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A Experimental Details

This section lists the experimental details for each figure in the main paper alongside addition
information.

Tables 1, 2, 3a, 4 All FlatLand results were run with the following parameters: learning rate 1e-4,
100 epochs, 4 latent dimensions, Adam optimiser, 3 repeats, MSE loss. Estimations α̂ were trained
for 5 epochs using the Adam optimiser with MSE loss and learning rate 0.1. RGrVAE used a latent
reconstruction weight γ = 4.

Table A.1: β choices for each VAE model. † Capacity 15, 3500 step leadin
Forward RGrVAE VAE β-VAE CC-

VAE
FactorVAEDIP-I DIP-II

β 1 1 1 5 1000† 1 1 1

Tables 3b, 4. Figure 3 All dSprites experiments were ran with the following parameters: learning
rate 1e-4, 16 latent dimensions, 5M iterations, Adam optimiser, 3 repeats, bce loss.

Figure 4 All results use the same setup as the previous tables with the following exception: Figure
3a, RGrVAE group structure is two cyclic representations alongside an identity representation, for
each latent pair.

Table 5 All results use the same setup as previous FlatLand experiments except for runtime. All
noise types except real world backgrounds were ran for 3K iterations. Real world backgrounds were
run for 20K iterations.

Model Architectures We now detail specific architectures used through our experiments. Where
possible we have used equivalent backbone architectures or author reference implementations. We
list each architecture:

• ForwardVAE [2]: Author implementation found https://github.com/Caselles/
NeurIPS19-SBDRL and detailed in Table A.2.

• RGrVAE: Reuses the backbone architecture of ForwardVAE alongside the action encoder
given in Table A.3.

• Dip-VAE [6]: Reuses the backbone architecture of ForwardVAE.
• FactorVAE [4]: Reuses the backbone architecture of ForwardVAE alongside discriminator

given in Table A.4.
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• cc-/β-/VAE [1, 3, 5]: Implementation by Higgins et al. [2017] and seen in Table A.5

Table A.2: Underlying architecture of ForwardVAE. All layers other than final encoder and decoder
layers use a SELU non linearity. Intermediate layers were modified for the noise experiments as
detailed in the main paper.

ForwardVAE
Encoder Decoder

Conv 32 stride 2, kernel size 4 Linear 256 -
Conv 32 stride 2, kernel size 4 Linear 512 -
Conv 32 stride 2, kernel size 4 ConvT 32 stride 2, kernel size 4
Conv 32 stride 2, kernel size 4 ConvT 32 stride 2, kernel size 4
Linear 256 - ConvT 32 stride 2, kernel size 4
Linear 256 - ConvT 1 stride 2, kernel size 4
Linear 2Nlatents -

Table A.3: Action encoder (ψ) for RGrVAE . All layers other than final use a ReLU non linearity.
RGrVAE - Action Encoder

Conv 32 stride 2, kernel size 3
Conv 16 Stride 2, Kernel Size 3
Conv 16 Stride 2, Kernel Size 3
Linear Nactions -

Table A.4: FactorVAE discriminator . All layers other than final use a LeakyReLU (0.2) non linearity.
FactorVAE - Discriminator

Linear 1000 -
Linear 1000 -
Linear 1000 -
Linear 1000 -
Linear 1000 -
Linear 2 -
Softmax - -

2



Table A.5: Underlying architecture of cc-/β-/VAE. All layers other than final encoder and decoder
layers use a ReLU non linearity.

cc-/β-/VAE
Encoder Decoder

Conv 32 stride 2, kernel size 4 Linear 256 -
Conv 32 stride 2, kernel size 4 Linear 1024 -
Conv 64 stride 2, kernel size 4 ConvT 64 stride 2, kernel size 4
Conv 64 stride 2, kernel size 4 ConvT 32 stride 2, kernel size 4
Linear 256 - ConvT 32 stride 2, kernel size 4
Linear 2Nlatents - ConvT 1 stride 2, kernel size 4
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B Additional Experiments

Axis aligned alpha reconstruction The table below reports errors for reconstructing post action
latents whilst restricted to purely axis aligned planes.

Table B.1: Validation reconstruction MSE between predicted z (after applying cyclic representation)
and true z (encoding post-action image) in each latent plane, alongside the expected distance between
any two latent codes over the dataset. Standard VAEs never achieve low errors, cyclic representations
are not present. Actions a: 0 - up, 1 - left, 2 - down, 3 - right.

VAE ForwardVAE

a 0, 1 0, 2 0, 3 1, 2 1, 3 2, 3 0, 1 0, 2 0, 3 1, 2 1, 3 2, 3

0 0.711 0.718 0.714 0.718 0.524 0.718 0.006 0.525 0.525 0.529 0.525 0.525
1 0.755 0.913 0.898 0.918 0.912 0.918 0.475 0.475 0.478 0.474 0.476 0.004
2 0.770 0.786 0.770 0.784 0.609 0.785 0.006 0.529 0.529 0.531 0.528 0.529
3 0.678 0.878 0.871 0.881 0.875 0.881 0.476 0.475 0.487 0.479 0.476 0.004

Independence: 0.791 Independence: 0.926
Expected distance: 0.821 Expected distance: 0.502

Different RGrVAE Representations We present a brief exploration allowing more expressivity in
RGrVAE internal representations. In the main paper, these representations were solely cyclic, where
the phase angle α is the only learnable parameter. We now explore generic matrices such as those used
by ForwardVAE. We report in Table B.2 the disentanglement scores for the cyclic representations
verses the generic matrix representations. Both methods achieve similar results, the major difference
between them is in convergence rate. Figure B.1 compares an estimated independence score over
training for each method. The cyclic representations converge extremely quickly, whereas the matrix
representations get stuck in local minima for long periods of time before eventually converging to the
global minima.
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Figure B.1: Estimated independence score over training for different internal RGrVAE representation
structures. ’c’ denotes standard cyclic representation. ’c+/-’ denotes initialised cyclic representation
to positive/negative. ’m’ denotes generic 2D matrix representation. ’ddn’ denotes (not learnable)
representation of reflection.

Attention Attentional mechanisms offer alternate means to allow gradient through a distribution
over choices. Instead of sampling the distribution and using policy gradients, attention forms a
linear combination of the choices weighted by the distribution. In our case we are interested in
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Table B.2: Disentanglement metric scores for the different internal representation choices.
Metric Cyclic Cyclic Initialised Matrices Cyclic + Reflection

Beta 1.000±.000 1.000±.000 1.000±.000 1.000±.000
MIG 0.096±0.030 0.055±0.028 0.049±0.030 0.085±0.020
DCI 0.814±0.077 0.747±0.070 0.738±0.056 0.770±0.108
Mod 0.954±0.004 0.953±0.015 0.950±0.012 0.952±0.017
SAP 0.500±0.043 0.559±0.019 0.584±0.012 0.540±0.160
FL 0.346±0.025 0.369±0.010 0.356±0.025 0.346±0.016
Indep 0.905±0.068 0.932±0.029 0.908±0.045 0.924±0.061

(a) Gaussian (b) Salt and Pepper (c) Backgrounds

Figure B.2: Noise types

learning the correct irreducible representations which requires each representation to learn exactly the
correct cyclic phase angle. When we predict post-action latent codes through a linear combination
of representations, we lose the guarantee that the gradient will point towards this solution. Since
reinforce applies solely one representation exactly once, we are guaranteed that (if the policy is
accurate and the latent structure is amenable) the gradient will point towards this solution. We
find that the cyclic representation error ||α̂ − α|| = 0.157 is far worse than the 0.012 error of
RGrVAE. Furthermore, the independence score is 0.830±0.109 which is comparatively low compared
to RGrVAE (0.955±0.014) which larger deviation. These statistics showed us that the reinforcement
method was a better candidate to learn linear disentangled representations.

Visual Noise It is important to understand robustness of our models and one way to do that is
to measure performance under less than ideal conditions. We will introduce different methods
of visual noise to the FlatLand problem and find the conditions under which RGrVAE does and
doesn’t converge. We will first consider simple Gaussian and Salt+Pepper noises before looking at
adding complex distractors through real world backgrounds. Note that for these tests we slightly
increased the complexity of the underlying VAE by doubling the channels (to 64 from 32) for the
intermediate/hidden layers (i.e. not output or input). This was since we assumed that more complex
problems would converge faster with (slightly) more complex models. We also note that batch size
for this experiment was 1024 compared to 128 used for most other experiments. Whilst this doesn’t
seem to effect performance it does mean that the τ scores shouldn’t be directly compared to epochs
in other figures without appropriate scaling.

We find that simple noises (Gaussian/Salt and Pepper) do little to hinder policy network convergence
(est. indep) and results in strong independence and reconstruction scores. We also report τ0.95/τ0.90,
the average number of epochs to 0.95/0.90 estimated independence which represents convergence
speed of the policy. Again, the simple noises did not reduce the speed of policy convergence either.

Table B.3: Performance of RGrVAE under visual noises. All results are taken across 3 runs and 300
epochs.

None Gaussian Salt Backgrounds

Est. Indep 0.9877±0.006 0.9916±0.004 0.9908±0.005 0.9922±0.002
True Indep 0.9595±0.005 0.9325±0.020 0.9329±0.011 0.9071±0.055
||x̂2 − x2||1 0.0186±0.004 0.0168±0.001 0.087±0.003 0.0073±0.001
||ẑ2 − z2||1 0.1951±0.03 0.1560±0.008 0.1270±0.009 0.0510±0.006
||α̂− α||1 0.0315±0.021 0.0278±0.010 0.0174±0.021 0.0312±0.017
τ0.95 176.0±80.2 164.33±50.2 168.67±38.6 919.0±644.2
τ0.90 171.33±78.0 141.67±46.9 163.67±36.1 734.0±601.0

5



Upon introducing backgrounds convergence became (unsurprisingly) harder to achieve. On top of the
increased complexity we further added 2 latents and doubled channels in the linear and convolution
layers in the decoder since rapidly learning to reconstruct images allows the MSE reconstruction
signal to the matrix representations to get stronger in relation. Obviously the convergence times
increased by an order of magnitude, we believe due to the matrix representation gradient being small
compared to the usual. When the representations converge slowly then the policy converges slowly
and the incentive to arrange the latent space correctly decreases. This all results in generally very
slow convergence. Despite the slow convergence, this type of noise reduced performance on the true
independence but not by an extreme amount and indeed scored better on observation reconstruction
likely since this was dominated by reconstructing the background.

Additional symmetries In Figure C.2 we provide action traversals for RGrVAE on dSprites. We
should note that we increased the step size for translations, scales and rotations so that the rotations
are of higher degree. This was for demonstration purposes and we believe the model would still learn
when varying only a single index in the generative factors at a time. We also removed the change of
basis for this experiment, which is why the actions are learnt in neighbouring dimensions to their
inverses.
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C Action Traversals

Figure C.1: Actions learnt by RGrVAE corresponding with the environment actions up, down, left
and right. Note the wrapping at boundaries which is expected by the symmetry structure.
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Figure C.2: Action traversals for all available actions of RGrVAE trained on dSprites and a heatmap
over the actions selected over the dataset. We sampled the true actions from the dataset based on the
following symmetry groups: Scale: C3, Rotation: C10, Translation: C8. Thus the group acting on the
data is: G = C3 × C10 × C8 × C8.
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