
Appendix: On Infinite-Width Hypernetworks

Etai Littwin∗
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

etai.littwin@gmail.com

Tomer Galanti∗
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

tomerga2@tauex.tau.ac.il

Lior Wolf
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

wolf@cs.tau.ac.il

Greg Yang
Microsoft Research AI

gregyang@microsoft.com

1 Implementation Details

1.1 Convergence of the Hyperkernel

In Fig. 1(a) (main text) we plot the variance of the kernel values Kh(u, u′) in log-scale, as a function
of the width of both f and g. The variance was computed empirically over k = 100 normally
distributed samples w. As can be seen, the variance of the kernel tends to zero only when both
widths increase. In Fig. 1(b) (main text) we plot the value of Kh(u, u′) and its variance for a fixed
hypernetwork f of width 500 and g of width 10 or 800. The x-axis specifies the value of θ ∈ [−π2 ,

π
2]

and the y-axis specifies the value of the kernel. As can be seen, the expected value of the empirical
kernel, Kh(u, u′), is equal to the width-limit kernel (e.g., theoretical kernel) for both widths 10 and
800. In addition, convergence of the width-limit kernel is guaranteed only when the widths of both
networks increase, highlighting the importance of wide architectures for both the hyper and implicit
networks for stable training.

1.2 Image Completion and Impainting

Architectures In both tasks, we used fully connected architectures, where f contains two hidden
layers, and g contains one hidden layer. The hyperkernel used corresponds to the infinite width
limit of the same architecture. For the input of g, we used random Fourier features [8] of the pixel
coordinates as inputs for both the hyperkernel and the hypernetwork. To ease on the computational
burden of computing the full kernel matrix Θh(U,U) when evaluating the hyperkernel, we compute
smaller kernel matrices on subsets of the data {Usi } = {xsi , zsi }s∈[10], where each subset contains 1k
input images {xsi}, and 20 random image coordinates per input, producing a kernel matrix of size
20k × 20k. The final output prediction is then given by:

1

10

∑
s

(Θh(u, us1), ...,Θh(u, usN)) ·
(
Θh(Us, Us) + ε · I

)−1 · Y s (1)

where Y s are the corresponding labels of the subset Us. For the hypernetwork evaluation, we used
the same inputs {Usi }s∈[10] to train the hypernetwork using a batchsize of 20, and a learning rate of
0.01 which was found to produce the best results.

∗Equal Contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2 Additional Experiments

2.1 Sensitivity Study

To further demonstrate the behavior reported in Fig. 2 (main text), we verified that it is consistent
regardless of the value of the learning rate. We used the same architectures as in the rotations
prediction experiments, i.e., f is a fully-connected ReLU neural network of depth 4 and width 200
and g is of depth ∈ {3, 6, 8} and width ∈ {50, 100, 200}. We vary the learning rate: µ = 10j−7, for
j = 0, . . . , 7. For each value of the learning rate, we report the average performance (and standard
deviation over 100 runs) of the various architectures after 40 epochs of training.

As can be seen in Fig. 1, when f is wide and kept fixed, there is a clear improvement in test
performance as the width of g increases, for every learning rate in which the networks provide
non-trivial performance. When f is wide and kept fixed, a deeper g incurs slower training and
lower overall test performance. We note that it might seem that the width of g does not affect the
performance when the learning rate is µ = 0.01 in all settings except Figs. 1(c,f). Indeed, we can
verify from Fig. 2 (main text) that the performance at epoch 40 is indeed similar for different widths.
However, for earlier epochs, the performance improves for shallower and wider architectures.

(a) g of depth 3 (b) g of depth 6 (c) g of depth 8

(d) g of depth 3 (e) g of depth 6 (f) g of depth 8

Figure 1: Sensitivity experiment. We compare the performance of hypernetworks with an implicit
network of different widths and depths after 40 epochs, when varying the learning rate. The x-axis
specifies the value of the learning rate and the y-axis specifies the averaged accuracy rate at test time.
(a-c) Results on MNIST and (d-f) Results on CIFAR10. In the first column, g’s depth is 3, in the
second, it is 6 and in the third, it is 8.

2.2 Training wide networks with a large learning rate

Remark 1 (main text) states that one is able to train wide networks with a learning rate µ = o(n). To
validate this remark, we trained shallow networks of varying width n ∈ {102, 103, 104, 2.5 · 105}
with learning rate µ =

√
n on MNIST. As can be seen in Fig. 2, training those networks is possible

despite the very large learning rate. In fact, we observe that the accuracy rate and loss improve as we
increase the width of the network.

3 Correlation Functions

Correlation functions are products of general high order tensors representing high order derivatives of
a networks output with respect to the weights. In [2] a conjecture is posed on the order of magnitude
of general correlation functions involving high order derivative tensors, which arise when analysing
the dynamics of gradient descent. Roughly speaking, given inputs {xi}ri=1, the outputs of a neural

2

(a) (b)

Figure 2: Results of training wide networks with a large learning rate. The y-axis is the (a)
accuracy rate or (b) the average loss at test time. We vary the width n ∈ {102, 103, 104, 2.5 · 105}
and take the learning rate to be

√
n.

network f(x1;w), ..., f(xr;w) ∈ R with normally distributed parameters w ∈ RN , correlation
functions takes the form: ∑

ηk0 ,...,ηkr∈[N]

r∏
j=1

Γηkj+1,...,ηkj+1
(xj) (2)

where

Γη1,...,ηk(xj) :=
∂kf(xj ;w)

∂wη1 ...∂wηk
(3)

For instance, the following are two examples of correlation functions,

f(x1;w) · ∂f(x2;w)

∂wµ1

,
∂2f(x1;w)

∂wµ1∂wµ2

· ∂f(x2;w)

∂wµ1

(4)

Computing the expected value of these correlation functions involve keeping track of various moments
of normally distributed weights along paths, as done in recent finite width correction works [3, 5].
[2] employ the Feynman diagram to efficiently compute the expected values (order of magnitude) of
general correlation functions, albeit at the cost of only being provably accurate for deep linear, or
shallow ReLU networks. In this work, we analyze the asymptotic behaviour correlation functions of
the form:

T r(x0, ..., xr) :=
∑

ηk0 ...ηkr∈[N]

Γηk1 ,...,ηkr (x0)

r∏
j=1

Γηkj (xj)

=

〈
∇(r)
w f(x0),

r⊗
j=1

∇wf(xj)

〉 (5)

where∇(r)
w f(x0) is a rank r tensor, representing the r’th derivative of the output, and

⊗r
j=1∇wf(xj)

denotes outer products of the gradients for different examples. terms of the form in Eq. 5 represent
high order terms in the multivariate Taylor expansion of outputs, and are, therefore, relevant for the
full understanding of training dynamics. As a consequence of Thm. 1, we prove that T r(x0, ..., xr) ∼
1/nmax(r−1,0) for vanilla neural networks, where n is the width of the network. As we have shown in
Sec. 3, terms of the form in Eq. 5 represent high order terms in the multivariate Taylor expansion of
outputs, and are, therefore, relevant for the full understanding of training dynamics. As a consequence
of Thm. 1, we prove that T r(x0, ..., xr) ∼ 1/nmax(r−1,0) for vanilla neural networks, where n is the
width of the network.

This result is a partial solution to the open problem suggested by [2]. In their paper, they conjecture the
asymptotic behaviour of general correlation functions, and predict an upper bound on the asymptotic
behaviour of terms of the form in Eq. 5 in the order ofO(1/n). Our results therefore proves a stronger
version of the conjecture, while giving the exact behaviour as a function of width.

3

4 Proofs of the Main Results

Terminology and Notations Throughout the appendix, we denote by A⊗B and A�B the outer
and Hadamard products of the tensors A and B (resp.). When considering the outer products of a
sequence of tensors {Ai}ki=1, we denote,

⊗k
i=1Ai = A1⊗· · ·⊗Ak. We denote by sgn(x) := x/|x|

the sign function. The notation Xn ∼ an states that Xn/an converges in distribution to some non-
zero random variable X . A convenient property of this notation is that it satisfies: Xn · Yn ∼ an · bn
when Xn ∼ an and Yn ∼ bn. Throughout the paper, we will make use of sequential limits and
denote nk, . . . , n1 →∞ to express that n1 tend to infinity, then n2, and so on. For a given sequence
of random variable {Xn}∞n=1, we denote by Xn

d−→ X (Xn
p−→ X), when Xn converges in

distribution (probability) to a random variable X .

4.1 Useful Lemmas

Lemma 1. Let Xn
d−→ X . Then, sgn(Xn)

d−→ sgn(X).

Proof. We have:

lim
n→∞

P[sgn(Xn) = 1] = lim
n→∞

P[Xn ≥ 0] = P[X ≥ 0] = P[sgn(X) = 1] (6)

Hence, sgn(Xn) converges in distribution to sgn(X).

4.2 Main Technical Lemma

In this section, we prove Lem. 3, which is the main technical lemma that enables us proving Thm. 1.
Let f(x;w) be a neural network with H outputs {fd(x;w)}Hd=1. We would like to estimate the order
of magnitude of the following expression:

T l,i,d
n,i,d :=

〈
∂kfd(xi;w)

∂W l1 . . . ∂W lk
,

k⊗
t=1

∂fd1(xit ;w)

∂W lt

〉
(7)

where d = (d1, . . . , dk), i = (i1, . . . , ik) and l = (l1, . . . , lk). For simplicity, when, i1 = · · · =

ik = j, we denote: T l,d
n,i,j,d := T l,i,d

n,i,d and T l
n,i,j,d := T l,i,d

n,i,d when d1 = · · · = dk = d as well.

To estimate the order of magnitude of the expression in Eq. 7, we provide an explicit expression for
∂kfd(xi;w)

∂W l1 ...∂W lk
. First, we note that for any w, such that, fd(xi;w) is k times continuously differentiable

at w, for any set l := {l1, . . . , lk}, we have:

∂kfd(xi;w)

∂W l1 . . . ∂W lk
=

∂kfd(xi;w)

∂W l′1 . . . ∂W l′k
(8)

where the set l′ := {l′1, . . . , l′k} is an ordered version of l, i.e., the two sets consist of the same
elements but l′1 < · · · < l′k. In addition, we notice that for any multi-set l, such that, li = lj for some
i 6= j, then,

∂kfd(xi;w)

∂W l1 . . . ∂W lk
= 0 (9)

since fd(xi;w) is a neural network with a piece-wise linear activation function. Therefore, with no
loss of generality, we consider l = {l1, . . . , lk}, such that, l1 < · · · < lk. It holds that:

∂kfd(xi;w)

∂W l1 . . . ∂W lk
=

1
√
nl1−1

ql1−1
i,d ⊗Al1→l2i,d (10)

where Al1→l2i,d is a 2k − 1 tensor, defined as follows:

Alj→lj+1

i,d =

1√

nlj+1−1
C
lj→lj+1

i,d ⊗Alj+1→lj+2

i,d 1 < j < k − 1

1√
nlk−1

C
lk−1→lk
i,d ⊗ Clk→Li,d j = k − 1

(11)

4

where:

C
lj→lj+1

i,d =

{√
2Z

lj+1−1
i,d P

lj→lj+1−1
i,d lj+1 6= L

P
lj→L
i,d else

(12)

and:

Pu→vi =

v−1∏
l=u

(

√
2

nl
W l+1Zli) and Zli = diag(σ̇(yl(xi))) (13)

The individual gradients can be expressed using:

∂f
dj
w (xij)

∂W lj
=
q
lj−1
ij ,dj
⊗ Clj→Lij ,dj√
nlj−1

(14)

Note that the following holds for any u < v < h ≤ L:

Cu→hi,d = Cv→h
W v

√
nv−1

Cu→vi,d and Cu→Li,d = Cv−1→L
i,d Pu→v−1

i,d (15)

In the following, given the sets l = {l1, . . . , lk}, i = {i1, . . . , ik} and d = {d1, . . . , dk}, we derive
the limit of T l,i,d

n,i,d using elementary tensor algebra. By Eqs. 14 and 10, we see that:

T l,i,d
n,i,d =

〈 k⊗
t=1

∂fdt(xit ;w)

∂W lt
,
ql1−1
i,d√
nl1−1

⊗
Cl1→l2i,d√
nl2−1

⊗ ...⊗
C
lr−1→lk
i,d√
nlk−1

⊗ Clk→Li,d

〉

=
1

nl1−1

〈
ql1−1
i,d , ql1−1

i1,d1

〉
·
〈
Clk→Lik,dk

, Clk→Li,d

〉 k−1∏
j=1

〈
C
lj→L
ij ,dj

⊗ qlj+1−1
ij+1,dj+1

nlj+1−1
, C

lj→lj+1

i,d

〉 (16)

We recall the analysis of [9] showing that in the infinite width limit, with n = min(n1 . . . , nL−1)→
∞, every pre-activation yl(x) of f(x;w) at hidden layer l ∈ [L] has all its coordinates tending to
i.i.d. centered Gaussian processes of covariance Σl(x, x′) : Rn0 × Rn0 → R defined recursively as
follows:

Σ0(x, x′) = x>x′,

Λl(x, x′) =

[
Σl−1(x, x) Σl−1(x, x′)
Σl−1(x′, x) Σl−1(x′, x′)

]
∈ R2×2,

Σl(x, x′) = E(u,v)∼N (0,Λl−1(x,x′))[σ(u)σ(v)]

(17)

In addition, we define the derivative covariance as follows:
Σ̇l(x, x′) = E(u,v)∼N (0,Λl−1(x,x′))[σ̇(u)σ̇(v)] (18)

when considering x = xi and x′ = xj from the training set, we simply write Σli,j := Σl(xi, xj) and
Σ̇li,j = Σ̇l(xi, xj).
Lemma 2. The following holds:

1. For nv−1, . . . , n1 →∞, we have: Pu→vi (Pu→vj)>
d−→
∏v−1
l=u Σ̇li,jI .

2. For nL−1, . . . , n1 →∞, we have: Pu→Li,d1
(Pu→Lj,d2

)>
d−→
∏L−1
l=u Σ̇li,jδd1=d2 .

3. For nv, . . . , n1 →∞, we have:
(qvi)>qvj
nv

d−→ Σvi,j .

Here, δT is an indicator that returns 1 if T is true and 0 otherwise.

Proof. See [1].

Lemma 3. Let k ≥ 0 and sets l = {l1, . . . , lk}, i = {i1, . . . , ik} and d = {d1, . . . , dk}. We have:

nmax(k−1,0) · T l,i,d
n,i,d

d−→

{
δd ·

∏k−1
j=1 Gj k > 1

const k = 1
(19)

as n→∞. Here, G1, ...,Gk−1 are centered Gaussian variables with finite, non-zero variances, and
δd := δ(d1 = ... = dk = d).

5

Proof. The case k = 0 is trivial. Let k ≥ 1. By Eq. 16, it holds that:

nk−1T l,i,d
n,i,d

=nk−1

〈
ql1−1
i,d , ql1−1

i1,d1

〉〈
Clk→Lik,dk

, Clk→Li,d

〉
n

·
k−1∏
j=1

〈
C
lj→L
ij ,dj

⊗ qlj+1−1
ij+1,dj+1

n
,C

lj→lj+1

i,d

〉

=

〈
ql1−1
i,d , ql1−1

i1,d1

〉〈
Clk→Lik,dk

, Clk→Li,d

〉
n

·
k−1∏
j=1

〈
C
lj→L
ij ,dj

⊗ qlj+1−1
ij+1,dj+1

, C
lj→lj+1

i,d

〉
(20)

Note that intermediate activations do not depend on the index dj , and so we remove the dependency
on dj in the relevant terms. Next, by applying Lem. 2,〈

ql1−1
i , ql1−1

i1

〉〈
Clk→Lik,dk

, Clk→Li,d

〉
n

d−→ Σl1−1
i,i1

 L∏
j=lk

Σ̇
lj
i,ik

 δd (21)

Expanding the second term using Eq. 15:〈
C
lj→L
ij ,dj

⊗ qlj+1−1
ij+1

, C
lj→ij+1

i,d

〉
= C

lj→L
ij ,dj

C
lj→ij+1

i q
lj+1−1
ij+1

= C
lj+1−1→L
ij ,dj

P
lj→lj+1−1
ij

(P
lj→lj+1−1
i)>

√
2 · Zlj+1−1

i q
lj+1−1
ij+1

=
√

2 ·
〈
C
lj+1−1→L
ij ,dj

⊗ (Z
lj+1−1
i q

lj+1−1
ij+1

), P
lj→lj+1−1
ij

(P
lj→lj+1−1
i)>

〉
=
√

2 · Clj+1−1→L
ij ,dj

P
lj→lj+1−1
ij

(P
lj→lj+1−1
i)>Z

lj+1−1
i q

lj+1−1
ij+1

(22)

Since the limit of a product equals the product of limits (when the limits exist), it holds that (after
taking the limit of the right term in the above inner product):

P
lj→lj+1−1
ij

(P
lj→lj+1−1
i)>

d−→
lj+1−2∏
l=lj

Σ̇li,ij (23)

Recall that in the infinite width limit, when conditioned on the outputs ql−1
i , ql−1

j the pre activa-
tions yli, y

l
j are GPs. Hence, when conditioned on the outputs ql−1

i , ql−1
j , the diagonal compo-

nents of the product ZliZ
l
j are independent. The GP behaviour argument then applies to terms

C
lj+1−1→L
ij ,dj

Z
lj+1−1
i q

lj+1−1
ij+1

. Assigning:

ξj = C
lj+1−1→L
ij ,dj

Z
lj+1−1
i q

lj+1−1
ij+1

(24)

and their limits:
ξj

d−→ Gj (25)
and denoting ξ = [ξ1, ..., ξk−1], and G = [G1, ...,Gk−1], it holds using the multivariate Central Limit
theorem:

ξ
d−→ G (26)

Using the Mann-Wald theorem [6] (where we take the mapping as the product pooling of ξ), we have
that:

k−1∏
j=1

ξj
d−→

k−1∏
j=1

Gj (27)

Finally, by Slutsky’s theorem,

nk−1T l,i,d
n,i,d

d−→ Σl1−1
i,i1

 L∏
j=lk

Σ̇
lj
i,ik

 k−1∏
j=1

lj+1−2∏
l=lj

Σ̇li,ij

 · √2 · Gj

 · δd (28)

6

4.3 Proof of Thm. 1

Since we assume that g is a finite neural network, i.e., ml <∞ for all l ∈ [H], throughout the proofs
with no loss of generality we assume that m1 = · · · = mH = 1.

Lemma 4. Let h(u;w) = g(z; f(x;w)) be a hypernetwork. We have:

K(r)
i,j =

∑
α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
· zi ·

H−1∏
j=1

φ̇(gji)

 · H∏
d=1

〈
∇(αd)
w fdi , (∇whj)αd

〉
(29)

Proof. By the higher order product rule and the fact that the second derivative of a piece-wise linear
function is 0 everywhere:

∇(r)
w hi =

∑
α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
· zi · ∇(αH)

w fHi

H−1⊗
d=1

DH−d (30)

where
Dd := φ̇(gdi) · ∇(αd)

w fdi (31)
In addition, by elementary tensor algebra, we have:

K(r)
i,j =〈∇(r)

w hi, (∇whj)r〉

=
∑

α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
zi ·

〈
∇(αH)
w fHi ·

H−1⊗
d=1

DH−d, (∇whj)r
〉

=
∑

α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
zi ·
〈
∇(αH)
w fHi , (∇whj)αH

〉

·
H−1∏
d=1

〈
φ̇(gH−di) · ∇(αH−d)

w fH−di , (∇whj)αH−d
〉

=
∑

α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
· zi ·

[
H−1∏
d=1

φ̇(gdi)

]
·
H∏
d=1

〈
∇(αd)
w fdi , (∇whj)αd

〉

(32)

Lemma 5. Let h(u;w) = g(z; f(x;w)) be a hypernetwork. In addition, let,

∀d ∈ [H] : hdj := ad−1
j

H−d∏
t=1

fH−t+1
j · φ̇(gH−tj) (33)

We have: 〈
∇(αd)fdi , (∇whj)αd

〉
=

∑
l∈[L]αd

∑
d∈[H]αd

(
αd∏
k=1

hdkj

)
· T l,d
n,i,j,d (34)

Proof. We have:〈
∇(αd)fdi , (∇whj)αd

〉
=

∑
l∈[L]αd

〈
∂αdfdi

∂W l1 . . . ∂W lαd
,

αd⊗
k=1

∂hj
∂W lk

〉
(35)

By the product rule:

∂hj
∂W lk

=

H∑
d=1

[
H−d∏
t=1

fH−t+1
j · φ̇(gH−tj)

]
·
∂fdj
∂W lk

· ad−1
j =

H∑
d=1

hdj ·
∂fdj
∂W lk

(36)

7

Hence,
αd⊗
k=1

∂hj
∂W lk

=
∑

d∈[H]αd

(
αd∏
k=1

hdkj

)
αd⊗
k=1

∂fdkj
∂W lk

(37)

In particular, 〈
∇(αd)fdi , (∇whj)αd

〉
=

∑
l∈[L]αd

∑
d∈[H]αd

(
αd∏
k=1

hdkj

)
· T l,d
n,i,j,d (38)

Theorem 1 (Higher order terms for hypernetworks). Let h(u) = g(z; f(x)) for a hypernetwork f
and an implicit network g. Then, we have:

K(r)
i,j ∼

{
nH−r if r > H

1 otherwise.
(39)

Proof. Throughout the proof, in order to derive certain limits of various sequences of random
variables, we implicitly make use of the Mann-Wald theorem [6]. For simplicity, oftentimes, we
will avoid explicitly stating when this theorem is applied. As a general note, the repeated argument
is as follows: terms, such as, nmax(αd−1,0) · T l,d

n,i,j,d, Qd
n,j , g

d
i , etc’, (see below) can be expressed

as continuous mappings of jointly convergent random variables. Hence, they jointly converge, and
continuous mappings over them converge as well.

By Lems. 4 and 5, we have:

K(r)
i,j =

∑
α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
· zi ·

[
H−1∏
d=1

φ̇(gdi)

]
·
H∏
d=1

∑
l∈[H]αd

∑
d∈[H]αd

Qd
n,j · T

l,d
n,i,j,d (40)

whereQd
n,j :=

(∏αd
k=1 h

dk
j

)
. By the Mann-Wald theorem [6], gdi converges to some random variable

Udi . If φ̇ is a continuous function, then φ̇(gdi) converges to φ̇(Udi). If φ is the ReLU activation
function, by Lem. 1, φ̇(gdi) = sgn(gdi) converges to sgn(Udi) in distribution. We notice that Qd

n,j

converges in distribution to some random variable Qd
j .

The proof is divided into two cases: H = 1 and H > 1.

Case H = 1: First, we note that for H = 1 and d ∈ [H] (i.e., d = 1), we have:

hdj = ad−1
j ·

H−d∏
t=1

fH−t+1
j · σ̇(gH−tj) = a0

j = zj (41)

In addition,
∏H−1
d=1 σ̇(gdi) = 1 as it is an empty product. Therefore, we can rewrite:

K(r)
i,j = zi · zrj

∑
l∈[H]r

∑
d∈[H]r

T l,d
n,i,j,d (42)

By Lem. 3, for r = 1, the above tends to a constant as n→∞. For r > 1, nr−1 · T l,d
n,i,j,d converges

in distribution to zero for all d 6= (d, . . . , d) and converges to a non-constant random variable T l
i,j,d

otherwise. Hence, by the Mann-Wald theorem [6],

nr−1 · K(r)
i,j

d−→ zi · zrj
∑

l∈[H]r

T l
i,j,d (43)

which is a non-zero random variable.

8

Case H > 1: By Lem. 3, nαd−1 · T l,d
n,i,j,d converges in distribution to zero for all d 6= (d, . . . , d).

Therefore, in these cases, by Slutsky’s theorem, nαd−1 ·Qd
n,j ·T

l,d
n,i,j,d converges to zero in distribution.

On the other hand, for each l ∈ [H]αd , d ∈ [H] and d = (d, . . . , d), by Lem. 3, we have:

nαd−1 · Qd
n,j · T l

n,i,j,d
d−→ Qd

j · T l
i,j,d (44)

In particular,

nmax(αd−1,0)
∑

l∈[H]αd

∑
d∈[H]αd

·Qd
n,j · T l

n,i,j,d
d−→

∑
l∈[H]αd

∑
d∈[H]

Qdj · T l
i,j,d (45)

Consider the case where r ≥ H . In this case, for any α1, . . . , αH , such that, there are t > 1 indices
i ∈ [H], such that, αi = 0. The following random variable converges in distribution:

Xn := nr−(H−t) ·
H∏
d=1

∑
l∈[H]αd

∑
d∈[H]αd

Qd
n,j · T

l,d
n,i,j,d (46)

Therefore, by Slutsky’s theorem:

nr−H ·
H∏
d=1

∑
l∈[H]αd

∑
d∈[H]αd

Qd
n,j · T

l,d
n,i,j,d = n−t ·Xn

d−→ 0 (47)

We have:

nr−H ·
〈
∇(r)
w hi, (∇whj)r

〉
=nr−H

∑
α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
· zi ·

[
H−1∏
d=1

σ̇(gdi)

]
·
H∏
d=1

∑
l∈[H]αd

∑
d∈[H]αd

(
αd∏
k=1

hdkj

)
T l,d
n,i,j,d

=
∑

α1+···+αH=r
α1,...,αH≥0

r!

α1! · · ·αH !
· zi ·

[
H−1∏
d=1

σ̇(gdi)

]
·
H∏
d=1

nαd−1
∑

l∈[H]αd

∑
d∈[H]αd

Qd
n,j · T

l,d
n,i,j,d

d−→
∑

α1+···+αH=r
α1,...,αH≥1

r!

α1! · · ·αH !
· zi ·

[
H−1∏
d=1

sgn(Udi)

]
·
H∏
d=1

∑
l∈[H]αd

Qdj · T l
i,j,d

(48)
which is a non-constant random variable.

Next, we consider the case when r ≤ H . By Lem. 3, for any αd ≥ 2, the term T l,d
n,i,j,d tends to zero

as n→∞. In addition, Qd
n,j converges in distribution. Therefore, for any αd ≥ 2, we have:∑

l∈[L]αd

∑
d∈[H]αd

Qd
n,j · T

l,d
n,i,j,d

d−→ 0 (49)

Hence, for any α1, . . . , αH ≥ 0, such that, there is at least one αd ≥ 2, we have:

H∏
d=1

∑
l∈[L]αd

∑
d∈[H]αd

Qd
n,j · T

l,d
n,i,j,d

d−→ 0 (50)

On the other hand, for any 0 ≤ α1, . . . , αH ≤ 1, the terms {T l,i,d
n,i,d }, {gdi } and {Qd

n,j} converge
jointly in distribution to some random variables {T l,i,d

i,d }, {sgn(Udi)} and {Qd
j } as n→∞. Hence,

〈∇(r)
w hi, (∇whj)r〉

d−→
∑

α1+···+αH=r
0≤α1,...,αH≤1

r! ·

[
H−1∏
d=1

sgn(Udi)

]
·
H∏
d=1

∑
l∈[L]αd

∑
d∈[H]αd

Qd
j · T

l,d
i,j,d (51)

which is a non-constant random variable.

9

4.4 Proofs of the Results in Sec. 4

Theorem 2 (Hypernetworks as GPs). Let h(u) = g(z; f(x)) be a hypernetwork. For any pair of
inputs u = (x, z) and u′ = (x′, z′), let Σ0(z, z′) = z>z′

m0
, S0(x, x′) = x>x′

n0
. Then, it holds for any

unit i in layer 0 < l ≤ H of the implicit network:

gli(z; f(x))
d−→ Gli(u) (52)

as m,n → ∞ sequentially. Here, {Gli(u)}mli=1 are independent Gaussian processes, such that,
(Gli(u),Gli(u′)) ∼ N

(
0,Λl(u, u′)

)
defined by the following recursion:

Λl+1(u, u′) =

(
Σl(u, u) Σl(u′, u)
Σl(u, u′) Σl(u′, u′)

)⊙(
SL(x, x) SL(x′, x)
SL(x, x′) SL(x′, x′)

)
(53)

Σl(u, u′) = 2 E
(u,v)∼N (0,Λl)

[σ(u) · σ(v)] (54)

where SL(x, x′) is defined recursively:

Sl(x, x′) = 2 E
(u,v)∼N (0,Γl)

[σ(u) · σ(v)] and Γl(x, x′) =

(
Sl(x, x) Sl(x′, x)
Sl(x, x′) Sl(x′, x′)

)
(55)

Proof. By [9], taking the width n = min(n1, ..., nL−1) to infinity, the outputs V d(x;w) := fd(x;w)
are governed by a centered Gaussian process, such that, the entries V di,j(x;w), given some input x,
are independent and identically distributed. Moreover, it holds that:(

V di,j(x;w), V di,j(x
′;w)

)
∼ N

(
0, SL(x, x′)

)
. (56)

with SL(x, x′) as defined in Eq. 54. For the function h(u;w) = g(z; f(x;w)), it holds for the first
layer:

g1(z; f(x;w)) =

√
1

m0
V 1(x;w)z (57)

After taking the limit n = min(n1, ..., nL−1) to infinity, the implicit network g is fed with Gaussian
distributed weights. And so g1(z; f(x;w)) also converges to a Gaussian process, such that:

(g1(z; f(x;w))i, g
1(z′; f(x′;w))i) ∼ N (0,Λ1) (58)

where:

Λ1 =
1

m0

(
SL(x, x)z>z SL(x′, x)z′>z
SL(x, x′)z>z′ SL(x′, x′)z′>z′

)
(59)

In a similar fashion to the standard feed forward case, the pre-activations gl(z; f(x;w)) converge to
Gaussian processes as we let m = min(m1, ...,mH−1) tend to infinity, with a covariance defined
recursively:

Σl(u, u′) =
√

2 E
(u,v)∼N (0,Λl)

[σ(u)σ(v)] (60)

where,

Λl =

(
SL(x, x) · Σl−1(u, u) SL(x′, x) · Σl−1(u′, u)
SL(x, x′) · Σl−1(u, u′) SL(x′, x′) · Σl−1(u′, u′)

)
(61)

and
Σ0(z, z′) =

1

m0
z>z′ (62)

proving the claim.

Corollary 1. Let h(u) = g(z; f(x)) be a hypernetwork. For any 0 < l ≤ H , there exists a function
F l, such that, for all pairs of inputs u = (x, z) and u′ = (x′, z′), it holds that:

ΛH(u, u′) = F
(
Σ0(z, z′), S0(x, x′)

)
(63)

10

Proof. We prove that Λl(u, u′) is a function of S0(x, x′) and Σ0(u, u′) by induction. First, we note
that Λ1(u, u′) is a function of SL(x, x′) and Σ0(u, u′) by definition. By the recursive definition of
SL(x, x′), it is a function of S0(x, x′). Therefore, Λ1(u, u′) can be simply represented as a function
of S0(x, x′) and Σ0(u, u′). We assume by induction that Λl(u, u′) is a function of S0(x, x′) and
Σ0(u, u′). We would like to show that Λl+1(u, u′) is a function of S0(x, x′) and Σ0(u, u′). By
definition, Λl+1(u, u′) is a function of SL(x, x′) and Σl(u, u′). In addition, Σl(u, u′) is a function
of Λl(u, u′). Hence, by induction, Σl(u, u′) is simply a function of S0(x, x′) and Σ0(u, u′). Since
SL(x, x′) is a function of S0(x, x′), we conclude that one can represent Λl+1(u, u′) as a function of
S0(x, x′) and Σ0(u, u′).

Remark 1. Let p(z) = [cos(W 1
i z + b1i)]

k
i=1 be a Fourier features preprocessing, where W 1

i,j ∼
N (0, 1) and biases bi ∼ U [−π, π]. Let h(u) = g(p(z); f(x)) be a hypernetwork, with z prepro-
cessed according to p. Let u = (x, z) and u′ = (x′, z′) be two pairs of inputs. Then, Λl(u, u′) is a
function of exp[−‖z − z′‖22/2] and SL(x, x′).

Proof. We note that:

Σ0(p(z), p(z′)) =
1

k
p(z)>p(z) =

1

k

k∑
i=1

cos(W 1
i z + b1i) cos(W 1

i z
′ + b1i) (64)

By Thm. 1 in [7], we have:

lim
k→∞

Σ0(p(z), p(z′)) = exp[−‖z − z′‖22/2]/2 (65)

which is a function of exp[‖z − z′‖22] as desired.

We make use of the following lemma in the proof of Thm. 3.

Lemma 6. Recall the parametrization of the implicit network:{
gli := gl(zi; v) =

√
1

ml−1
f l(xi;w) · al−1

i

ali := al(zi; v) =
√

2 · σ(gli)
and a0

i := zi (66)

For any pair ui = {ui}, we denote:

P l1→l2i =

l2−1∏
l=l1

(√
2

ml
V l+1(xi;w) · Zl(zi)

)
and Zl(z) = diag(σ̇(gl(z))) (67)

It holds that:

1. P l1→l2i (P l1→l2j)>
d−→
∏l2−1
l=l1

Σ̇l(ui, uj)I .

2. ∂h(ui,w)
∂v · ∂

>h(uj ,w)
∂v

d−→
∑H−1
l=0

(
Σl(ui, uj)

∏H−1
h=l+1 Σ̇l(ui, uj)

)
.

where the limits are taken with respect to m,n→∞ sequentially.

Proof. We have:

P l1→l2i (P l1→l2j)>

=P l1→l2−1
i

2

ml2−1
V l2(xi;w) · Zl2−1(zi)Z

l2−1(zj)V
l2(xj ;w)>(P l1→l2−1

j)>
(68)

Note that it holds that when m,n→∞ sequentially, we have:
2

ml2−1
V l2(xi;w) · Zl2−1(zi)Z

l2−1(zj)V
l2(xj ;w)>

d−→
√

2 E
(u,v)∼N (0,Λl2)

[˙σ(u) ˙σ(v)]I = Σ̇l2(ui, uj)I
(69)

Applying the above recursively proves the first claim. Using the first claim, along with the derivation
of the neural tangent kernel (see [1]) proves the second claim.

11

Theorem 3 (Hyperkernel convergence at initialization and composition). Let h(u;w) =
g(z; f(x;w)) be a hypernetwork. Then,

Kh(u, u′)
p−→ Θh(u, u′) (70)

where:
Θh(u, u′) = Θf (x, x′) ·Θg(u, u′) (71)

such that:

Kf (x, x′)
p−→ Θf (x, x′) · I and Kg(u, u′) p−→ Θg(u, u′, SL(x, x′)) (72)

moreover, if w evolves throughout gradient flow, we have:

∂Kh(u, u′)

∂t

∣∣∣
t=0

p−→ 0 (73)

where the limits are taken with respect to m,n→∞ sequentially.

Proof. Recalling that v = vec(f(x)) = [vec(V 1), ..., vec(V H)], concatenated into a single vector
of length

∑H−1
l=0 ml ·ml+1. The components of the inner matrix Kf (x, x′) are given by:

Kf (x, x′)(i, j) =
L∑
l=1

〈
∂vi(x)

∂wl
,
∂vj(x

′)

∂wl

〉
(74)

and it holds that in the infinite width limit, Kf (x, x′) is a diagonal matrix:

Kf (x, x′)
d−→ Θf (x, x′) · I (75)

By letting the widths n and m tend to infinity consecutively, by Lem. 6, it follows that:

∂h(u;w)

∂v
· ∂
>h(u′;w)

∂v

d−→ Θg(u, u′, SL(x, x′)) (76)

Since Kf (x, x′) = ∂f(x;w)
∂w · ∂

>f(x′;w)
w converges to the diagonal matrix Θf (x, x′) · I , the limit of

Kh(u, u′) is given by:

Kh(u, u′) =
∂g(z; f(x;w))

∂f(x;w)
· ∂f(x;w)

∂w
· ∂
>f(x′;w)

w
· ∂
>g(z′; f(x′;w))

∂f(x′;w)

=
∂h(u;w)

∂v
· ∂f(x;w)

∂w
· ∂
>f(x′;w)

w
· ∂
>h(u′;w)

∂v
d−→Θf (x, x′) ·Θg(u, u′, SL(x, x′))

(77)

where we used the results of Lem. 6.

Next, we would like to prove that ∂Kh(u,u′)
∂t

∣∣∣
t=0

= 0. For this purpose, we write the derivative
explicitly:

∂Kh(u, u′)

∂t
=
∂h(u;w)

∂w
· ∂
∂t

∂>h(u′;w)

∂w
+
∂

∂t

∂h(u;w)

∂w
· ∂
>h(u′;w)

∂w
(78)

We notice that the two terms are the same up to changing between the inputs u and u′. Therefore,
with no loss of generality, we can simply prove the convergence of the second term. We have:

∂

∂t

∂h(u;w)

∂w
· ∂
>h(u′;w)

∂w

=

[
∂

∂t

(
∂h(u;w)

∂f(x;w)
· ∂f(x;w)

∂w

)]
· ∂
>h(u′;w)

∂w

=

[
∂h(u;w)

∂f(x;w)∂t
· ∂f(x;w)

∂w
+
∂h(u;w)

∂f(x;w)
· ∂f(x;w)

∂w∂t

]
· ∂
>h(u′;w)

∂w

=
∂h(u;w)

∂f(x;w)∂t
· ∂f(x;w)

∂w
· ∂
>h(u′;w)

∂w
+
∂h(u;w)

∂f(x;w)
· ∂f(x;w)

∂w∂t
· ∂
>h(u′;w)

∂w

(79)

We analyze each term separately.

12

Analyzing the first term By substituting ∂
∂t = −µ∇wc(w)∂

>

∂w = −µ∇wc(w)∂
>f
∂w

∂>

∂f , we have:

∂h(u;w)

∂f(x;w)∂t
· ∂f(x;w)

∂w
· ∂
>h(u′;w)

∂w

= −µ∇wc(w)
∂>f(x;w)

∂w
· ∂2h(u;w)

∂f(x;w)∂f(x;w)
· ∂f(x;w)

∂w
· ∂
>f(x′;w)

∂w
· ∂
>h(u′;w)

∂f(x′;w)

= −µ∇wc(w)
∂>f(x;w)

∂w

∂2h(u;w)

∂f(x;w)∂f(x;w)
Kf (x, x′) · ∂

>h(u′;w)

∂f(x′;w)

= −µ
N∑
i=1

∂`(h(ui;w), yi)

∂h(ui;w)
· ∂h(ui;w)

∂f(x;w)
· Kf (x, xi) ·

∂2h(u;w)

∂f(x;w)∂f(x;w)
· Kf (x, x′) · ∂

>h(u′;w)

∂f(x′;w)

(80)
It then follows:

lim
n→∞

∂h(u;w)

∂f(x;w)∂t
· ∂f(x;w)

∂w
· ∂
>h(u′;w)

∂w

=− µ
N∑
i=1

`i ·Θf (x, xi) ·Θf (x, x′) lim
n→∞

∂h(ui;w)

∂f(xi;w)
· ∂2h(u;w)

∂f(x;w)∂f(x;w)
· ∂h(u′;w)

∂f(x′;w)

(81)

We notice that:

lim
n→∞

∂>h(ui;w)

∂f(xi;w)
· ∂2h(u;w)

∂f(x;w)∂f(x;w)
· ∂h(u′;w)

∂f(x′;w)

=
∑
l1,l2

lim
n→∞

〈
∂2h(u;w)

∂f l1(x;w)∂f l2(x;w)
,
∂h(ui;w)

∂f l1(xi;w)
⊗ ∂h(u′;w)

∂f l2(x′;w)

〉
:=
∑
l1,l2

T l1,l2m (u, ui, u
′)

(82)

We recall that f l(x;w) converges to a GP (as a function of x) as n → ∞ [4]. Therefore,
T l1,l2m (u, ui, u

′) are special cases of the terms T l,i,d
n,i,d (see Eq. 7) with weights that are distributed ac-

cording to a GP instead of a normal distribution. In this case, we have: k = 2, d = d1 = · · · = dk = 1,
the neural network f1 is replaced with h, the weights W l are translated into f l(x;w). We recall that
the proof of Lem. 3 showing that T l,i,d

n,i,d = Op(1/nk−1) is simply based on Lem. 2. Since Lem. 6
extends Lem. 2 to our case, the proof of Lem. 3 can be applied to show that T l1,l2m (u, ui, u

′) ∼ 1/m.

Analyzing the second term We would like to show that for any m > 0, we have:
∂h(u;w)

∂f(x;w)
· ∂f(x;w)

∂w∂t
· ∂
>h(u′;w)

∂w

d−→ 0 (83)

as n→∞. Since ∂w
∂t = −µ∇wc(w), we have:

∂h(u;w)

∂f(x;w)
· ∂f(x;w)

∂w∂t
· ∂
>h(u′;w)

∂w

=− µ · ∂h(u;w)

∂f(x;w)
· ∇wc(w) · ∂

2f(x;w)

∂w2
· ∂
>h(u′;w)

∂w

=− µ · ∂h(u;w)

∂f(x;w)
· ∇wc(w) · ∂

2f(x;w)

∂w2
· ∂
>f(x′;w)

∂w
· ∂
>h(u′;w)

∂f(x;w)

(84)

In addition, we have:

∇wc(w) =

N∑
i=1

∂`(h(ui;w), yi)

∂h(ui;w)
· ∂h(ui;w)

∂w
(85)

We note that ∂`(h(ui;w),yi)
∂h(ui;w) converges in distribution as m,n→∞. Therefore, we can simply analyze

the convergence of:
N∑
i=1

∂h(u;w)

∂f(x;w)
· ∂h(ui;w)

∂w
· ∂

2f(x;w)

∂w2
· ∂
>f(x′;w)

∂w
· ∂
>h(u′;w)

∂f(x;w)
(86)

13

Since N is a constant, it is enough to show that each term converges to zero. We have:

∂h(u;w)

∂f(x;w)
· ∂h(ui;w)

∂w
· ∂

2f(x;w)

∂w2
· ∂
>f(x′;w)

∂w
· ∂
>h(u′;w)

∂f(x;w)

=
∂h(u;w)

∂f(x;w)
· ∂h(ui;w)

∂f(xi;w)
· ∂f(xi;w)

∂w
· ∂

2f(x;w)

∂w2
· ∂
>f(x′;w)

∂w
· ∂
>h(u′;w)

∂f(x;w)

=
∑
l,j,k

∂h(u;w)

∂f(x;w)l
· ∂h(ui;w)

∂f(xi;w)j
· ∂f(xi;w)j

∂w
· ∂

2f(x;w)l
∂w2

· ∂
>f(x′;w)k

∂w
· ∂
>h(u′;w)

∂f(x;w)k

(87)

where f(x;w)j is the j’th output of f over x. In addition, the summation is done over the indices of
the corresponding tensors. We note that for any m > 0, the number of indices l, j, k is finite. We
would like to show that each term in the sum tends to zero as n→∞. We can write:

∂f(xi;w)j
∂w

· ∂
2f(x;w)l
∂w2

· ∂
>f(x′;w)k

∂w
=

〈
∂2f(x;w)l

∂w2
,
∂f(xi;w)j

∂w
⊗ ∂f(x′;w)k

∂w

〉
(88)

By Lem. 3, the term in Eq. 88 tends to zero as n → ∞. In addition, it is easy to see that ∂h(u;w)
∂f(x;w)l

,
∂h(ui;w)
∂f(xi;w)j

and ∂>h(u′;w)
∂f(x;w)k

converge to some random variables. Therefore, for any fixed m > 0, the
above sum converges to zero as n→∞.

14

References

[1] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019.

[2] Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. In
International Conference on Learning Representations, 2020.

[3] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
International Conference on Learning Representations, 2020.

[4] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference
on Learning Representations, 2018.

[5] Etai Littwin, Tomer Galanti, and Lior Wolf. On random kernels of residual architectures. Arxiv,
2020.

[6] Henry B. Mann and Abraham Wald. On stochastic limit and order relationships. Annals of
Mathematical Statistics, 14(3):217–226, 09 1943.

[7] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems 20. Curran Associates, Inc., 2008.

[8] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. Arxiv, 2020.

[9] Greg Yang. Tensor programs I: Wide feedforward or recurrent neural networks of any architecture
are gaussian processes. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019.

15

	Implementation Details
	Convergence of the Hyperkernel
	Image Completion and Impainting

	Additional Experiments
	Sensitivity Study
	Training wide networks with a large learning rate

	Correlation Functions
	Proofs of the Main Results
	Useful Lemmas
	Main Technical Lemma
	Proof of Thm. 1
	Proofs of the Results in Sec. 4

