## A Deferred Proofs

For completeness, we give a full proof of Theorem 6, which shows that any bounded degree graph admits an exact low-rank factorization. Our proof closely follows the approach of [AFR85] for bounding the sign rank of sparse matrices

**Theorem 6.** Let  $A \in \{0,1\}^{n \times n}$  be the adjacency matrix of a graph G with maximum degree c. Then there exist embeddings  $X, Y \in \mathbb{R}^{n \times (2c+1)}$  such that  $A = \sigma(XY^T)$  where  $\sigma(x) = \max(0, \min(1, x))$  is applied entry-wise to  $XY^T$ .

*Proof.* Let  $V \in \mathbb{R}^{n \times (2c+1)}$  be the Vandermonde matrix with  $V_{t,j} = t^{j-1}$ . For any  $x \in \mathbb{R}^{2c+1}$ ,  $[Vx](t) = \sum_{j=1}^{2c+1} x(j) \cdot t^{j-1}$ . That is:  $Vx \in \mathbb{R}^n$  is a degree 2c polynomial evaluated at the integers  $t = 1, \ldots, n$ .

Let  $a_i$  be the  $i^{th}$  row of A.  $a_i$  has at most c nonzeros since G has maximum degree c. We seek to find  $x_i$  so that  $s(Vx_i) = a_i$ , and thus, letting  $X \in \mathbb{R}^{n \times (2c+1)}$  have  $x_i$  as its  $i^{th}$  row, will have  $A = s(VX^T)$ . This yields the theorem since, if we scale  $VX^T$  by a large enough constant (which does not change its rank), all its positive entries will be larger than 1 and thus we will have  $\sigma(VX^T) = A$ .

To give  $x_i$  with  $s(Vx_i) = a_i$ , we equivalently must find a degree 2c polynomial which is positive at all integers t with  $a_i(t) = 1$  and negative at all t with  $a_i(t) = 0$ . Let  $t_1, t_2, \ldots, t_c$  denote the indices where  $a_i$  is 1. Let  $r_{i,L}$  and  $r_{i,U}$  be any values with  $t_{i-1} < r_{i,L} < t_i$  and  $t_i < r_{i,U} < t_{i+1}$ . If we chose the polynomial with roots at each  $r_{i,L}$  and  $r_{i,U}$ , it will have 2c roots and so degree 2c. Further, this polynomial will switch signs just at each root  $r_{i,L}$  and  $r_{i,U}$ . We can observe then that the polynomial will have the same sign at  $t_1, t_2, \ldots, t_c$  (either positive or negative). Flipping the sign to be positive, we have the result.

We next give an extension of Theorem 5, showing that a simple binary embedding can yield a graph with very high triangle density.

**Theorem 8** (Simplified Embeddings Capturing Triangles). Let  $\overline{A} = \sigma(UMU^T)$  where  $\sigma = \max(0, \min(1, x))$ . For any c, there are matrices  $U \in \{0, 1\}^{n \times k}$  and  $M \in \mathbb{R}^{k \times k}$  for  $k = O(\log n)$  such that if a graph G is generated by adding edge (i, j) independently with probability  $A_{i,j}$ : 1) G has maximum degree c and 2) G contains  $\Omega(c^2n)$  triangles.

*Proof.* Let  $k = d \log n$  for a sufficiently large constant d and consider binary  $U \in \{0, 1\}^{n \times k}$  where each row has exactly  $2 \log n$  nonzero entries. Let  $D = UU^T - \log n \cdot J$  where J is the all ones matrix. Note that D can be written as  $UMU^T$  for  $M = I - \frac{1}{4 \log n} J$ .

Observe that the only positive entries in D are those where  $u_i^T u_j > \log n$ . Thus  $\overline{A} = \sigma(D)$  is binary with 1s where  $u_i^T u_j > \log n$  and 0s elsewhere. In turn, G is deterministic, with adjacency matrix  $\overline{A}$ .

We will construct U so that its rows are partitioned into n/c clusters with c nodes in them each as in Theorem 5. The construction is as follows: choose n/c random binary vectors  $m_1, \ldots, m_{n/c}$  (the 'cluster centers') with exactly  $2 \log n$  nonzeros in them. In expectation, the number of overlapping entries between any two of these vectors will be  $\frac{2 \log n}{d}$  and so with high probability after union bounding over  $\binom{n/c}{2} < n^2$  pairs, all will have at most  $\frac{\log n}{3}$  overlapping entries if we set d large enough. Thus,  $m_i^T m_j < \frac{\log n}{3}$  for any i and j and the centers will not be connected in G.

If we set d large enough, then around each cluster center  $m_i$ , there are at least  $\binom{d \log n - 2 \log n}{\log n/3} \ge n \ge c$ binary vectors  $v_1, \ldots, v_c$  each with  $2 \log n$  nonzeros that overlap the center on all but  $\frac{\log n}{3}$  bits and so have  $m_i^T v_j > 2 \log n - \frac{\log n}{3} > \log n$  and a connection in the graph.

Additionally, each  $v_i$  must overlap each other  $v_j$  in the same cluster on all but at most  $\frac{2\log n}{3}$  bits and so  $v_i^T v_j \ge 2\log n - \frac{2\log n}{3} > \log n$  and so they will be connected in the graph. Finally, each  $v_i$  overlaps each center of a different cluster on at most  $\frac{2\log n}{3} < \log n$  bits, and so there are no connections between clusters. So G is a union of n/3 sized 3 cliques, and so by the same argument as Theorem 5 has maximum degree c - 1 and  $\Omega(c^2n)$  triangles, giving the theorem.