A Deferred Proofs

For completeness, we give a full proof of Theorem 6, which shows that any bounded degree graph admits an exact low-rank factorization. Our proof closely follows the approach of [AFR85] for bounding the sign rank of sparse matrices
Theorem 6. Let $A \in\{0,1\}^{n \times n}$ be the adjacency matrix of a graph G with maximum degree c. Then there exist embeddings $X, Y \in \mathbb{R}^{n \times(2 c+1)}$ such that $A=\sigma\left(X Y^{T}\right)$ where $\sigma(x)=\max (0, \min (1, x))$ is applied entry-wise to $X Y^{T}$.

Proof. Let $V \in \mathbb{R}^{n \times(2 c+1)}$ be the Vandermonde matrix with $V_{t, j}=t^{j-1}$. For any $x \in \mathbb{R}^{2 c+1}$, $[V x](t)=\sum_{j=1}^{2 c+1} x(j) \cdot t^{j-1}$. That is: $V x \in \mathbb{R}^{n}$ is a degree $2 c$ polynomial evaluated at the integers $t=1, \ldots, n$.
Let a_{i} be the $i^{t h}$ row of $A . a_{i}$ has at most c nonzeros since G has maximum degree c. We seek to find x_{i} so that $s\left(V x_{i}\right)=a_{i}$, and thus, letting $X \in \mathbb{R}^{n \times(2 c+1)}$ have x_{i} as its $i^{\text {th }}$ row, will have $A=s\left(V X^{T}\right)$. This yields the theorem since, if we scale $V X^{T}$ by a large enough constant (which does not change its rank), all its positive entries will be larger than 1 and thus we will have $\sigma\left(V X^{T}\right)=A$.
To give x_{i} with $s\left(V x_{i}\right)=a_{i}$, we equivalently must find a degree $2 c$ polynomial which is positive at all integers t with $a_{i}(t)=1$ and negative at all t with $a_{i}(t)=0$. Let $t_{1}, t_{2}, \ldots, t_{c}$ denote the indices where a_{i} is 1 . Let $r_{i, L}$ and $r_{i, U}$ be any values with $t_{i-1}<r_{i, L}<t_{i}$ and $t_{i}<r_{i, U}<t_{i+1}$. If we chose the polynomial with roots at each $r_{i, L}$ and $r_{i, U}$, it will have $2 c$ roots and so degree $2 c$. Further, this polynomial will switch signs just at each root $r_{i, L}$ and $r_{i, U}$. We can observe then that the polynomial will have the same sign at $t_{1}, t_{2}, \ldots, t_{c}$ (either positive or negative). Flipping the sign to be positive, we have the result.

We next give an extension of Theorem 5 , showing that a simple binary embedding can yield a graph with very high triangle density.
Theorem 8 (Simplified Embeddings Capturing Triangles). Let $\bar{A}=\sigma\left(U M U^{T}\right)$ where $\sigma=$ $\max (0, \min (1, x))$. For any c, there are matrices $U \in\{0,1\}^{n \times k}$ and $M \in \mathbb{R}^{k \times k}$ for $k=O(\log n)$ such that if a graph G is generated by adding edge (i, j) independently with probability $\left.A_{i, j}: 1\right) G$ has maximum degree c and 2) G contains $\Omega\left(c^{2} n\right)$ triangles.

Proof. Let $k=d \log n$ for a sufficiently large constant d and consider binary $U \in\{0,1\}^{n \times k}$ where each row has exactly $2 \log n$ nonzero entries. Let $D=U U^{T}-\log n \cdot J$ where J is the all ones matrix. Note that D can be written as $U M U^{T}$ for $M=I-\frac{1}{4 \log n} J$.
Observe that the only positive entries in D are those where $u_{i}^{T} u_{j}>\log n$. Thus $\bar{A}=\sigma(D)$ is binary with 1 s where $u_{i}^{T} u_{j}>\log n$ and 0 s elsewhere. In turn, G is deterministic, with adjacency matrix \bar{A}.
We will construct U so that its rows are partitioned into n / c clusters with c nodes in them each as in Theorem 55. The construction is as follows: choose n / c random binary vectors $m_{1}, \ldots, m_{n / c}$ (the 'cluster centers') with exactly $2 \log n$ nonzeros in them. In expectation, the number of overlapping entries between any two of these vectors will be $\frac{2 \log n}{d}$ and so with high probability after union bounding over $\binom{n / c}{2}<n^{2}$ pairs, all will have at most $\frac{\log n}{3}$ overlapping entries if we set d large enough. Thus, $m_{i}^{T} m_{j}<\frac{\log n}{3}$ for any i and j and the centers will not be connected in G.
If we set d large enough, then around each cluster center m_{i}, there are at least $\binom{d \log n-2 \log n}{\log n / 3} \geq n \geq c$ binary vectors v_{1}, \ldots, v_{c} each with $2 \log n$ nonzeros that overlap the center on all but $\frac{\log n}{3}$ bits and so have $m_{i}^{T} v_{j}>2 \log n-\frac{\log n}{3}>\log n$ and a connection in the graph.

Additionally, each v_{i} must overlap each other v_{j} in the same cluster on all but at most $\frac{2 \log n}{3}$ bits and so $v_{i}^{T} v_{j} \geq 2 \log n-\frac{2 \log n}{3}>\log n$ and so they will be connected in the graph. Finally, each v_{i} overlaps each center of a different cluster on at most $\frac{2 \log n}{3}<\log n$ bits, and so there are no connections between clusters. So G is a union of $n / 3$ sized 3 cliques, and so by the same argument as Theorem 5 has maximum degree $c-1$ and $\Omega\left(c^{2} n\right)$ triangles, giving the theorem.

