
Appendix

Table A1: Parameter and FLOPs comparison: We report the number of floating point operations
(FLOPs) and the number of parameters in a model below.

Model FLOPs (G) Params (M)

MobileNet-V2 0.33 3.50
AlexNet 0.77 61.0
ResNet-18 1.82 11.69
ResNet-50 4.14 25.56
ResNet-50x4 64.06 375.38

More results for cluster alignment

For cluster alignment experiment (Section 4.3), we calculate the alignment for each category, sort
them, and show in Figure A1. Moreover, Figure A2 is a larger version that is generated similar to
Figure 3-right. Each row is a random cluster while images in the row are randomly sampled from
that cluster with no manual selection or cherry-picking.

Figure A1: Cluster alignment accuracy: We calculate the accuracy for each ImageNet category
and then plot them after sorting.

Implementation details for the baselines

Non-compressed (MoCo): We use MoCo-v2 [10] from the official code [44] with AlexNet, ResNet-
18, and MobileNet-V2 architectures for 200 epochs. We also train a longer baseline with ResNet-18
for 1000 epochs. All other hyperparameters are the same as the official version (m=0.999, lr=0.03).

CRD: We use the official code provided by the authors[12] and removed the supervised loss term.
We use their default ImageNet hyperparameter of lr = 0.05 except for AlexNet student for which we
use lr = 0.005 to make it converge.

CC: We calculate the `2 normalized embeddings for the entire training dataset and apply k-means
clustering with (k = 16, 000) (which is adopted from [58]). This is equivalent to clustering with
cosine similarity. We got slightly better results for cosine similarity compared to Euclidean distance.
We use the FAISS GPU based k-means clustering implementation[1]. Finally, the student is trained to
classify the cluster assignments. As in [38, 58], we train the student for 100 epochs. We use lr = 0.1
for ResNet models and lr = 0.01 for MobileNet-V2 and AlexNet models. We use cosine learning
rate annealing.

Reg: We use Adam optimizer with weight decay of 1e− 4 for 100 epochs, and batch size of 256. For
MobileNet-V2 and ResNet-18, we use lr = 0.001, and for AlexNet lr = 0.0001. The lr is reduced

13



by a factor of 10 at the 40-th and 80-th epochs. We use ADAM optimizer as performed better than
SGD.

Reg-BN: It is similar to Reg except that we use SGD optimizer with lr = 0.1 instead of ADAM.

Details of Places experiments (Section 4.4)

We perform adaptive max pooling to get features with dimensions around 9K, and train a linear layer
on top of them. Training is done for 90 epochs with lr = 0.01, batch size = 256, weight decay =
1e− 4, momentum = 0.9, and lr multiplied by 0.1 at 30, 60, and 80 epochs.

Details of PASCAL experiments (Section 4.4)

For classification, we train a single linear layer on top of a frozen backbone. We use SGD with
learning rate = 0.01, batch size = 16, weight decay = 1e − 6, and momentum = 0.9. We train for
80, 000 iterations and multiply learning rate by 0.5 every 5, 000 iterations.

For object detection, we use SGD learning rate = 0.001, weight decay = 5e− 4, momentum = 0.9
and batch size = 256. We train for 15, 000 iterations and multiply learning rate by 0.1 every 5, 000
iterations. The training parameters are adopted form [38] and the code from [20].

Details of small data ImageNet experiments (Section 4.4)

We train a single linear layer on top a frozen backbone. We use SGD with learning rate = 0.05, batch
size = 256, weight decay = 1e − 4, and momentum = 0.9. We use cosine learning rate decay and
train for 30 and 60 epochs for 10 percent and 1 percent subsets respectively. The subsets and training
parameters are adopted from [9].

14



Figure A2: Cluster Alignment: Similar to Figure 3 (c), we show 20 randomly selected images
(columns) from 30 randomly selected clusters (rows) for our best AlexNet modal. This is done with
no manual inspection or cherry-picking. Note that most rows are aligned with semantic categories.

15


