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Abstract

The task of maximizing a monotone submodular function under a cardinality
constraint is at the core of many machine learning and data mining applications,
including data summarization, sparse regression and coverage problems. We study
this classic problem in the fully dynamic setting, where elements can be both
inserted and removed. Our main result is a randomized algorithm that maintains an
efficient data structure with a poly-logarithmic amortized update time and yields a
(1/2− ε)-approximate solution. We complement our theoretical analysis with an
empirical study of the performance of our algorithm.

1 Introduction

Thanks to the ubiquitous nature of “diminishing returns” functions, submodular optimization has
established itself as a central topic in machine learning, with a myriad of applications ranging from
active learning [GK11] to sparse reconstruction [Bac10, DDK12, DK11], video analysis [ZJCP14]
and data summarization [BIRB15]. In this field, the problem of maximizing a monotone submodular
function under a cardinality constraint is perhaps the most central. Despite its generality, the problem
can be (approximately) solved using a simple and efficient greedy algorithm [NWF78].

However, this classic algorithm is inefficient when applied on modern large datasets. To overcome this
limitation, in recent years there has been much interest in designing efficient streaming [BMKK14,
CK14, BFS15, FKK18, NTM+18] and distributed algorithms [MZ15, MKBK15, BENW16, ENV19]
for submodular maximization.

Although those algorithms have found numerous applications, they are not well-suited for the common
applications where data is highly dynamic. In fact, real-world systems often need to handle evolving
datasets, where elements are added and deleted continuously. For example, in a recent study [DJR12],
Dey et al. crawled two snapshots of 1.4 million New York City Facebook users several months apart
and reported that 52% of them had changed their profile privacy settings significantly during this
period. Similarly, Snapchat processes several million picture uploads and deletions daily; Twitter
processes several million tweet uploads and deletions daily. As one must still be able to run basic
machine learning tasks, such as sparse recovery or data summarization, in such highly dynamic
settings, we need fully dynamic algorithms: ones able to efficiently handle a stream containing not
only insertions, but also an arbitrary number of deletions, with small processing time per update.

∗Equal contribution.
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The general dynamic setting is classic and a staple of algorithm design, with many applications in
machine learning systems. However, for many problems it is notoriously difficult to obtain efficient
algorithms in this model. In the case of submodular maximization, algorithms have been proposed for
the specialized settings of sliding windows [CNZ16, ELVZ17] and robustness [MBN+17, KZK18].
However, as we discuss below, these solutions cannot handle the full generality of the described
real-world scenarios.

Our contribution. In this paper we design an efficient fully dynamic algorithm for submodular
maximization under a cardinality constraint. Our algorithm:

• takes as input a sequence of arbitrarily interleaved insertions and deletions,

• after each such update, it continuously maintains a solution whose value is in expectation at
least (1/2− ε) times the optimum of the underlying dataset at the current time,

• has amortized time per update that is poly-logarithmic in the length of the stream.

This result settles the status of submodular maximization as tractable in the dynamic setting. We also
empirically validate the efficiency of our algorithm in several applications.

Related work. The question of computing a concise summary of a stream of n data points on
the fly was first addressed by streaming algorithms. This line of work focuses on using small
space, independent of (or only poly-logarithmically dependent on) n. The SIEVESTREAMING
algorithm [BMKK14] achieves a (1/2− ε)-approximation in this model, which is tight [FNFSZ20].
The main thresholding idea of SIEVESTREAMING has had a large influence on recent submodular
works, including ours. However, streaming algorithms do not support deletions. In fact, the low-
memory requirement is fundamentally at odds with the dynamic setting, as any approximation
algorithm for the latter must store all stream elements.2 A natural idea is to adapt streaming
algorithms to deletions by storing the stream and recomputing the solution when it loses elements.
However, this takes Ω(n) time per deletion, and is also shown to be inefficient in our experimental
evaluations.

A notable related problem is that of maintaining a summary that focuses only on recent data (e.g.,
the most recent one million data points). This task is captured by the sliding window model. In
particular, [CNZ16, ELVZ17] give algorithms that optimize a monotone submodular function under
the additional constraint that only the last W elements of the stream can be part of the solution.
Unfortunately this setting, while crucial for the data freshness objective, is unrealistic for real-world
dynamic systems, where it is impossible to assume that data points are deleted in such structured
order. In particular, emerging privacy concerns and data protection regulations require data processing
platforms to respond rapidly to users’ data removal requests. This means that the arrival and removal
of data points follows an arbitrary and non-homogeneous pattern.

Another important task is that of generating a summary that is robust to a specific number D of
adversarial deletions. This setting is the inspiration for the two-stage deletion-robust model. In the
first stage, elements are inserted, and the algorithm must retain an intermediate summary of limited
size. In the second stage, an adversary removes a set of up to D items. The algorithm then needs
to find a final solution from the intermediate summary while excluding the removed items. Despite
the generality of the deleted items being arbitrary, this framework assumes that all deletions occur
after all items have been introduced to the system, which is often unrealistic and incompatible with
privacy objectives. Furthermore, in the known algorithms for this setting [MBN+17, KZK18], the
time needed to compute a single solution depends linearly on D, which could be as large as the size
n of the entire dataset. Therefore a straightforward use of these methods in fully dynamic settings
would result in Ω(n) per-update time, which is prohibitively expensive.

Finally, a closely related area is that of low-adaptivity complexity. In particular, [FMZ19] is closely
related to our work; we build upon the batch insertion idea of the Threshold Sampling algorithm
introduced there.

2If even one element is not stored by an algorithm, an adversary could delete all other elements, bringing the
approximation ratio down to 0.
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2 Preliminaries

We consider a (potentially large) collection V of items, also called the ground set. We study the
problem of maximizing a non-negative monotone submodular function f : 2V → R≥0. Given two
sets X,Y ⊆ V , the marginal gain of X with respect to Y is defined as

f (X | Y ) = f(X ∪ Y )− f(Y ) ,

which quantifies the increase in value when adding X to Y . We say that f is monotone if for any
element e ∈ V and any set Y ⊆ V it holds that f (e | Y ) ≥ 0. The function f is submodular if for
any two sets X and Y such that X ⊆ Y ⊆ V and any element e ∈ V \ Y we have

f (e | X) ≥ f (e | Y ) .

Throughout the paper, we assume that f is normalized, i.e., f(∅) = 0. We also assume that f is given
in terms of a value oracle that computes f(S) for given S ⊆ V . As usual in the field, when we talk
about running time, we are counting the number of oracle calls/queries, each of which we treat as a
unit operation. The number of non-oracle-call operations we perform is within a polylog factor of the
number of oracle calls.

Submodularity under a cardinality constraint. The problem of maximizing a function f under
a cardinality constraint k is defined as selecting a set S ⊆ V with |S| ≤ k so as to maximize f(S).
We will use OPT to refer to such a maximum value of f .

Notation for dynamic streams. Consider a stream of insertions and deletions. Denote by Vi the
set of all elements that have been inserted and not deleted up to the i-th operation. Let Oi be an
optimum solution for Vi; denote OPTi = f(Oi).

In our dynamic algorithm we are interested in updating our data structure efficiently. We say that an
algorithm has amortized update time t if its total running time to process a worst-case sequence of n
insertions and deletions is in expectation at most nt.

3 Overview of our approach and intuitive analysis

In this section we provide an overview of the main techniques and ideas used in our algorithm. To
that end we skip some details of the algorithm and present the arguments intuitively, while formal
arguments are provided in Section 4. We start by noting that previous approaches either do not
support deletions altogether, or support only a limited (and small) number of deletions (with linear
running time per deletion) and so they do not capture many real-world scenarios. In this work, we
overcome this barrier by designing a novel fully dynamic data structure that has only poly-logarithmic
amortized update time.

We start with a few useful observations. For a moment, ignore the values of elements in the ground
set V . Consider a set X of k elements sampled uniformly at random from V .3 The set X is very
robust against deletions (which, as a reminder, we asssume to be chosen independently of the choice
of X). Namely, in order to delete an ε-fraction of the elements in X , one needs (in expectation)
to delete an ε-fraction of the elements in V . This property suggests the following fast algorithm,
that we refer to by ALG-SIMPLE, for maintaining a set of at most k elements: sample k elements
uniformly at random from the ground set, and call that set X; after an ε-fraction of the elements
in X is deleted, sample another X from scratch. The current set X represents an output after an
update. ALG-SIMPLE has expected running time O(1/ε) per deletion, and can also be extended to
support insertions in polylog(n) time. The main issue with this approach is the lack of guarantees on
the quality of the output solution after an update, i.e., the approach is oblivious to the values of the
elements in V . For instance, the ground set might contain many useless elements, hence selecting k
of them uniformly at random would not lead to a set of high utility. The main idea in our paper is to
partition the ground set into groups (that we call buckets) so that applying ALG-SIMPLE within each
bucket outputs a robust set of high utility. Moreover, the union of these sampled elements provides
close to optimal utility.

3Hence, each element from V is sampled with probability k/n.

3



Our data structure, which we refer to by A, divides the elements into T = log n levels, with each
level subdivided into R = log k buckets. Informally speaking, each bucket is designed in such a way
that selecting elements from it by ALG-SIMPLE results in sets that are both robust and high-quality.
Our algorithm maintains a set S that represents the output solution at every point; it is constructed by
applying ALG-SIMPLE over distinct buckets. Different buckets might contribute different numbers of
elements to S.

The structure of each level of A is essentially the same. The main difference is that different levels
maintain different numbers of elements, i.e., level ` maintains O( n

2`
· polylog(n)) many elements.

Intuitively, and informally, levels with small ` are recomputed/changed only after many updates,
while levels with large `, such as ` = T , are sensitive to updates and recomputed more frequently. In
particular, if we insert an extremely valuable element, then the level ` = T will guarantee that this
newly added valuable element will appear in S. We now discuss the structure of A in more detail.

We use Ai,` to refer to the i-th bucket in level `. Each level is associated with a maximum bucket-size,
with level 0 corresponding to the largest bucket-sizes. More precisely, we will maintain the invariant

|Ai,`| ≤
n

2`
· polylog(n)

for all 1 ≤ i ≤ R. Organizing levels to correspond to exponentially decreasing bucket-sizes is one of
the main ingredients that enables us to obtain a poly-logarithmic update time.

Buckets within each level are ordered so as to contain elements of exponentially decreasing marginal
values with respect to the elements chosen so far. To illustrate this partitioning, consider the first
bucket of level 0. Let S be the set of elements representing our (partial) output so far; initially, S = ∅.
Then, we define

A1,0 = {e ∈ V | τ1 ≤ f(e | S) ≤ τ0} ,

where τi ≈ (1−ε)i OPT.4 It is clear that the construction ofA1,0 takes Õ(n) time. After constructing
A1,0, our goal is to augment S by some of the elements from A1,0 so that the marginal gain of each
element added to S is in expectation at least τ1. After augmenting S, we also refine A1,0. This is
achieved by repeatedly performing the following steps:
From A1,0 we randomly select a subset (of size at most k − |S|) of elements whose average marginal
gain with respect to to S is at least τ1. In Appendix C we explain how to obtain such a set efficiently.
Then we add this set to S. Now, refine A1,1 by removing from it all elements whose marginal gain
with respect to S is less than τ1. If |A1,0| ≥ n/2 and |S| < k, we repeat these steps.

Let us now analyze the robustness of S ∩A1,0. The way we selected the elements added to S enables
us to perform a similar reasoning to the one we performed to analyze the robustness of ALG-SIMPLE.
Namely, when an element e ∈ A1,0 is added to S, it is always chosen uniformly at random from A1,0.
Also, the process of adding elements to S from A1,0 is repeated while |A1,0| ≥ n/2. In other words,
e is chosen from a large pool of elements, much larger than k. Hence, an adversary has to remove
many elements, ε|Ai,`| ≥ εn/2 in expectation, to remove an ε-fraction of elements added from Ai,`
to S. Combining this observation with the fact that the construction of A1,0 takes Õ(n) time is key to
obtaining to the desired update time5.

Note that so far we have assumed that a good solution can be constructed looking only at elements
with marginal value larger than τ1. Unfortunately this is not always the case and so we need to extend
our construction. To construct the remaining buckets Ai,`, we proceed in the same fashion as for A1,0

in the increasing order of i. The only difference is that we consider decreasing thresholds:

Ai,` = {e ∈ V | τi ≤ f(e | S) ≤ τi−1} ,

where S is always the set of elements chosen so far. Once all the buckets in level 0 are processed, we
proceed to level 1. The main difference between different layers is that for level ` we iterate while
|Ai,`| ≥ n/2` and |S| < k. So, in every level we explore more of our ground set. Importantly, we
can show that on every level we consider a ground set that decreases in size significantly.

At first, it might be surprising that from bucket to bucket of level ` we consider elements in decreasing
order of their marginal gain, and then in level `+ 1 we again begin by considering elements of the

4As a reminder, OPT denotes the maximum value of f(S) over all S ⊆ V such that |S| ≤ k.
5Note that actually achieving the desired running time without any assumption requires further adjustments

to the algorithm and more involved techniques that we introduce in further sections.
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largest gain. Perhaps it would be more natural to first exhaust all the elements of the largest marginal
gain, and only then consider those of lower gain. However, we remark that the smallest value of
τi that we consider is at least Θ(OPT /k). Hence, selecting for S any k elements whose marginal
contribution is at least τi already leads to a good approximation.

Handling Deletions. Assume that an adversary deletes an element e. If e /∈ S, we remove e only
from the buckets it belongs to, without any extra recomputation. If e ∈ S, let Ai,` be the bucket
from which e is added to S. To update S, we reconstruct A from A1,`. We now informally bound the
running time needed for this reconstruction. The probability that an element from A1,` belongs to S
is t
n/2`

, where t is the number of elements selected to S from Ai,`. Saying it differently, an adversary

has to (in expectation) remove n/2`

t elements from Ai,` before it removes an element from S ∩Ai,`.
Moreover the running time of a reconstruction of A1,` is Õ(n/2`). Putting these two together, we get
that expected running time of reconstruction per deletion is O(t) · polylog(n). To reduce the update
time to polylog n, we reconstruct S only if, since its last reconstruction, its value has dropped by a
factor ε. Since the elements in Ai,` have similar marginal gain, an adversary would need to remove
roughly εt elements from S ∩Ai,` to invoke a recomputation of A1,`, leading to an amortized update
time of polylog(n). Unfortunately, formalizing this intuition is somewhat subtle, as elements are
removed from multiple buckets and each removal decreases the value of S.

Handling Insertions. Along with A, we maintain buffer sets B1, . . . , BT . Roughly speaking, our
algorithm postpones processing insertions into level ` until there are n/2` many of them; this enables
us to obtain efficient amortized update time of the structure on level `. The buffer set B` is used to
store these insertions until they are processed.

More precisely, when an element is inserted, the algorithm adds it to all the sets B`. When, for any `,
the size of B` becomes n

2`
, we add the elements of B` to A1,`, reconstruct the data structure from

the `-th level, and also empty B`. This approach handles insertions lazily. Notice that lazy updates
should be done carefully, since if the newly inserted element has very high utility, we need to add it
to the solution immediately. During the execution of the algorithm, B` essentially represents those
elements that we have not considered in the construction of buckets in Ai,` for 0 ≤ ` ≤ T . The
property that the running time of constructing Ai,` is Õ( n

2`
) implies that the amortized running time

per insertion is also polylog(n). Also observe that we add BT to A1,T after any element is inserted,
which enables us to maintain a good approximate solution at all times. In particular, if an element e
of very large marginal gain given S is inserted, e.g., f(e | S) > OPT /2, then it will be processed
via BT and added to S. In general, if there are 2j inserted elements that collectively have very large
gain given S, then they will be processed via BT−j and potentially used to update S.

4 The algorithm

We are now ready to describe our algorithm. For the sake of simplicity, we present an algorithm that
is parametrized by γ: a guess for the value OPT. Moreover we assume that we know the maximum
number of elements available at any given time (max1≤t≤m |Vt|), which is upper-bounded by n.
Later we show how to remove these assumptions.

Our algorithm maintains a data structure that uses three families of element sets: A and S indexed by
pairs (i, `) and B indexed by `. For an integer R that we will set later, the algorithm also maintains a
sequence of thresholds τ0 > . . . > τR (indexed by i), where we think that τ0 ≈ γ and τR ≈ γ/(2k).
We use Sj,` to refer to the elements chosen to S from bucket j of level `. Let Spred(i,`) be the
following union of sets:

Spred(i,`)
def
=

⋃
1≤j≤R,0≤r<`

Sj,r ∪
⋃

1≤j≤i

Sj,`.

In words, a set Spred(i,`), where “pred” refers to “predecessors”, defines the subset of elements of
S chosen from the buckets that precede bucket i of level `, including that bucket itself. At level
` and for index i, we define Ai,` to be the set of items with marginal value with respect to the set
Spred(i,`) in the range [τi, τi−1]. While Ai,` has at least 2T−` items, we use a procedure called
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PEELING6 to select a random subset of Ai,` to be included into the solution set Si,`. This can be done
in multiple iterations; each time, a randomly chosen batch of items will be inserted into Si,`. This
batch insertion logic is named BUCKET-CONSTRUCT and summarized as Algorithm 2. The solution
that our algorithm returns is Spred(R,T ), i.e., the union of all sets Si,`, and we denote by Solt this set
after the t-th operation.

In order to implement our algorithm efficiently, we need to be able to select a high-quality random
subset of Ai,` quickly. Our data structure enables us to do this using the PEELING procedure
from [FMZ19] (whose full description and a precise statement and proofs of its guarantees are
provided in Appendix C).7 This procedure takes as input a set N and identifies a number t and selects
a set S of size t uniformly at random such that: i) the average contribution of each element in S is
almost τ , ii) a large fraction of elements in N have contribution less than τ , conditioned on adding S
to the solution, iii) it uses only a logarithmic number of oracle queries.

To maintain the above batch insertion logic with every insertion, the algorithm may need to recompute
many of the A-sets, which blows up the update time. To get around this problem, we introduce buffer
sets B` for each level 0 ≤ ` ≤ T . Each buffer set B` has a capacity of at most 2T−` − 1 items.
When a new item x arrives, instead of recomputing all A-sets, we insert x into all buffer sets. If some
buffer sets exceed their capacity, we pick the first one (with the smallest `∗) and reconstruct all sets in
levels beginning from `∗. We call this reconstruction process LEVEL-CONSTRUCT. It is presented as
Algorithm 5. The insertion process in summarized as Algorithm 3.

When deleting an element x, our data structure is not affected if the deleted item x does not belong
to any set Si,`. But if it is deleted from some Si,`, we need to recompute the data structure starting
from Si,`. To optimize the update time, we perform this update operation in a lazy manner as well.
We recompute only if an ε-fraction of items in Si,` have been deleted since the last time it was
constructed. To simplify the algorithm, we reconstruct the entire level ` and also the next levels
`+ 1, ... in this case. The deletion logic is summarized as Algorithm 4.

We initialize all sets as empty. The sequence of thresholds τ is set up as a geometric series
parametrized by a constant ε1 > 0.

5 Analysis of the algorithm

We now state two technical theorems, and in Appendix C.1 we show how to combine them in the
main result. Here ε1, εp > 0 are parameters of our algorithm; they affect both approximation ratio
and oracle complexity. Intuitively, they should be thought of as small constants. (As a reminder, our
approach consists of five methods INITIALIZATION, BUCKET-CONSTRUCT, INSERTION, DELETION
and LEVEL-CONSTRUCT that are given as Algorithm 1 through Algorithm 5.)

Theorem 5.1 Let Soli be the solution of our algorithm and OPTi be the optimal solution after i
updates. Moreover, assume that γ in Algorithm 1 is such that (1 + εp) OPTi ≥ γ ≥ OPTi. Then for
any 1 ≤ i ≤ n we have E[f(Soli)] ≥ (1− εp − ε(1 + ε1))OPTi

2 .

Theorem 5.2 The amortized expected number of oracle queries per update is O
(
R5 log2(n)

ε2p·ε

)
, where

R equals log1+ε1(2k) (see Algorithm 1).

Theorems 5.1 and 5.2 are proved in Appendices A and B, respectively. Furthermore, we combine
these ingredients with certain well-known techniques to achieve the following result. Its proof is
provided in Appendix C.1.

Theorem 5.3 Our algorithm maintains a (1 − 2εp − ε(1 + ε1))/2-approximate solution after
each operation. The amortized expected number of oracle queries per update of this algorithm

is O
(

log6
1+ε1

(k) log2(n)

ε4p·ε

)
.

6Algorithm PEELING is an implementation of the ideas behind ALG-SIMPLE described in Section 3.
7We invoke PEELING on the function f ′(e) = f(e | Spred(i,`)), which is monotone submodular.
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Algorithm 1 INITIALIZATION

1: R← log1+ε1(2k)

2: τi ← γ(1 + ε1)−i ∀0 ≤ i ≤ R
3: T ← log n
4: Ai,` ← ∅ ∀1 ≤ i ≤ R 0 ≤ ` ≤ T
5: Si,` ← ∅ ∀1 ≤ i ≤ R 0 ≤ ` ≤ T
6: B` ← ∅ ∀0 ≤ ` ≤ T

Algorithm 2 BUCKET-CONSTRUCT(i, `)

1: repeat
2: Ai,` = {e ∈ Ai,` | τi ≤

f(e | Spred(i,`)) ≤ τi−1}
3: if |Ai,`| ≥ 2T−` and |Spred(R,T )| < k

then
4: Si,` ← Si,` ∪ PEELING(Ai,`, τi, f

′)
5: end if
6: until |Ai,`| < 2T−` or |Spred(R,T )| ≥ k

Algorithm 3 INSERTION(e)

1: B` ← B` ∪ {e} ∀0 ≤ ` ≤ T
2: V ← V ∪ {e}
3: if there exists an index ` such that |B`| ≥

2T−` then
4: Let `? be the smallest such index
5: Si′,`′ ← ∅ ∀`? ≤ `′ ≤ T ∀1 ≤ i′ ≤

R
6: B` ← ∅ ∀`? ≤ `′ ≤ T
7: LEVEL-CONSTRUCT(`?)
8: end if

Algorithm 4 DELETION(e)

1: Ai,` ← Ai,` \ {e} ∀1 ≤ i ≤ R 0 ≤
` ≤ T

2: B` ← B` \ {e} ∀0 ≤ ` ≤ T
3: V ← V \ {e}
4: if e ∈ Spred(R,T ) then
5: Let Si,` be the set containing e
6: Remove e from Si,`
7: if the size of Si,` has reduced by ε frac-

tion since it was constructed then
8: Si′,`′ ← ∅ ∀` ≤ `′ ≤ T ∀0 ≤

i′ ≤ R
9: LEVEL-CONSTRUCT(`)

10: end if
11: end if

Algorithm 5 LEVEL-CONSTRUCT(`)

1: B` ← ∅
2: for i← 1 . . . R do
3: if ` > 0 then
4: Ai,` ← B`−1 ∪

⋃R
j=0Aj,`−1

5: else
6: Ai,` ← V
7: end if
8: BUCKET-CONSTRUCT(i, `)
9: end for

10: if |Spred(R,T )| ≥ k then
11: Ai,`′ ← ∅ ∀` < `′ ≤ T ∀1 ≤ i ≤ R

12: end if
13: if ` < T and |Spred(R,T )| < k then
14: LEVEL-CONSTRUCT(`+ 1)
15: end if

6 Empirical evaluation

In this section we empirically evaluate our algorithm. We perform experiments using a slightly
simplified variant of our algorithm; see Appendix E for more details. We note that this variant also
maintains an almost 1/2-approximate solution after each operation; it differs in the bound on the
expected number of oracle queries per update that we can obtain, which is Õ(k). A proof of these
guarantees can also be found in Appendix E.

The code of our implementations can be found at https://github.com/google-research/
google-research/tree/master/fully_dynamic_submodular_maximization. All experi-
ments in this paper are run on commodity hardware.

We focus on the number of oracle calls performed during the computation and on the quality of
returned solutions. More specifically, we perform a sequence of insertions and removals of elements,
and after each operation i we output a high-value set Si of cardinality at most k. For a given sequence
of n operations, we plot:

• Total number of oracle calls our algorithm performs for each of the n operations.

• Quality of the average output set, i.e.,
∑n
i=1 f(Si)/n.
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Figure 1: The plots in this figure are obtained for f being the graph coverage function. Plots (a) and (b) show
the results on the Enron dataset. We fix an arbitrary order of the Enron email addresses and process them
sequentially over windows of size 30, 000. We first insert all elements, and then delete them in the same order.
Plots (c) and (d) depict the results for the ego-Twitter dataset. In this experiment the insertions are performed in
a random order, while deletions are performed starting from highest-degree nodes.

Dominating sets. In our evaluation we use the dominating set objective function. Namely, given a
graph G = (V,E), for a subset of nodes Z ⊆ V we define f(Z) = |N(Z) ∪ Z|, where N(Z) is the
node-neighborhood of Z. This function is monotone and submodular.

Datasets and their processing. We perform evaluations on the Enron (|V | = 36, 692, |E| =
183, 831), the ego-Twitter (|V | = 81, 306, |E| = 1, 768, 149), and the Pokec (|V | =
1, 632, 803, |E| = 30, 622, 564) graph datasets from SNAP Large Networks Data Collection [LK15].

We run two types of experiments on the abovementioned datasets.

1. We consider a sliding window of size ` over an arbitrary order of the nodes of the graph.
When the window reaches a node, we add that node to the stream. Similarly, after `
insertions, i.e., when a node leaves the window, we delete it. This provides us with a stream
of interspersed insertions and deletions. Moreover, setting ` to the number of nodes in the
graph is equivalent to inserting all the nodes in an arbitrary order and then deleting them in
the same order.

2. We insert all the nodes of the graph in arbitrary order. Afterward, we delete them node-by-
node by choosing a node in the current solution that has the largest neighborhood. Intuitively,
we delete the elements that contribute the most to the optimum solution; this potentially
results in many changes to Soli. We observe that even for this stream, our algorithm is
efficient and makes a small number of oracle calls on average.

Due to space constraints, we present the results of only two experiments, one for each of the types.
For the first type, we present the results on the Enron dataset for a window of size ` = 30, 000. For
the second type, we present the results on the ego-Twitter dataset. Further results on other datasets
and different values of ` are included in Appendix D.

The baselines. We consider the performance of our algorithm for ε = 0.0 and ε = 0.2, and denote
those versions by ALG0.0 and ALG0.2, respectively. Recall that in our algorithm, if an ε-fraction of
elements is deleted from the solution on some level, we reconstruct the solution beginning from that

8



level. We cannot compare against the true optimum or the greedy solution, as computing them is
intractable for data of this size. We compare our approach with the following baselines:

1. The algorithms of [CNZ16] and [ELVZ17] (developed concurrently and very similar). This
method is designed for the sliding window setting and can only be used if elements are
deleted in the same order as they were inserted. It is parametrized by ε and we consider
values of ε = 0.1 and ε = 0.2, and use CNZ0.1 and CNZ0.2 to denote these two variants.

2. SIEVESTREAMING [BMKK14], which is a streaming algorithm that only supports inserting
elements. For any insertion, we simply have SIEVESTREAMING insert the element. For
any deletion that deletes an element in the solution of SIEVESTREAMING, we restart
SIEVESTREAMING on the set of currently available elements.8

3. RND algorithm, which maintains a uniformly random subset of k elements. RND outputs
solutions of significantly lower quality than other baselines, so due to space constraints we
report its objective value results only in the appendix.

Results. The results of our evaluation are presented in Fig. 1. As shown in plots (b) and (d), our
approach (even for different values of ε) is qualitatively almost the same as SIEVESTREAMING.
However, compared to SIEVESTREAMING, our approach has a smoother increase in the number of
oracle calls with respect to the increase in k. As a result, starting from small values of k, e.g., k = 40,
our approach ALG0.2 requires at least 2× fewer oracle calls than SIEVESTREAMING to output sets
of the same quality for both Enron and ego-Twitter. The behavior of our algorithm for ε = 0.0
is closest to SIEVESTREAMING in the sense that, as soon as a deletion from the current solution
occurs, it performs a recomputation (see Line 7 of DELETION). For larger ε our approach performs a
recomputation only after a number of deletions from the current solution. As a result, for ε = 0.2, on
some datasets our approach requires almost 3× fewer oracle calls to obtain a solution of the same
quality as SIEVESTREAMING (see Fig. 1(c) and (d)).

Compared to CNZ0.1 and CNZ0.2 in the context of sliding-window experiments (plots (a) and (b) in
Fig. 1), our approach shows very similar performance in both quality and the number of oracle calls.
CNZ0.2 is somewhat faster than our approach (plot (a)), but it also reports a lower-quality solution
(plot (b)). We point out that CNZ fundamentally requires that insertions and deletions are performed
in the same order. Hence, we could not run CNZ for plots (c) and (d), where the experiment does not
have that special structure. Since our approach is randomized, we repeat each of the experiments 5
times using fresh randomness; plots show the mean values. The standard deviation of reported values
for ALG0.0 and ALG0.2, less than 5%, is plotted in Fig. 8.

7 Conclusion and future work

We present the first efficient algorithm for cardinality-constrained dynamic submodular maximization,
with only poly-logarithmic amortized update time. We complement our theoretical results with an
extensive experimental analysis showing the practical performance of our solution. Our algorithm
achieves an almost 1/2-approximation. This approximation ratio is tight in the (low-memory) stream-
ing setting [FNFSZ20], but not necessarily in the dynamic setting; a natural question is whether it
can be improved, even for insertion-only streams. Another compelling direction for future work is to
extend the current result to more general constraints such as matroids.

Broader impact

This work does not present any foreseeable societal consequence.
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