.d. according to D, and let $S_{U}:=\{(x, y) \in S: x \in U\}$ be the samples in S that belong to subpopulation U.
Let Γ_{γ} denote the set of all subpopulations $U \in \Gamma$ that has probability of at least γ :

$$
\Gamma_{\gamma}:=\left\{U \in \Gamma \mid \operatorname{Pr}_{x \sim D}[x \in U] \geq \gamma\right\}
$$

Let us assume the following lower bound on the sample size:

$$
m \geq \frac{8 \log \left(\frac{2|\Gamma|}{\delta}\right)}{\gamma}
$$

Thus, using Lemma 20, we can bound the probability of having a subpopulation $U \in \Gamma_{\gamma}$ with small number of samples. Namely, we know that with probability of at least $1-\delta / 2$, for every $U \in \Gamma_{\gamma}$:

$$
\left|S_{U}\right| \geq \frac{\gamma m}{2}
$$

Next, we would like to show that having a large sample size in U implies accurate approximation of the calibration error, with high probability, for any interesting category in (U, I). For this purpose, let us define $\epsilon^{\prime}, \delta^{\prime}$ as:

$$
\begin{gathered}
\epsilon^{\prime}:=\frac{\psi \epsilon}{3} \\
\delta^{\prime}:=\frac{\delta}{4|\Gamma||\mathcal{Y}|}
\end{gathered}
$$

By using Lemma 18 and since $d_{G}(\mathcal{H}) \leq d$, we know that there exists some constant $a>0$, such that, for any $v \in \mathcal{Y}$ and any $U \in \Gamma_{\gamma}$, with probability at least $1-\delta^{\prime}$, a random sample of m_{1} examples from U, where,

$$
m_{1} \geq a \frac{d+\log \left(1 / \delta^{\prime}\right)}{\epsilon^{\prime 2}}=9 a \frac{d+\log \left(\frac{4|\Gamma||\mathcal{Y}|}{\delta}\right)}{\epsilon^{2} \psi^{2}}
$$

will have,

$$
\forall h \in \mathcal{H}:\left|\frac{1}{m_{1}} \sum_{x^{\prime} \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v\right]-\operatorname{Pr}[h(x)=v \mid x \in U]\right| \leq \epsilon^{\prime}=\frac{\psi \epsilon}{3}
$$

By using Lemma 18 and since $d_{G}(\mathcal{H}) \leq d$, we know that for any $v \in \mathcal{Y}$ and any $U \in \Gamma_{\gamma}$, with probability at least $1-\delta^{\prime}$, a random sample of m_{2} labeled examples from $U \times\{0,1\}$, where,

$$
m_{2} \geq a \frac{d+\log \left(1 / \delta^{\prime}\right)}{\epsilon^{\prime 2}}=9 a \frac{d+\log \left(\frac{4|\Gamma||\mathcal{Y}|}{\delta}\right)}{\epsilon^{2} \psi^{2}}
$$

will have,

$$
\forall h \in \mathcal{H}:\left|\frac{1}{m_{2}} \sum_{\left(x^{\prime}, y^{\prime}\right) \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v, y^{\prime}=1\right]-\operatorname{Pr}[h(x)=v, y=1 \mid x \in U]\right| \leq \epsilon^{\prime}=\frac{\psi \epsilon}{3}
$$

Let us define the constant a^{\prime} in a manner that sets an upper bound on both m_{1} and m_{2} :

$$
a^{\prime}:=18 a
$$

and let m^{\prime} be that upper bound:

$$
m^{\prime}:=a^{\prime} \frac{d+\log \left(\frac{|\Gamma||\mathcal{Y}|}{\delta}\right)}{\psi^{2} \epsilon^{2}} \geq \max \left(m_{1}, m_{2}\right)
$$

Then, by the union bound, if for all subpopulation $U \in \Gamma_{\gamma},\left|S_{U}\right| \geq m^{\prime}$, then, with probability at least $1-2|\Gamma||\mathcal{Y}| \delta^{\prime}=1-\frac{\delta}{2}$:

$$
\begin{aligned}
& \forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}: \\
& \qquad\left|\frac{1}{\left|S_{U}\right|} \sum_{\left(x^{\prime}, y^{\prime}\right) \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v\right]-\operatorname{Pr}[h(x)=v \mid x \in U]\right| \leq \frac{\psi \epsilon}{3} \\
& \forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}: \\
& \quad\left|\frac{1}{\left|S_{U}\right|} \sum_{\left(x^{\prime}, y^{\prime}\right) \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v, y^{\prime}=1\right]-\operatorname{Pr}[h(x)=v, y=1 \mid x \in U]\right| \leq \frac{\psi \epsilon}{3}
\end{aligned}
$$

Let us choose the sample size m as follows:

$$
m:=\frac{2 m^{\prime}}{\gamma}=2 a \frac{d+\log \left(\frac{|\Gamma||\mathcal{Y}|}{\delta}\right)}{\psi^{2} \epsilon^{2} \gamma}
$$

Recall that with probability at least $1-\delta / 2$, for every $U \in \Gamma_{\gamma}$:

$$
\left|S_{U}\right| \geq \frac{\gamma m}{2}=m^{\prime}
$$

Thus, using the union bound once again, with probability at least $1-\delta$:
$\forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}:$

$$
\left|\frac{1}{\left|S_{U}\right|} \sum_{x^{\prime} \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v\right]-\operatorname{Pr}[h(x)=v \mid x \in U]\right| \leq \frac{\psi \epsilon}{3}
$$

$\forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}:$

$$
\left|\frac{1}{\left|\left|S_{U}\right|\right.} \sum_{\left(x^{\prime}, y^{\prime}\right) \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v, y^{\prime}=1\right]-\operatorname{Pr}[h(x)=v, y=1 \mid x \in U]\right| \leq \frac{\psi \epsilon}{3}
$$

To conclude the theorem, we need show that having $\psi \epsilon / 3$ approximation to the terms described above, implies accurate approximation to the calibration error. For this purpose, let us denote:

$$
\begin{aligned}
& p_{1}(h, U, v):=\operatorname{Pr}[h(x)=v, y=1 \mid x \in U] \\
& p_{2}(h, U, v):=\operatorname{Pr}[h(x)=v \mid x \in U] \\
& \tilde{p}_{1}(h, U, v):=\frac{1}{\left|S_{U}\right|} \sum_{\left(x^{\prime}, y^{\prime}\right) \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v, y^{\prime}=1\right] \\
& \tilde{p}_{2}(h, U, v):=\frac{1}{\left|S_{U}\right|} \sum_{x^{\prime} \in S_{U}} \mathbb{I}\left[h\left(x^{\prime}\right)=v\right]
\end{aligned}
$$

Then, with probability at least $1-\delta$:

$$
\begin{aligned}
& \forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}:\left|\tilde{p}_{2}(h, U, v)-p_{2}(h, U, v)\right| \leq \frac{\psi \epsilon}{3} \\
& \forall h \in \mathcal{H}, \forall U \in \Gamma_{\gamma}, \forall v \in \mathcal{Y}:\left|\tilde{p}_{1}(h, U, v)-p_{1}(h, U, v)\right| \leq \frac{\psi \epsilon}{3}
\end{aligned}
$$

Using Lemma 19, for all $h \in \mathcal{H}, U \in \Gamma_{\gamma}$ and $v \in \mathcal{Y}$, if $p_{2}(h, U, v) \geq \psi$, then:

$$
\left|\frac{p_{1}(h, U, v)}{p_{2}(h, U, v)}-\frac{\tilde{p}_{1}(h, U, v)}{\tilde{p}_{2}(h, U, v)}\right| \leq \epsilon
$$

Thus, since

$$
\begin{aligned}
& c(h, U,\{v\})=\frac{p_{1}(h, U, v)}{p_{2}(h, U, v)}-v \\
& \hat{c}(h, U,\{v\}, S)=\frac{\tilde{p}_{1}(h, U, v)}{\tilde{p}_{2}(h, U, v)}-v
\end{aligned}
$$

then with probability at least $1-\delta$:
$\forall h \in \mathcal{H}, \forall U \in \Gamma, \forall v \in \mathcal{Y}: \quad \operatorname{Pr}[x \in U] \geq \gamma, \operatorname{Pr}[h(x)=v \mid x \in U] \geq \psi \Rightarrow|c(h, U,\{v\})-\hat{c}(h, U,\{v\}, S)| \leq \epsilon$

D Proofs for Section 6

Proof. (Proof of Theorem 11. Let $\mathcal{X}=U \cup\left\{x^{2}\right\}$ where $U=\left\{x^{0}, x^{1}\right\}$ and $x^{0} \neq x^{1}$. Let $H=\{h\}$, where

$$
h(x)= \begin{cases}\frac{1}{2}+\epsilon & x=x^{0} \\ 0 & \text { else }\end{cases}
$$

Let $\Gamma=\left\{U,\left\{x^{2}\right\}\right\}$. Let $D \in\left\{D_{1}, D_{2}\right\}$ where

$$
D_{1}(x, y)= \begin{cases}(1 / 2+\epsilon) \psi \gamma & (x, y)=\left(x^{0}, 1\right) \\ (1 / 2-\epsilon) \psi \gamma & (x, y)=\left(x^{0}, 0\right) \\ (1-\psi) \gamma & (x, y)=\left(x^{1}, 0\right) \\ 1-\gamma & (x, y)=\left(x^{2}, 0\right)\end{cases}
$$

and

$$
D_{2}(x, y)= \begin{cases}(1 / 2+\epsilon) \psi \gamma & (x, y)=\left(x^{0}, 0\right) \\ (1 / 2-\epsilon) \psi \gamma & (x, y)=\left(x^{0}, 1\right) \\ (1-\psi) \gamma & (x, y)=\left(x^{1}, 0\right) \\ 1-\gamma & (x, y)=\left(x^{2}, 0\right)\end{cases}
$$

Now we will show a reduction to coin tossing:
Consider two biased coins. The first coin has a probability of $r_{1}=1 / 2+\epsilon$ for heads and the second has a probability of $r_{2}=1 / 2-\epsilon$ for heads. We know that in order to distinguish between the two with confidence $\geq 1-\delta_{1}$, we need at least $C \frac{\ln \left(\frac{1}{\delta_{1}}\right)}{\epsilon^{2}}$ samples.
Since

$$
\operatorname{Pr}_{(x, y) \sim D}[x \in U]=\operatorname{Pr}_{(x, y) \sim D}\left[x \neq x^{2}\right]=\gamma
$$

the first condition for multicalibration holds. Now, we use another property of our "tailor-maded" distribution D and single predictor h, which is $\left\{x \in \mathcal{X}: h(x)=\frac{1}{2}+\epsilon\right\}=\{x \in \mathcal{X}: h(x)=$ $\left.\frac{1}{2}+\epsilon, x \in U\right\}=\left\{x_{0}\right\}$, to get the second condition:

$$
\operatorname{Pr}_{D}[h(x)=1 / 2+\epsilon \mid x \in U]=\operatorname{Pr}_{D}\left[x=x^{0} \mid x \in U\right]=\frac{\psi \gamma}{\gamma}=\psi,
$$

and that

$$
\underset{D}{\operatorname{Pr}}\left[y=1 \left\lvert\, h(x)=\frac{1}{2}+\epsilon\right., x \in U\right]=\underset{D}{\operatorname{Pr}}\left[y=1 \mid x=x^{0}\right]
$$

is either $1 / 2+\epsilon$ (if $D=D_{1}$) or $1 / 2-\epsilon$ (in case $D=D_{2}$) (recall that $D \in\left\{D_{1}, D_{2}\right\}$).
Now, if H has the multicalibration uniform convergence property with a sample $S=\left(x_{i}, y_{i}\right)_{i=1}^{m}$ of size m, and if

$$
\sum_{i=1}^{m} \frac{\mathbb{I}\left[y_{i}=1, h\left(x_{i}\right)=1 / 2+\epsilon, x_{i} \in U\right]}{\sum_{j=1}^{m} \mathbb{I}\left[h\left(x_{i}\right)=1 / 2+\epsilon, x_{i} \in U\right]}=\sum_{i=1}^{m} \frac{\mathbb{I}\left[y_{i}=1, x_{i}=x^{0}\right]}{\sum_{j=1}^{m} \mathbb{I}\left[x_{i}=x^{0}\right]}>\frac{1}{2}
$$

holds, then

$$
\operatorname{Pr}\left[y=1 \left\lvert\, h(x)=\frac{1}{2}+\epsilon\right., x \in U\right]=\frac{1}{2}+\epsilon
$$

holds w.p. $1-\delta_{1}$ (from the definition of multicalibration uniform convergence).
Let us assume by contradiction that we can get multicalibration uniform convergence with $m=$ $\frac{C}{\epsilon^{2} \psi \gamma}-\frac{k}{\psi \gamma}<\frac{C}{\epsilon^{2} \psi \gamma}$ for some constant $k=\Omega(1)$.
Let m_{0} denote the random variable that represents the number of samples in S such that $x_{i}=x^{0}$ (i.e., $h\left(x_{i}\right)=1 / 2+\epsilon$). Hence, $\mathbb{E}\left[m^{0}\right]=\gamma \cdot \psi \cdot m=\frac{C}{\epsilon^{2}}-k$.

From Hoeffding's inequality,

$$
\operatorname{Pr}\left[m^{0} \geq \frac{C}{\epsilon^{2}}\right]=\operatorname{Pr}[m^{0}-\underbrace{\left(\frac{C}{\epsilon^{2}}-k\right)}_{\mathbb{E}\left[m_{0}\right]} \geq k] \leq e^{-2 m k^{2}}
$$

Let δ_{2} be the parameter that holds $e^{-2 m k^{2}} \leq \delta_{2}$, and let $\delta:=\delta_{1}+\delta_{2}$. Then we get that with probability $>\left(1-\delta_{1}\right)\left(1-\delta_{2}\right)>1-\delta_{1}-\delta_{2}=1-\delta$ we can distinguish between the two coins with less than $\frac{C}{\epsilon^{2}}$ samples, which is a contradiction.

