
Walking in the Shadow: A New Perspective on
Descent Directions for Constrained Minimization

Hassan Mortagy
Georgia Institute of Technology

hmortagy@gatech.edu

Swati Gupta
Georgia Institute of Technology

swatig@gatech.edu

Sebastian Pokutta
Zuse Institute Berlin and Technische Universität Berlin

pokutta@zib.de

Abstract
Descent directions such as movement towards Frank-Wolfe vertices, away steps,
in-face away steps and pairwise directions have been an important design consider-
ation in conditional gradient descent (CGD) variants. In this work, we attempt to
demystify the impact of movement in these directions towards attaining constrained
minimizers. The best local direction of descent is the directional derivative of the
projection of the gradient, which we refer to as the shadow of the gradient. We
show that the continuous-time dynamics of moving in the shadow are equivalent to
those of PGD however non-trivial to discretize. By projecting gradients in PGD,
one not only ensures feasibility but also is able to “wrap” around the convex region.
We show that Frank-Wolfe (FW) vertices in fact recover the maximal wrap one can
obtain by projecting gradients, thus providing a new perspective to these steps. We
also claim that the shadow steps give the best direction of descent emanating from
the convex hull of all possible away-vertices. Opening up the PGD movements
in terms of shadow steps gives linear convergence, dependent on the number of
faces. We combine these insights into a novel SHADOW-CG method that uses FW
steps (i.e., wrap around the polytope) and shadow steps (i.e., optimal local descent
direction), while enjoying linear convergence. Our analysis develops properties of
directional derivatives of projections (which may be of independent interest), while
providing a unifying view of various descent directions in the CGD literature.

1 Introduction
We consider the problem minx∈P f(x), where P ⊆ Rn is a polytope with vertex set vert(P), and
f : P → R is a smooth and strongly convex function. Smooth convex optimization problems
over polytopes are an important class of problems that appear in many settings, such as low-rank
matrix completion [1], structured supervised learning [2, 3], electrical flows over graphs [4], video
co-localization in computer vision [5], traffic assignment problems [6], and submodular function
minimization [7]. First-order methods in convex optimization rely on movement in the best local
direction for descent (e.g., negative gradient), and this is enough to obtain linear convergence for
unconstrained optimization. In constrained settings however, the gradient may no longer be a feasible
direction of descent, and there are two broad classes of methods traditionally: projection-based
methods (i.e., move in direction of negative gradient, but project to ensure feasibility), and conditional
gradient methods (i.e., move in feasible directions that approximate the gradient). Projection-based
methods such as projected gradient descent or mirror descent [8] enjoy dimension independent linear
rates of convergence (assuming no acceleration), i.e., (1− µ

L) contraction in the objective per iteration
(so that the number of iterations to get an ε-accurate solution is O(Lµ log 1

ε)), for µ-strongly convex
and L-smooth functions, but need to compute an expensive projection step (another constrained
convex optimization) in (almost) every iteration. On the other hand, conditional gradient methods

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1: Left: Piecewise linear structure of the parametric projection curve g(λ) = ΠP (xt − λ∇f(xt))
(yellow line). The end point is the FW vertex vt and dFW

t the FW direction. Note that g(λ) does not change at
the same speed as λ, e.g., g(λ) = v for each λ such that xt − λ∇f(xt)− v ∈ NP (v) (purple normal cone).
Right: Moving along the shadow might lead to arbitrarily small progress even once we reach the optimal face
F ∗ 3 x∗. On the contrary, the away-steps FW does not leave F ∗ after a polytope-dependent iteration [11].

(such as the Frank-Wolfe algorithm [9]) need to solve linear optimization (LO) problems in every
iteration and the rates of convergence become dimension-dependent, for e.g., the away-step Frank-
Wolfe algorithm has a linear rate of (1− µδ2

LD2), where δ is a geometric constant (polytope dependent)
and D is the diameter of the polytope [10].

The vanilla Conditional Gradient method (CG) or the Frank-Wolfe algorithm (FW) [9, 12] has received
a lot of interest from the ML community mainly because of its iteration complexity, tractability and
sparsity of iterates. In each iteration, the CG algorithm computes the Frank-Wolfe vertex vt with
respect to the current iterate and moves towards the vertex:

vt = arg min
v∈vert(P)

〈∇f(xt),v〉 , xt+1 = xt + γt(vt − xt), γt ∈ [0, 1]. (1)

CG’s primary direction of descent is vt − xt (dFW
t in Figure 1) and its step-size γt can be selected,

e.g., using line-search; this ensures feasibility of xt+1. This algorithm however, can only guarantee a
sub-linear rate of O(1/t) for smooth and strongly convex optimization on a compact domain [9, 2],
moreover, this rate is tight [13, 14]. An active area of research, therefore, has been to find other
descent directions that can enable linear convergence. One reason for vanilla CG’s O(1/t) rate is
the fact that the algorithm might zig-zag as it approaches the optimal face, slowing down progress
[10, 13]. The key idea for obtaining linear convergence was to use the so-called away-steps that help
push iterates quickly to the optimal face:

at = arg max
v∈vert(F)

〈∇f(xt),v〉 , for F ⊆ P, (2)

xt+1 = xt + γt(xt − at), where γt ∈ R+ such that xt+1 ∈ P, (3)

thus, augmenting the potential directions of descent using directions of the form xt − at, for some
at ∈ F , where the precise choice of F in (2) has evolved in CG variants. As early as 1986, Guélat and
Marcotte showed that by adding away-steps (with F = minimal face of the current iterate1) to vanilla
CG, their algorithm has an asymptotic linear convergence rate [11]. In 2015, Lacoste-Julien and Jaggi
[10] showed linear convergence results for CG with away-steps2 (over F = the current active set, i.e.,
a specific convex decomposition of the current iterate). They also showed linear rate for CG with
pairwise-steps (i.e., vt−at), another direction of descent. In 2015, Freund et. al [1] showed a O(1/t)
convergence for convex functions, with F as the minimal face of the current iterate. In 2016, Garber
and Meshi [16] showed that pairwise-steps (over 0/1 polytopes) with respect to non-zero components
of the gradient are enough for linear convergence, i.e., they also set F to be the minimal face with
respect to xt. In 2017, Bashiri and Zhang [3] generalized this result to show linear convergence
for the same F for general polytopes (however at the cost of two expensive oracles). Other CG
variants have explored movement towards either the convex or affine minimizer over current active
set [10], constraining the Frank-Wolfe vertex to a norm ball around the current iterate ([14], [15]),
and mixing FW with gradient descent steps (with the aim of better computational performance) while
enjoying linear convergence [17], [18]. Although these variants obtain linear convergence, their rates
depend on polytope-dependent geometric, affine-variant constants (that can be arbitrarily small for

1The minimal face F with respect to xt is a face of the polytope that contains xt in its relative interior, i.e.,
all active constraints at xt are tight.

2To the best of our knowledge, Garber and Hazan [15] were the first to present a CG variant with global
linear convergence for polytopes.

2

non-polyhedral sets like the `2-ball) such as the pyramidal width [10], vertex-facet distance [19],
eccentricity of the polytope [10] or sparsity-dependent constants [3], which have been shown to be
essentially equivalent3 [20]. The iterates in these are (basically) affine-invariant, which is the reason
why a dimension-dependent factor is unavoidable in the current arguments. We include more details
on related work (and a summary in Table 1) in Appendix A, with updated references to recent results
that appeared after this work [21, 22].

A natural question at this point is why are these different descent directions useful and which of
these are necessary for linear convergence. If one had oracle access to the “best” local direction of
descent for constrained minimization, what would it be and is it enough to get linear convergence (as
in unconstrained optimization)? Moreover, can we avoid rates of convergence that are dependent on
the geometry of the polytope? We partially answer these questions below.

Contributions. We show that the “best” local feasible direction of descent, that gives the maximum
function value decrease in the diminishing neighborhood of the current iterate xt, is the directional
derivative dΠ

xt
of the projection of the gradient, which we refer to as the shadow of the gradient:

dΠ
xt

:= lim
ε↓0

ΠP (xt − ε∇f(xt))− xt
ε

,

where ΠP (y) = arg minx∈P ‖x − y‖2 is the Euclidean projection operator. A continuous time
dynamical system can be defined using descent in the shadow direction at the current point: Ẋ(t) =
dΠ
X(t), forX(0) = x0 ∈ P . We show that this ODE is equivalent to that of projected gradient descent

(Theorem 9), however, it is non-trivial to discretize due to non-differentiability of the curve.

Second, we explore structural properties of shadow steps. For any x ∈ P , we characterize the curve
g(λ) = ΠP (x− λ∇f(x)) as a piecewise linear curve, where the breakpoints of the curve typically
occur at points where there is a change in the normal cone (Theorem 1) and show how to compute this
curve for all λ ≥ 0 (Theorem 3). Moreover, we show the following properties for descent directions:

(i) Shadow Steps (dΠ
xt

): These are the best “normalized” feasible directions of descent (Lemma
3). Moreover, we show that ‖dΠ

xt
‖ = 0 if and only if xt = arg minx∈P f(x) (Lemma 12).

Hence, ‖dΠ
xt
‖ is a natural quantity to use for bounding primal gaps without any dependence on

geometric constants like those used in other CG variants. We show that multiple shadow steps
approximate a single projected gradient descent step (Theorem 3). The rate of linear convergence
using shadow steps is dependent on number of facets (independent of geometric constants but
dimension dependent due to number of facets), and interpolate smoothly between projected
gradient and conditional gradient methods (Theorem 6).

(ii) FW Steps (vt−xt): Projected gradient steps provide a contraction in the objective independent of
the geometric constants or facets of the polytope; they are also able to “wrap” around the polytope
by taking unconstrained gradient steps and then projecting. Under mild technical conditions (of
uniqueness of vt), the Frank-Wolfe vertices are in fact the projection of an infinite descent in
the negative gradient direction (Theorem 4). This allows the CG methods to wrap around the
polytope maximally, compared to PGD methods, thereby giving FW steps a new perspective.

(iii) Away Steps (xt − at): Shadow steps are the best normalized away-direction in the following
sense: let F be the minimal face containing the current iterate xt (similar to [16, 3]); then,
xt − γdΠ

xt
∈ conv(F) (i.e., the backward extension from xt in the shadow direction), and the

resultant direction (dΠ
xt

) is indeed the most aligned with −∇f(xt) (Lemma 3). Shadow-steps
are, however, in general convex combinations of potential active vertices minus the current iterate
(Lemma 4) and therefore loose combinatorial properties such as dimension drop in active sets.
They can bounce off faces (and add facets back) unlike away-steps that use vertices and have a
monotone decrease in dimension when they are consecutive (see Figure 1 (right)).

(iv) Pairwise Steps (vt − at): The progress in CG variants is bounded crucially using the inner
product of the descent direction with the negative gradient. In this sense, pairwise steps are simply
the sum of the FW step and away directions, and a simple algorithm that uses these steps only
does converge linearly (with geometric constants) [10, 3]. Moreover, for feasibility of the descent
direction, one requires at to be in an active set (shown in [3], and Lemma 13, Appendix C.4).

3Eccentricity = D/δ, where D and δ are the diameter and pyramidal width of the domain respectively [10].

3

Armed with these structural properties, we consider a descent algorithm SHADOW-WALK: trace the
projections curve by moving in the shadow (or in-face directional derivative) with respect to a fixed
iterate until sufficient progress, then update the shadow based on the current iterate. Using properties
of normal cones, we can show that once the projections curve at a fixed iterate leaves a face, it can
never visit the face again (Theorem 8). We are thus able to break a single PGD step into descent
steps, and show linear convergence with rate dependent on the number of facets, but independent
of geometric constants like the pyramidal width. Finally, we combine these insights into a novel
SHADOW-CG method which uses FW steps (i.e., wrap around the polytope) and shadow steps (i.e.,
optimal local descent direction), while enjoying linear convergence. This method prioritizes FW
steps that achieve maximal “coarse” progress in earlier iterations and shadow steps avoid zig-zagging
in the latter iterations. Garber and Meshi [16] and Bashiri and Zhang [3] both compute the best away
vertex in the minimal face containing the current iterate, whereas the shadow step recovers the best
convex combination of such vertices aligned with the negative gradient. Therefore, these previously
mentioned CG methods can both be viewed as approximations of SHADOW-CG. Moreover, Garber
and Hazan [15] emulate a shadow computation by constraining the FW vertex to a ball around the
current iterate. Therefore, their algorithm can be interpreted as an approximation of SHADOW-WALK.
Outline We next review preliminaries in Section 2. In Section 3, we derive theoretical properties of
the directional derivative and the piecewise-linear curve parameterized by projections. This allows us
to dig deeper into properties of descent directions in Section 4. We defer equivalence of continuous
time dynamics for movement along the shadow and PGD, as well as SHADOW-WALK algorithm to
Section D in the appendix. We next propose a novel SHADOW-CG algorithm that combines FW and
shadow steps to obtain linear convergence in Section 6. Finally, preliminary experiments demonstrate
that SHADOW-CG outperforms classical and state of the art methods, when assuming oracle access
to the shadow. Without oracle access, it interpolates lower iteration count than CG variants (i.e., close
to PGD) and higher speed than PGD (i.e., close to CG), thus obtaining the best of both worlds.

2 Preliminaries
Let ‖ · ‖ denote the Euclidean norm. Denote [m] = {1, . . . ,m} and let P be defined in the form

P = {x ∈ Rn : 〈ai,x〉 ≤ bi ∀ i ∈ [m]}. (4)

We use vert(P) to denote the vertices of P . A function f : D → R (for D ⊆ Rn and P ⊆ D) is said
to be L−smooth if f(y) ≤ f(x) + 〈∇f(x),y − x〉 + L

2 ‖y − x‖2 for all x,y ∈ D. Furthermore,
f : D → R is said to be µ−strongly-convex if f(y) ≥ f(x) + 〈∇f(x),y − x〉 + µ

2 ‖y − x‖2 for
all x,y ∈ D. Let D := supx,y∈P ‖x− y‖ be the diameter of P and x∗ = arg minx∈P f(x), where
uniqueness follows from the strong convexity of the f . For any x ∈ P , let I(x) = {i ∈ [m] :
〈ai,x〉 = bi} be the index set of active constraints at x. Similarly, let J(x) be the index set of
inactive constraints at x. Denote by AI(x) = [ai]i∈I(x) the sub-matrix of active constraints at x and
bI(x) = [bi]i∈I(x) the corresponding right-hand side. The normal cone at a point x ∈ P is defined as

NP (x) := {y ∈ Rn : 〈y, z− x〉 ≤ 0 ∀z ∈ P} = {y ∈ Rn : ∃µ : y = (AI(x))
Tµ, µ ≥ 0}, (5)

which is essentially the the cone of the normals of constraints tight at x. Let ΠP (y) =
arg minx∈P

1
2‖x− y‖2 be the Euclidean projection operator. Using first-order optimality,

〈y − x, z− x〉 ≤ 0 ∀z ∈ P ⇐⇒ (y − x) ∈ NP (x), (6)

which implies that x = ΠP (y) if and only if (y − x) ∈ NP (x), i.e., moving any closer to y from
x will violate feasibility in P . Finally, it is well known that the Euclidean projection operator over
convex sets is non-expansive (see for example [23]): ‖ΠP (y)−ΠP (x)‖ ≤ ‖y−x‖ for all x,y ∈ Rn.
Given any point x ∈ P and w ∈ Rn, let the directional derivative of w at x be:

dΠ
x (w) := lim

ε↓0

ΠP (x− εw)− x

ε
. (7)

When w = ∇f(x), then we call dΠ
x (∇f(x)) the shadow of the gradient at x, and use notation dΠ

x
for brevity. In [24], Tapia et. al show that dΠ

x is the projection of −∇f(x) onto the tangent cone at x
(i.e. the set of feasible directions at x), that is dΠ

x = arg mind{‖ − ∇f(x)− d‖2 : AI(x)d ≤ 0},
where the uniqueness of the solution follows from strong convexity of the objective. Further, let
d̂Π
x (∇f(x)) := arg mind{‖−∇f(x)−d‖2 : AI(x)d = 0} = (I−A†I(x)AI(x))(−∇f(x)) be the

4

projection of −∇f(x) onto the minimal face of x, where I ∈ Rn×n is the identity matrix, and A†I(x)

is the Moore-Penrose inverse of AI(x) (see Section 5.13 in [25] for example).

We assume access to (i) a linear optimization (LO) oracle where we can compute v =
arg minx∈P 〈c,x〉 for any c ∈ Rn, (ii) a shadow oracle: given any x ∈ P we can compute
dΠ
x , and (iii) line-search oracle: given any x ∈ P and direction d ∈ Rn, we can evaluate
γmax = max{δ : x + δd ∈ P}. This helps us focus on properties of descent directions and
studying their necessity for linear convergence.

3 Structure of the Parametric Projections Curve
In this section, we characterize properties of the directional derivative at any x ∈ P and the structure
of the parametric projections curve gx,w(λ) = ΠP (x−λw), for λ ∈ R, under Euclidean projections.
For brevity, we use g(·) when x and w are clear from context. The following theorem summarizes
our results on characterization and is crucial to our analysis of descent directions:

Theorem 1 (Structure of Parametric Projection Curve). Let P ⊆ Rn be a polytope, with m facet
inequalities (e.g., as in (4)). For any x0 ∈ P,w ∈ Rn, let g(λ) = ΠP (x0 − λw) be the projections
curve at x0 with respect to w parametrized by λ ∈ R. Then, this curve is piecewise linear starting
at x0: there exist k breakpoints x1,x2, . . . ,xk ∈ P , corresponding to projections with λ equal to
0 = λ−0 ≤ λ

+
0 < λ−1 ≤ λ

+
1 < λ−2 ≤ λ

+
2 . . . < λ−k ≤ λ

+
k , where

(a) λ−i := min{λ ≥ 0 | g(λ) = xi}, and λ+
i := max{λ ≥ 0 | g(λ) = xi}, for i ≥ 0,

(b) g(λ) = xi−1 + xi−xi−1

λ−i −λ
+
i−1

(λ− λ+
i−1), for λ ∈ [λ+

i−1, λ
−
i] for all i ≥ 1.

Moreover, we show the following properties for each i ≥ 1, and all λ, λ′ ∈ (λ+
i−1, λ

−
i):

(i) Potentially drop tight constraints on leaving breakpoints: NP (xi−1) = NP (g(λ+
i−1)) ⊇

NP (g(λ)) for i ≥ 1. Moreover, if λ−i−1 < λ+
i−1, then the containment is strict.

(ii) Constant normal cone between breakpoints: NP (g(λ)) = NP (g(λ′)),

(iii) Potentially add tight constraints on reaching breakpoint: NP (g(λ)) ⊆ NP (g(λ−i)) = NP (xi).
Further, the following properties also hold:

(iv) Equivalence of constant normal cones with linearity: If NP (g(λ)) = NP (g(λ′)) for some
λ < λ′, then the curve between g(λ) and g(λ′) is linear (Lemma 2).

(v) Bound on breakpoints: The number of breakpoints of g(·) is at most the number of faces of the
polytope (Theorem 8, Appendix B.5).

(vi) Limit of g(·): The end point of the curve g(λ) is limλ→∞ g(λ) = xk ∈ arg minx∈P 〈x,w〉. In
fact, xk minimizes ‖y − x0‖ over y ∈ arg minx∈P 〈x,w〉 (Theorem 4, Section 4).

To show the above theorem, we need to develop the properties of the projection curve. Even though
our results hold for any w ∈ Rn, we will prove the statements for w = ∇f(x0) for readability in the
context of the paper, in Appendix B. We first show that if the direction w is in the normal cone at the
starting point, then the parametric curve reduces to a single point x0.

Lemma 1. If −∇f(x0) ∈ NP (x0), then g(λ) = ΠP (x0 − λ∇f(x0)) = x0 for all λ ∈ R+.

This means, in the notation of Theorem 1, λ+
0 is either infinity (when w ∈ NP (x0)) or it is zero. In

the former case, Theorem 1 hold trivially with g(λ) = x0 for all λ ∈ R. We will therefore assume
henceforth that λ+

0 = 0, without loss of generality. We next prove property (iv) of Theorem 1 about
equivalence of constant normal cones with linearity of the parametric projections between two points.

Lemma 2 (Linearity of projections). Let P ⊆ Rn be a polytope defined using m facet inequalities
(e.g., as in (4)). Let x0 ∈ P and we are given ∇f(x0) ∈ Rn. Let g(λ) = ΠP (x0 − λ∇f(x0)) be
the parametric projections curve. Then, if NP (g(λ)) = NP (g(λ′)) for some λ < λ′, then the curve
between g(λ) and g(λ′) is linear, i.e., g(δλ+ (1− δ)λ′) = δg(λ) + (1− δ)g(λ′), where δ ∈ [0, 1].

We next show that the normal cones do not change in the strict neighborhood of x0, i.e., there exists
a ball B(x0, δ) around x0 of radius δ > 0 such that the normal cone NP (g(λ)) = NP (g(λ′)) for all
g(λ), g(λ′) ∈ B(x0, δ) \ {x0}. Using Lemma 2, we get that the first piece of g(λ) is linear until the
normal cone changes. Moreover, some inequalities tight at x0 might become inactive for λ > 0:

5

Theorem 2. Let P ⊆ Rn be a polytope defined using m facet inequalities (e.g., as in (4)). Let
x0 ∈ P and we are given ∇f(x0) ∈ Rn. Let g(λ) = ΠP (x0 − λ∇f(x0)) be the parametric
projections curve. Let λ−1 = max{λ | x0 + λdΠ

x0
∈ P} be finite and let x1 = g(λ−1). We claim that

(i) NP (g(λ)) = NP (g(λ′)) ⊆ NP (x0), for all 0 < λ < λ′ < λ−1 , and

(ii) NP (x1) = NP (g(λ−1)) ⊃ NP (g(λ)), for all λ ∈ (0, λ−1).
Moreover, the projections curve is given by g(λ) = x0 + λdΠ

x0
, for all λ ∈ [0, λ−1].

The proof of the above theorem uses the first-order optimality of projections given in (6) and the
structure of normal cones for polytopes (5). Theorem 2 characterizes the first linear piece in the
parametric projections trajectory. This means that the direction d = (x1 − x0)/λ−1 is the directional
derivative at x0, since by definition of the directional derivative at x0, we get:

dΠ
x0

:= lim
ε↓0

ΠP (x0 − ε∇f(x0))− x0

ε
= lim

ε↓0

g(ε)− x0

ε
=

x1 − x0

λ−1
, (8)

where the limit exists since g(λ) forms a line on the interval λ ∈ [0, λ−1) (and hence is a continuous
function on that interval).4 This theorem also gives a way of computing the directional derivative dΠ

x

using a single projection (when we know the breakpoint λ−1).

We now show that g(λ) = ΠP (x0−λ∇f(x0)) can be constructed for all λ ≥ 0 iteratively as follows:
given a breakpoint xi−1, the next segment and breakpoint xi of the curve can be obtained (a) by either
projecting ∇f(x0) onto the minimal face of xi−1 (i.e., in-face movement, using a linear program,
(see Appendix B.5 for more details)); or (b) by projecting∇f(x0) onto the tangent cone at xi−1, and
computing this using line search in the directional derivative at xi−1 with respect to∇f(x0)). This
proves Theorem 1 (i), (ii), and (iii) by induction.
Theorem 3 (Tracing the projections curve). Let P ⊆ Rn be a polytope defined using m facet
inequalities (e.g., as in (4)). Let xi−1 ∈ P be the ith breakpoint in the projections curve g(λ) =
ΠP (x0 − λ∇f(x0)), with xi−1 = x0 for i = 1. Suppose we are given λ−i−1, λ

+
i−1 ∈ R so that

they are respectively the minimum and the maximum step-sizes λ such that g(λ) = xi−1. Let
λ̂i−1 := sup{λ | NP (g(λ′)) = NP (xi−1) ∀λ′ ∈ [λ−i−1, λ)}. Then, we show that:
1. If λ−i−1 < λ+

i−1, then λ+
i−1 = λ̂i−1. Otherwise, λ−i−1 = λ+

i−1 ≤ λ̂i−1.

2. Linearity of the curve between g(λ−i−1) and g(λ̂i−1): i.e., g(λ−i−1 + (1− δ)λ̂i−1) = δg(λi−1) +

(1− δ)g(λ̂i−1), where δ ∈ [0, 1]. In particular, g(λ) = xi−1 for all λ ∈ [λ−i−1, λ
+
i−1].

3. If dΠ
xi−1

(∇f(x0)) = 0, then limλ→∞ g(λ) = xi−1 is the end point of the projections curve g(λ).

4. Otherwise dΠ
xi−1

(∇f(x0)) 6= 0, we get λ+
i−1 ≤ λ̂i−1 <∞ (from (1)). We then claim:

(a) In-face movements: If λ̂i−1 > λ+
i−1, then the next breakpoint in the curve occurs by walk-

ing in-face up to λ̂i−1, i.e., xi := g(λ̂i−1) = xi−1 + (λ̂i−1 − λ+
i−1)d̂Π

xi−1
(∇f(x0)) and

λ−i := λ̂i−1. Moreover, NP (xi−1) ⊆ NP (g(λ̂i−1)), with strict containment only when
the maximum movement along in-face direction takes place, i.e., λ̂i−1 = λ+

i−1 + max{δ :

xi−1 + δd̂Π
xi−1

(∇f(x0)) ∈ P}.
(b) Shadow movements: Otherwise if λ̂i−1 = λ+

i−1, then the movement is in the shadow direction,
i.e., xi := g(λ−i) = xi−1 + (λ−i − λ+

i−1)dΠ
xi−1

(∇f(x0)) where λ−i := λ+
i−1 + max{δ :

xi−1 + δdΠ
xi−1

(∇f(x0)) ∈ P}.
In particular, the projections curve is linear between λ+

i−1 and λ−i . Further, we show that properties
(i), (ii) and (iii) in Theorem 1 hold for their respective normal cones for λ, λ′ ∈ (λ+

i−1, λ
−
i), where

the containments in (i) and (iii) are strict for case (b).
Assuming oracle access to compute dΠ

x (w) and λ̂i−1 for any x ∈ P , Theorem 3 gives a constructive
method for tracing the whole piecewise linear curve of gx,w(·). We include this as an algorithm,
TRACE(x,w) and discuss more details on its implementation in Appendix B.5. We defer the proof
on the number of breakpoints (Theorem 1 (v)) in the parametric projections curve to Appendix B.5
(Theorem 8), which crucially uses Lemma 2. Using Theorem 1, it is easy to see that multiple line
searches in shadow directions with respect to x0 are equivalent to computing a single projected
gradient descent step from x0. This will be useful in our analysis of SHADOW-CG in Section 6.

4This gives a different proof for existence of dΠ
x for polytopes, compared to Tapia et. al [24].

6

4 Descent Directions
Having characterized the properties of the parametric projections curve, we highlight connections
with descent directions in conditional gradient variants. We first claim that the shadow is the best
local feasible direction of descent in the following sense - it has the highest inner product with the
negative gradient at x compared to any other normalized feasible direction (proof in Appendix C.1):
Lemma 3 (Local Optimality of Shadow Steps). Let P be a polytope defined as in (4) and let x ∈ P
with gradient∇f(x). Let y be any feasible direction at x, i.e., ∃γ > 0 s.t. x + γy ∈ P . Then〈

−∇f(x),
dΠ
x

‖dΠ
x ‖

〉2

= ‖dΠ
x ‖2 ≥

〈
dΠ
x ,

y

‖y‖

〉2

≥
〈
−∇f(x),

y

‖y‖

〉2

. (9)

The above lemma will be useful in convergence proof for our novel SHADOW-CG method (Theorem
7). We also show that the shadow steps give a true estimate of convergence to optimal5, in the
sense that ‖dΠ

xt
‖ = 0 if and only if xt = arg minx∈P f(x) (Lemma 12). On the other hand, note

that ‖∇f(xt)‖ does not satisfy this property and can be strictly positive at the constrained optimal
solution [12]. We next show that the end point of the projections curve is in fact the FW vertex under
mild technical conditions. FW vertices are therefore able to wrap around the polytope maximally
compared to any projected gradient method and serve as an anchor point in the projections curve.
Theorem 4 (Optimism in Frank-Wolfe Vertices). Let P ⊆ Rn be a polytope and let x ∈ P . Let
g(λ) = ΠP (x − λ∇f(x)) for λ ≥ 0. Then, the end point of this curve is: limλ→∞ g(λ) = v∗ =
arg minv∈F ‖x − v‖2, where F = arg minv∈P 〈∇f(x),v〉, i.e., the face of P that minimizes the
gradient∇f(x). In particular, if F is a vertex, then limλ→∞ g(λ) = v∗ is the Frank-Wolfe vertex.

To give a quick proof sketch, using the proximal definition of the projection (see e.g., [23]) we have:

g(λ) = arg min
y∈P

{‖x− λ∇f(x)− y‖2} = arg min
y∈P

{
f(x) + 〈∇f(x),y − x〉+

‖x− y‖2

2λ

}
.

Assuming that the FW vertex arg miny∈P {〈∇f(x),y〉} is unique and we show that one can inter-
change the limit and arg min operator, we get limλ→∞ g(λ) = arg miny∈P {f(x)+〈∇f(x),y − x〉,
thus recovering the FW vertex. The complete analysis is technical and included in Appendix C.3.

Next, we show that the shadow-steps also give the best away direction emanating from away-vertices
in the minimal face at any x ∈ P (which is precisely the set of possible away vertices (see Appendix
C.4)), using Lemma 3 and the following result:
Lemma 4 (Away-Steps). Let P be a polytope defined as in (4) and fix x ∈ P . Let F = {z ∈ P :
AI(x)z = bI(x)} be the minimal face containing x. Further, choose δmax = max{δ : x−δdΠ

x ∈ P}
and consider the maximal backward away point ax = x − δmaxd

Π
x . Then, ax lies in F and the

corresponding away-direction is simply x− ax = δmaxd
Π
x .

Lemma 4 states that the backward extension from x in the shadow direction, ax, lies in the convex
hull of A := {v ∈ vert(P) ∩ F}. The set A is precisely the set of all possible away vertices (see
Appendix C.4). Thus, the shadow gives the best direction of descent emanating from the convex hull
of all possible away-vertices. We include a proof of this lemma in Appendix C.4.

5 Shadow-Walk and Continuous-time Dynamics
We established in the last section that the shadow of the negative gradient dΠ

xt
is indeed the best

“local" direction of descent (Lemma 3), and a true measure of primal gaps since convergence in ‖dΠ
xt
‖

implies optimality (Lemma 12). Having characterized the parametric projections curve, the natural
question is if a shadow-descent algorithm that walks along the directional derivative with respect to
negative gradient at iterate xt (using say line search), converge linearly? We start by answering that
question positively for continuous-time dynamics.

5.1 ODE for moving in the shadow of gradient

We now present the continuous-time dynamics for moving along the shadow of the gradient in the
polytope. Let X(t) denote the continuous-time trajectory of our dynamics and Ẋ denote the time-
derivative of X(t), i.e., Ẋ(t) = d

dtX(t). The continuous time dynamics of tracing the shadow are

5Lemma 3 with y = x∗−x can be used to estimate the primal gap: ‖dΠ
x ‖2 ≥ 2µ(f(x)− f(x∗)) (see (63))

7

Algorithm 1 SHADOW-WALK Algorithm
Input: Polytope P ⊆ Rn, function f : P → R and initialization x0 ∈ P .
1: for t = 0,T do
2: Update xt+1 := TRACE(xt,∇f(xt)) . . trace projections curve
3: end for

Return: xT+1

Algorithm 2 Shadow Conditional Gradient (SHADOW-CG)
Input: Polytope P ⊆ Rn, function f : P → R, initialization x0 ∈ P and accuracy parameter ε.
1: for t = 0,T do
2: Let vt := arg minv∈P 〈∇f(xt),v〉 and dFW

t := vt − xt. . FW direction
3: if

〈
−∇f(xt),d

FW
t

〉
≤ ε then return xt . primal gap is small enough

4: Compute the derivative of projection of the gradient dΠ
xt

5: if
〈
−∇f(xt),d

Π
xt
/‖dΠ

xt
‖
〉
≤

〈
−∇f(xt),d

FW
t

〉
6: dt := dFW

t and xt+1 := xt + γtdt (γt ∈ [0, 1]). . use line-search towards FW vertex
7: else dt := dΠ

xt
and xt+1 := TRACE(xt,∇f(xt)) . . trace projection curve

8: end for
Return: xT+1

simply Ẋ(t) = dΠ
X(t), X(0) = x0 ∈ P . We show that those continuous time dynamics of movement

in the shadow, are equivalent to those of projected gradient descent (Theorem 9 in Appendix D).
Moreover, we also show the following convergence result of those dynamics (proof in Appendix D):

Theorem 5. Let P ⊆ Rn be a polytope and suppose that f : P → R is differentiable and µ-strongly
convex over P . Consider the shadow dynamics Ẋ(t) = dΠ

X(t) with initial conditionsX(0) = x0 ∈ P .
Then for each t ≥ 0, we have X(t) ∈ P . Moreover, the primal gap h(X(t)) := f(X(t)) − f(x∗)
associated with the shadow dynamics decreases as: h(X(t)) ≤ e−2µth(x0).

5.2 Shadow-Walk Method
Although the continuous-dynamics of moving along the shadow are the same as those of PGD and
achieve linear convergence, it is unclear how to discretize this continuous-time process and obtain a
linearly convergent algorithm. To ensure feasibility we may have arbitrarily small step-sizes, and
therefore, cannot show sufficient progress in such cases. This is a phenomenon similar to that in the
Away-Step and Pairwise CG variants, where the maximum step-size that one can take might not be
big enough to show sufficient progress. In [10], the authors overcome this problem by bounding the
number of such ‘bad’ steps using dimension reduction arguments crucially relying on the fact that
these algorithms maintain their iterates as a convex combination of vertices. However, unlike away-
steps in CG variants, we consider dΠ

x as direction for descent, which is independent from the vertices
of P and thus eliminating the need to maintain active sets for the iterates of the algorithm. In general,
the shadow ODE might revisit a fixed facet a large number times (see Figure 1) with decreasing
step-sizes. This problem does not occur when discretizing PGD’s continuous time dynamics since we
can take unconstrained gradient steps and then the projections ensure feasibility.

Inspired by PGD’s discretization and the structure of the parametric projections curve, we propose a
SHADOW-WALK algorithm (Algorithm 1) with a slight twist: trace the projections curve by walking
along the shadow at an iterate xt using line search or the in-face condition, until the maximum step
size is not selected. To do this, we use the TRACE (Algorithm 3 in Appendix B.5) process to trace the
projections curve, which chains consecutive short descent steps until it ensures enough progress as a
single PGD step with fixed 1/L step size. One important property of TRACE is that it only requires
one gradient oracle call. Also, if we know the smoothness constant L, then TRACE can be terminated
early once we have traced the projections curve until we reach the PGD step. This results in linear
convergence, as long as the number of steps by TRACE are bounded polynomially, i.e., the number
of “bad” boundary cases. Using fundamental properties of normal cones attained in the projections
curve, we are able bound these steps to be at most the number of faces of the polytope (Theorem 8):

Theorem 6. Let P ⊆ Rn be a polytope and suppose that f : P → R is L-smooth and µ-strongly
convex over P . Then the primal gap h(xt) := f(xt) − f(x∗) of the SHADOW WALK algorithm
decreases geometrically: h(xt+1) ≤

(
1− µ

L

)
h(xt) with each iteration of the SHADOW WALK

algorithm (assuming TRACE is a single step). Moreover, the number of oracle calls to shadow, in-face

8

Figure 2: Comparing the performance of away-step FW (AFW) [10], pairwise FW (PFW) [10], decomposition-
invariant CG (DICG) [16], SHADOW-WALK (Alg. 1), and SHADOW-CG (Alg. 2). Left plot compares iteration
count, middle plot compares wall-clock time (including shadow computation and line search), right plot compares
wall-clock time assuming oracle access to shadow. The right plot does not include PGD for a fair comparison.

direction and line-search oracles to obtain an ε-accurate solution is O
(
β Lµ log(1

ε)
)

, where β is the
maximum number of breakpoints of the parametric projections curve that the TRACE method visits.
This result is the key interpolation between PGD and CGD methods, attaining geometric constant
independent rates. Comparing this convergence rate with the one in Theorem 5, we see that we pay
for discretization of the ODE with the constants L and β. Although the constant β depends on the
number of facets m and in fact the combinatorial structure of the face-lattice of the polytope, it is
invariant under any deformations of the actual geometry of the polytope preserving the face-lattice
(in contrast to vertex-facet distance and pyramidal width); See for example Figure 4’s discussion in
Appendix D. Although we show β ≤ O(2m), we believe that it can be much smaller (i.e., O(nm))
for structured polytopes. Moreover, computationally we see much fewer oracles than O(2m).

6 Shadow Conditional Gradient Method
Using our insights on descent directions, we propose the SHADOW-CG algorithm (Algorithm 2),
which uses Frank-Wolfe steps earlier in the algorithm, and uses shadow steps more frequently towards
the end of the algorithm. Frank-Wolfe steps allow us to greedily skip a lot of facets by wrapping
maximally over the polytope (Lemma 4). Shadow steps operate as “optimal" away-steps (Lemma
4) thus reducing zig-zagging phenomenon [10] close to the optimal solution. As the algorithm
progresses, one can expect Frank-Wolfe directions to become close to orthogonal to negative gradient.
However, in this case the norm of the shadow also starts diminishing. Therefore, we choose FW
direction whenever

〈
−∇f(xt),d

FW
t

〉
≥
〈
−∇f(xt),d

Π
xt
/‖dΠ

xt
‖
〉

= ‖dΠ
xt
‖, and shadow direction

otherwise. This is sufficient to give us linear convergence (proof in Appendix E):
Theorem 7. Let P ⊆ Rn be a polytope with diameter D and suppose that f : P → R is L-smooth
and µ-strongly convex over P . Then, the primal gap h(xt) := f(xt) − f(x∗) of SHADOW-CG
decreases geometrically: h(xt+1) ≤

(
1− µ

LD2

)
h(xt), with each iteration of the SHADOW-CG

algorithm (assuming TRACE is a single step). Moreover, the number of shadow, in-face directions
and line oracle calls for an ε-accurate solution is O

(
(D2 + β)Lµ log(1

ε)
)

, where β is the number of
breakpoints of the parametric projections curve that the TRACE method visits.

The theoretical bound on iteration complexity for a given fixed accuracy is better for SHADOW-WALK
compared to SHADOW-CG. However, the computational complexity for SHADOW-CG is better since
FW steps are cheaper to compute compared to the shadow and we can avoid the potentially expensive
computation via the TRACE-routine. This is also observed in the experiments next (and Appendix F).

7 Computations
We consider the video co-localization problem from computer vision, where the goal is to track an
object across different video frames. We used the YouTube-Objects dataset [10] and the problem
formulation of Joulin et. al [5]. This consists of minimizing a quadratic function f(x) = 1

2x
TAx +

bTx, where x ∈ R660, A ∈ R660×660 and b ∈ R660, over a flow polytope, the convex hull of
paths in a network. For preliminary computations, we utilize an approximate TRACE procedure
that excludes the in-face trace steps (algorithm 7 in Appendix F). We observe that SHADOW-CG
has lower iteration count than CG variants (slightly higher than PGD), while also improving on
wall-clock time compared to PGD (i.e., close to CG) without assuming any oracle access. Moreover,
when assuming access to shadow oracle, SHADOW-CG outperforms the CG variants both in iteration
count and wall-clock time. Finally, we observe that the number of iterations spent in TRACE is much
smaller (bounded by 10 for SHADOW-WALK and by 4 for Shadow-CG) than the number of faces of
the polytope. SHADOW CG spends much fewer iterations in TRACE than SHADOW-WALK due to
the addition of FW steps. We refer the reader to Appendix F for additional computational results,
with qualitatively similar findings.

9

8 Broader Impact

We believe that this work does not have any foreseeable negative ethical or societal impact.

9 Acknowledgements

The research presented in this paper was partially supported by the NSF grant CRII-1850182, the
Research Campus MODAL funded by the German Federal Ministry of Education and Research
(grant number 05M14ZAM), and the Georgia Institute of Technology ARC TRIAD fellowship. We
would also like to thank Damiano Zeffiro for pointing out a missing case in the statement of Theorem
3 in an earlier version of this paper, which is now corrected.

References

[1] R. Freund, P. Grigas, and R. Mazumder, “An extended Frank–Wolfe method with “in-face”
directions, and its application to low-rank matrix completion,” SIAM Journal on Optimization,
vol. 27, no. 1, p. 319–346, 2015.

[2] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex optimization,” in Proceedings
of the 30th international conference on machine learning, 2013, pp. 427–435.

[3] M. A. Bashiri and X. Zhang, “Decomposition-invariant conditional gradient for general poly-
topes with line search,” in Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems, 2017, p. 2687–2697.

[4] R. Lyons and Y. Peres, Probability on trees and networks. Cambridge University Press, New
York, 2005.

[5] A. Joulin, K. D. Tang, and F. Li, “Efficient image and video co-localization with frank-wolfe
algorithm,” in Computer Vision - ECCV 2014 - 13th European Conference, 2014, pp. 253–268.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., 1993.

[7] S. Fujishige and S. Isotani, “A submodular function minimization algorithm based on the
minimum-norm base,” Pacific Journal of Optimization, vol. 7, 2009.

[8] A. S. Nemirovski and D. B. Yudin, “Problem complexity and method efficiency in optimization,”
Wiley-Interscience, New York, 1983.

[9] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval Research Logistics
Quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[10] S. Lacoste-Julien and M. Jaggi, “On the global linear convergence of Frank-Wolfe optimization
variants,” in Advances in Neural Information Processing Systems (NIPS), 2015, pp. 496–504.

[11] J. GuéLat and P. Marcotte, “Some comments on wolfe’s ‘away step’,” Mathematical Program-
ming, vol. 35, pp. 110–119, 1986.

[12] E. Levitin and B. Polyak, “Constrained minimization methods,” USSR Computational Mathe-
matics and Mathematical Physics, vol. 6, p. 1–50, 1966.

[13] M. D. Canon and C. Cullum, “A tight upper bound on the rate of convergence of Frank-Wolfe
algorithm,” SIAM Journal on Control, vol. 6, no. 4, p. 509–516, 1968.

[14] G. Lan, “The complexity of large-scale convex programming under a linear optimization oracle,”
arXiv preprint arXiv:1512.06142, 2013.

[15] D. Garber and E. Hazan, “A linearly convergent variant of the conditional gradient algorithm
under strong convexity, with applications to online and stochastic optimization,” SIAM Journal
on Optimization, vol. 26, no. 3, p. 1493–1528, 2016.

[16] D. Garber and O. Meshi, “Linear-memory and decomposition-invariant linearly convergent
conditional gradient algorithm for structured polytopes,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016, p. 1009–1017.

[17] G. Lan and Y. Zhou, “Conditional gradient sliding for convex optimization,” SIAM Journal on
Optimization, vol. 26, no. 2, pp. 1379—-1409, 2016.

10

[18] G. Braun, S. Pokutta, D. Tu, and S. Wright, “Blended conditional gradients: the unconditioning
of conditional gradients,” arXiv preprint arXiv:1805.07311, 2018.

[19] A. Beck and S. Shtern, “Linearly convergent away-step conditional gradient for non-strongly
convex functions,” Mathematical Programming, vol. 164, pp. 1–27, 2017.

[20] J. Penã and D. Rodríguez, “Polytope conditioning and linear convergence of the frank-wolfe
algorithm,” arXiv preprint arXiv:1512.06142, 2015.

[21] F. Rinaldi and D. Zeffiro, “A unifying framework for the analysis of projection-free first-order
methods under a sufficient slope condition,” arXiv preprint arXiv:2008.09781, 2020.

[22] ——, “Avoiding bad steps in frank wolfe variants,” arXiv preprint arXiv:2012.12737, 2020.
[23] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1997.
[24] G. P. McCormick and R. A. Tapia, “The gradient projection method under mild differentiability

conditions,” SIAM Journal on Control, vol. 10, no. 1, pp. 93–98, 1972.
[25] C. D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000, vol. 71.
[26] J. C. Dunn, “Rates of convergence for conditional gradient algorithms near singular and

nonsingular extremals,” SIAM Journal on Control and Optimization, vol. 17, no. 2, pp. 187–211,
1979.

[27] R. M. Freund, P. Grigas, and R. Mazumder, “An extended frank-wolfe method with “in-face"
directions, and its application to low-rank matrix completion,” arXiv preprint arXiv:1511.02204,
2015.

[28] C. W. Combettes and S. Pokutta, “Boosting frank-wolfe by chasing gradients,” arXiv preprint
arXiv:2003.06369, 2020.

[29] D. Bertsekas, A. Nedic, and O. AE, Convex Analysis and Optimization. Athena Scientific,
2003.

[30] W. Krichene, A. Bayen, and P. L. Bartlett, “Accelerated mirror descent in continuous and
discrete time,” in Advances in Neural Information Processing Systems 28, 2015, pp. 2845–2853.

[31] R. T. Rockafellar, Convex analysis. Princeton University Press, 1970.
[32] T. H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a system

of differential equations,” Annals of Mathematics, pp. 292–296, 1919.
[33] G. Söderlind, Numerical Methods for Differential Equations. Springer, 2017.
[34] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and proximal-gradient

methods under the polyak-lojasiewicz condition,” in European Conference on Machine Learning
and Knowledge Discovery in Databases - Volume 9851, ser. ECML PKDD 2016. Springer-
Verlag, 2016, p. 795–811.

[35] G. Optimization, “Gurobi optimizer reference manual version 7.5,” 2017, uRL: https://www.
gurobi.com/documentation/7.5/refman.

11

https://www.gurobi.com/documentation/7.5/refman
https://www.gurobi.com/documentation/7.5/refman

A Related Work

Paper Algorithm Steps to get ε-error
Dunn (1979) [26] Geometric analysis for vanilla CG. O(LD2/ε)

Guélat and Marcotte (1986) [11] Vanilla FW with x∗ having distance ∆ >
0 from the boundary.

O
(
κ
(
D
∆

)2
log 1

ε

)
Jaggi [2] (2013) Vanilla FW with the uniform step-size rule

γt = 2
t+2 .

O
(
LD2

ε

)
Lan [14] (2013) Constraining FW vertex to a ball around

the current iterate.
O
(
κ log Dµ

ε

)
Freund et. al (2015) [27] FW with in-face directions (promoting

sparsity) as a generalization to away-steps.
O
(
LD2

ε

)
Lacoste-Julien and Jaggi (2015) [10] FW & Away-steps (over current active set)

for general polytopes (AFW & PFW).
O
(
κ
(
D
δ

)2
log 1

ε

)
Garber and Hazan (2016) [15] Constraining FW vertex to a ball around

the current iterate with a focus on poly-
topes.

O
(
κnρ log 1

ε

)
Garber and Meshi (2016) [16] Pairwise steps for structured 0/1 poly-

topes6 using best away vertex in minimal
face of iterate (DICG).

O
(
κ‖x∗‖0D2 log 1

ε

)
Beck and Shtern (2017) [3] FW & Away steps using best away ver-

tex in current active set for specific non-
strongly convex objective functions7.

O
(
Ln
(
D
Φ

)2
log 1

ε

)
Bashiri and Zhang (2017) [3] FW & Away steps using best away vertex

in current active set.
O
(
nκD2Hs log 1

ε

)
Braun et. al (2018) [18] Lazy FW & gradient descent steps over

simplex formed by current active set.
O
(
Kκ

(
D
δ

)2
log 1

ε

)
Combettes and Pokutta (2020) [28] FW with descent directions better aligned

with the negative gradients.
O
(

κ
α2ω log 1

ε

)
This paper Moving along the ‘shadow’ of gradient

(SHADOW-WALK).
O
(
κβ log 1

ε

)
This paper Moving in the ‘shadow’ of gradient with

FW steps. (SHADOW-CG)
O
(
κ(D2 + β) log 1

ε

)
Table 1: Summary of different descent techniques used in CG variants and their linear convergence
rates. The factor κ := L/µ is the condition number of the function and D is the diameter of the
domain. Also, δ is the pyramidal width, ρ and Φ are notions of vertex-facet distance and Hs is a
sparsity-dependent geometric constant. Moreover, K is a parameter for finding approximate FW
vertices. The constants α and ω arise from the gradient alignment procedure. Finally, β is the number
of breakpoints when walking along the shadow of a direction (within TRACE), which is a function of
the number of facets of the polytope.

Other Related Work: In 1966, Levitin and Polyak [12] showed that the conditional gradient
method can obtain linear convergence for strongly-convex domains when the gradient at any point in
the domain is lower-bounded by a constant. In order to emulate strongly convex set domains, Lan
[14] showed that constraining the Frank-Wolfe vertex to a ball (instead of entire polytope) around
the current iterate is sufficient for linear convergence. In 2016, Garber and Hazan [15] generalized
their result to polytopes and showed that this ‘constrained’ Frank-Wolfe vertex could be computed by
a single linear optimization (i.e. without additional computational complexity compared to vanilla

6These include: the path polytope of a graph (aka the unit flow polytope), the perfect matching polytope
of a bipartite graph, and the base polyhedron of a matroid, for which we have highly efficient combinatorial
algorithms for linear optimization.

7They consider objective functions of the form f(x) := g(Ex) + 〈b,x〉, where g is a strongly convex
function and E is a matrix. Note that for a general matrix E, the function f is not necessarily strongly convex.

12

CG), and accordingly prove the first global linear convergence result for CG variants. These results
essentially translate the regularization in mirror-descent variants as a norm-ball in CG variants.
The idea is that this restriction obtains a good approximation to the gradient descent direction, not
scaled by the length of the FW vector vt − xt. There has also been extensive work on mixing FW
and gradient descent steps with the aim of better computational performance while enjoying linear
convergence. For instance, in 2014, Lan and Zhou solve projection subproblems approximately
by invoking an internal CG subroutine [17]. In 2018, Braun et. al [18] show linear convergence
for a CG variant when projected gradient descent steps are used to solve convex subproblems over
carefully maintained active sets. Combettes and Pokutta [28] recently explored employing a FW
subroutine to compute an approximate shadow direction, and then they consider that approximate
shadow as their descent direction. Although they show theoretically that in the worst-case their
algorithm has global sublinear convergence due to the ‘bad’ steps where a maximal step size is
chosen and cannot show sufficient progress in this case, they prove linear convergence for ‘good’
steps and demonstrated significant speed-ups computationally. Following our work, there have been
recent results on extensions using TRACE-like procedures to avoid “bad” steps in CG variants and
accordingly obtain linear convergence rates that depend on a slope condition rather than geometric
constants [21, 22]. Our goal in this work is to put these CG variants in perspective and understand
desired properties of feasible directions of descent.

B Missing Proofs and Results for Section 3

Before, we delve deeper into the analysis of results presented in Section 3, we first give an explanation
of the structure of the parametric projections curve through the following figure:

Figure 3: Figure showing the structure of the parametric projections curve g(x0 − λw) for λ ≥ 0,
which is depicted by the orange line. Breakpoints in the curve correspond to x1,x2 and x3 = v with
g(λ−i) = g(λ+

i) = xi, and λ+
3 =∞ since limλ→∞ g(λ) = v = arg miny∈P 〈y,w〉.

In the above figure, the curve g(x0 − λw) is depicted by the orange line and is piecewise linear.
First, g(λ) = x0 + λdΠ

x (w) for λ ∈ [0, λ−1], where dΠ
x (w) = x1−x0

λ−1
is the directional-derivative

with respect to −w. At that point, we see that x0 − λw − x1 ∈ NP (x1) for all λ ∈ (λ−1 , λ
+
1].

Hence, g(λ) = x1 for all λ ∈ (λ−1 , λ
+
1], i.e. we will keep projecting back to the same point x1 in

that interval. Thus, g(λ) does not change at the same speed with respect to λ. Moreover, we have
NP (g(λ)) = NP (g(λ′)) ⊂ NP (x0) for all λ, λ′ ∈ (0, λ−1). Then, another constraint becomes tight

13

at the end point of the first segment x1, and thus we have NP (g(λ)) = NP (g(λ′))⊂ NP (x1) for all
λ, λ′ ∈ (0, λ−1).

In other words, in the notation of Theorem 3, since λ̂1 = max{λ | NP (g(λ′)) = NP (x1) ∀λ′ ∈
[λ−1 , λ), NP (x1) ⊆ NP (g(λ))} > λ−1 and d̂Π

x1
(w) = 0, it follows that λ+

1 = λ̂1 and g(λ) = x1

for all λ ∈ (λ−1 , λ
+
1], i.e. we will keep projecting back to the same point x1 in that interval. Now,

after that point, we have λ̂1 = λ+
1 and again using Theorem 3, know that the next breakpoint could

be computed using a line search and shadow computation. In particular, λ−2 = λ+
i−1 + max{δ :

xi−1 + δdΠ
xi−1

(∇f(x0)) ∈ P} and x2 = x1 + (λ−2 − λ
+
1)dΠ

x1
(∇f(x0)). Furthermore, this process

of adding and dropping constraints continues until we reach λ−3 . We show that once the parametric
projections curve (given by the orange line in the figure) leaves a face, it never returns to it again
(Theorem 8). At this point, x0 − λw − v ∈ NP (v) for λ ≥ λ−3 , i.e g(λ) = v and we will keep
projecting back to v. This is consistent with the characterization of the end point of g(λ) as the FW
vertex: −w ∈ NP (v) if and only if v = arg minx∈P 〈w,x〉.
Even though the results in this section hold for any direction w ∈ Rn, we will prove the statements
for w = ∇f(x0) for readability in the context of the paper.

B.1 Proof of Lemma 1

Lemma 1. If −∇f(x0) ∈ NP (x0), then g(λ) = ΠP (x0 − λ∇f(x0)) = x0 for all λ ∈ R+.

Proof. Note that by definition g(λ) = arg miny∈P

{
‖x0−y‖2

2λ + 〈∇f(x0),y〉
}

for any λ > 0. Then,
by optimality of g(λ) we have

‖x0 − g(λ)‖2

2λ
+ 〈∇f(x0), g(λ)〉 ≤ ‖x0 − z‖2

2λ
+ 〈∇f(x0), z〉 (10)

for all z ∈ P .

The condition −∇f(x0) ∈ NP (x0) is equivalent to 〈∇f(x0), z− x0〉 ≥ 0 for all z ∈ P . Plugging
x0 for z on the right-hand side of (10), we have that for any λ > 0

0 ≤ ‖x0 − g(λ)‖2

2λ
≤ 〈∇f(x0),x0 − g(λ)〉 ≤ 0.

This implies g(λ) = x0 for all λ > 0.

B.2 Proof of Lemma 2

Lemma 2 (Linearity of projections). Let P ⊆ Rn be a polytope defined using m facet inequalities
(e.g., as in (4)). Let x0 ∈ P and we are given ∇f(x0) ∈ Rn. Let g(λ) = ΠP (x0 − λ∇f(x0)) be
the parametric projections curve. Then, if NP (g(λ)) = NP (g(λ′)) for some λ < λ′, then the curve
between g(λ) and g(λ′) is linear, i.e., g(δλ+ (1− δ)λ′) = δg(λ) + (1− δ)g(λ′), where δ ∈ [0, 1].

Proof. Recall from Section 2 that y∗ = ΠP (x0 − λ∇f(x0)) if and only if (x0 − λ∇f(x0)− y∗) ∈
NP (y∗). Thus, the optimality of g(λ) implies

x0 − λ∇f(x0)− g(λ) ∈ NP (g(λ)). (11)

Similarly, using the optimality of g(λ′) we have

x0 − λ′∇f(x0)− g(λ′) ∈ NP (g(λ′)). (12)

Aggregate equations (11) and (12) with weights δ and (1− δ) respectively to obtain:

x0− (δλ+ (1− δ)λ′)∇f(x0)− (δg(λ) + (1− δ)g(λ′)) ∈ δNP (g(λ)) + (1− δ)NP (g(λ′)). (13)

Now we claim that

δNP (g(λ)) + (1− δ)NP (g(λ′)) = NP (g(λ′)) = NP (g(λ)) = NP (δg(λ) + (1− δ)g(λ′)). (14)

14

The first two equalities follow from that fact that δ ∈ [0, 1] and NP (g(λ)) = NP (g(λ′)). To show
the third equality, note from (5) that NP (g(λ)) = NP (g(λ′)) implies that I(g(λ)) = I(g(λ′)) and
hence J(g(λ)) = J(g(λ′)). Therefore,

AI(g(λ))(δg(λ) + (1− δ)g(λ′)) = δAI(g(λ))g(λ) + (1− δ)AI(g(λ′))g(λ′)

= δbI(g(λ)) + (1− δ)bI(g(λ′))
= bI(g(λ)).

Similarly,

AJ(g(λ))(δg(λ) + (1− δ)g(λ′)) = δAJ(g(λ))g(λ) + (1− δ)AJ(g(λ′))g(λ′)

< δbJ(g(λ)) + (1− δ)bJ(g(λ′))

= bJ(g(λ)).

Thus, we have shown that I(g(λ)) = I(δg(λ)+(1−δ)g(λ′)) = I(g(λ′)) and J(g(λ)) = J(δg(λ)+
(1− δ)g(λ′)) = J(g(λ′)), which completes the proof of (14).

Now using (14), we can equivalently write (13) as follows:

x0 − (δλ+ (1− δ)λ′)∇f(x0)− (δg(λ) + (1− δ)g(λ′)) ∈ NP (δg(λ) + (1− δ)g(λ′)).

This shows that δg(λ) + (1− δ)g(λ′) satisfies the optimality condition for g(δλ+ (1− δ)λ′), which
concludes the proof.

B.3 Proof of Theorem 2

We prove this theorem in a sequence of steps given by the next couple of lemmas. We first show
that the normal cones do not change in the strict neighborhood of x0, i.e., there exists a ball
B(x0, δ) around x0 of radius δ > 0 such that the normal cone NP (g(λ)) = NP (g(λ′)) for all
g(λ), g(λ′) ∈ B(x0, δ) \ {x0}.
Lemma 5. Let P ⊆ Rn be a polytope defined using m facet inequalities (e.g., as in (4)). Let x0 ∈ P
and we are given ∇f(x0) ∈ Rn. Let g(λ) = ΠP (x0 − λ∇f(x0)) be the parametric projections
curve. Then there exists a scalar δ > 0 such that NP (g(λ)) = NP (g(λ′)) ⊆ NP (x0), for all
0 < λ < λ′ < δ.

To prove this lemma we will need a few properties about orthogonal projections. The first property is
a simple fact, which follows from the fact that the Euclidean projection operator is non-expansive
(see Section 2):

‖g(λ)− g(λ+ ε)‖ ≤ ‖(x0 − λ∇f(x0))− (x0 − (λ+ ε)∇f(x0))‖ = |ε|‖∇f(x0)‖. (15)

The second property we need is that if for some λ′ > λ the point z :=
(

1− λ′

λ

)
x0 + λ′

λ g(λ) in the
affine hull of g(λ) and x0 is feasible, then it indeed coincides with the projection g(λ′):
Lemma 6 (Affine hull expansion of projections). Let X ⊆ Rn be a compact and convex set. Let
x0 ∈ X and we are given∇f(x0) ∈ Rn. Further, let g(λ) = ΠX (x0−λ∇f(x0)) be the parametric

projections curve. Then, if z :=
(

1− λ′

λ

)
x0 + λ′

λ g(λ) ∈ X for some λ < λ′, then g(λ′) = z.

Proof. We will show that z :=
(

1− λ′

λ

)
x0 + λ′

λ g(λ) = x0 + λ′

λ (g(λ)−x0) ∈ X satisfies first-order
optimality for the projection at λ′. Suppose for a contradiction, there exists some y ∈ X with

〈x0 − λ′∇f(x0)− z,y − z〉 > 0 (16)

=

〈
x0 − λ′∇f(x0)−

(
x0 +

λ′

λ
(g(λ)− x0)

)
,y −

(
x0 +

λ′

λ
(g(λ)− x0)

)〉
> 0 (17)

⇔λ′

λ

〈
x0 − λ∇f(x0)− g(λ),y +

(
λ′

λ
− 1

)
x0 −

λ′

λ
g(λ)

〉
> 0 (18)

⇔
(
λ′

λ

)2〈
x0 − λ∇f(x0)− g(λ),

λ

λ′
y +

(
1− λ

λ′

)
x0 − g(λ)

〉
> 0. (19)

15

Observe that λ
λ′y +

(
1− λ

λ′

)
x0 ∈ X since λ

λ′ ∈ (0, 1) and X is a convex set. This contradicts the
first-order optimality condition of g(λ):

〈x0 − λ∇f(x0)− g(λ),x− g(λ)〉 ≤ 0 ∀x ∈ X .

We are now ready to prove the lemma:

Proof of Lemma 5. Let I and J denote the index-set of active and inactive constraints at x0 respec-
tively. We will prove that any δ satisfying

0 < δ ≤ min
i∈J

bi − 〈ai,x0〉
‖ai‖‖∇f(x0)‖

, (20)

satisfies the condition stated in the lemma (J is non-empty since otherwise the polytope contains
only one point and the lemma follows trivially).

We first show that NP (g(λ)) ⊆ NP (x0) for any λ ∈ (0, δ). Indeed, for any j ∈ J (so that
〈aj ,x0〉 < bj), we have

〈aj , g(λ)〉 = 〈aj ,x0 + g(λ)− x0〉
= 〈aj ,x0 + g(λ)− g(0)〉
≤ 〈aj ,x0〉+ ‖aj‖‖g(λ)− x0‖ by Cauchy-Schwartz inequality (21)
≤ 〈aj ,x0〉+ λ‖aj‖‖∇f(x0)‖ by non-expansivity of projections (15) (22)
< 〈aj ,x0〉+ δ‖aj‖‖∇f(x0)‖ since λ ∈ (0, δ) (23)
≤ bj choice of δ in (20). (24)

This shows that the inactive constraints at x0 remain inactive at g(λ) for any 0 < λ < δ, i.e.,
NP (g(λ)) ⊆ NP (x0). What remains to show is that active constraints at g(λ) are the same as active
constraints at g(λ′), i.e., for any i ∈ I , we have 〈ai, g(λ)〉 = bi if and only if 〈ai, g(λ′)〉 = bi for
0 < λ < λ′ < δ. To show that, we only need to show colinearity of g(λ), g(λ′),x0, i.e.,

g(λ′) = x0 +
λ′

λ
(g(λ)− x0) := z, (25)

since this implies

〈ai,x0 − g(λ)〉 = 0⇐⇒ 〈ai,x0 − g(λ′)〉 = 0⇐⇒ 〈ai, g(λ′)〉 = bi ⇐⇒ 〈ai, g(λ)〉 = bi.

Let us now prove colinearity of g(λ), g(λ′),x0 (25). Using Lemma 6, we know that g(λ′) = z as
long as z ∈ P . Hence, it suffices to show feasibility of z:

Feasibility: We claim x0 + λ′

λ (g(λ)− x0) ∈ P .

Proof. Any inactive constraint j ∈ J remains inactive, since:〈
aj ,x0 +

λ′

λ
(g(λ)− x0)

〉
≤ 〈aj ,x0〉+

λ′

λ
‖aj‖‖g(λ)−x0‖ ≤ 〈aj ,x0〉+λ′‖aj‖‖∇f(x0)‖ < bj

where the last inequality uses λ′ < δ. Each active constraint i ∈ I also remains feasible,
since

〈ai,x0 + (g(λ)− x0)〉 = 〈ai, g(λ)〉 ≤ bi =⇒ 〈ai, g(λ)− x0〉 ≤ 0.

Multiplying the last inequality with λ′

λ > 0, and adding 〈ai,x0〉 = bi, we get:〈
ai,x0 +

λ′

λ
(g(λ)− x0)

〉
≤ bi.

The result now follows from colinearity of g(λ), g(λ′) and x0.

Since λ, λ′ ∈ (0, δ) were arbitrary in the above proof, we get the following corollary:

16

Corollary 1. Let P ⊆ Rn be a polytope defined using m facet inequalities (e.g., as in (4)). Let
x0 ∈ P and we are given ∇f(x0) ∈ Rn. Let g(λ) = ΠP (x0 − λ∇f(x0)) be the parametric
projections curve. Then, there exists a scalar δ > 0 such that

g(λ) = ΠP (x0 − λ∇f(x0)) = x0 + λdΠ
x0

for all λ ∈ [0, δ).

Proof. We have shown in Lemma 5 there exists a scalar δ > 0 such that g(λ), g(λ′) and x0 are
co-linear for all 0 < λ < λ′ < δ. In other words, this is equivalent to saying that g(λ) = x0 + λd

for all λ ∈ [0, δ), where d = g(λ′)−x0

λ′ ∈ Rn for an arbitrary λ′ ∈ (0, δ) (see (25)). Now, the result
follows by definition of the directional derivative:

dΠ
x0

= lim
ε↓0

ΠP (x0 − ε∇f(x0))− x0

ε
= lim

ε↓0

g(ε)− x0

ε
=
g(λ′)− x0

λ′
= d. (26)

We will also need the following lemma to prove Theorem 2. So far, we have shown that equal normal
cones at g(λ) and g(λ′) imply linear curve between these (Lemma 2). There exists some δ > 0
such that normal cones up to g(λ) (λ < δ) do not change around x0 (Lemma 5), and projections
form a line from x0 to g(δ) (Corollary 1). We next show the converse: if projections do form a line
emanating from x0 up to some g(θ), then the normal cones up to g(λ) (λ < θ) must also be the same.
(This means that θ ≥ δ.)

Lemma 7. Let P ⊆ Rn be a polytope defined using m facet inequalities (e.g., as in (4)). Let x0 ∈ P
and we are given ∇f(x0) ∈ Rn. Let g(λ) = ΠP (x0 − λ∇f(x0)) be the parametric projections
curve. Suppose the projections curve is linear from x0 up to g(δ) for some δ ≥ 0, i.e.:

g(λ) = ΠP (x0 − λ∇f(x0)) = x0 + λd for all λ ∈ [0, δ],

for some direction d ∈ Rn. Then, NP (g(λ)) = NP (g(λ′)) ⊆ NP (x0), for all 0 < λ < λ′ < δ.

Proof. Let I and J denote the index-set of active and inactive constraints at x0 respectively. We will
show that NP (g(λ)) = NP (g(λ′)) ⊆ NP (x0) for all 0 < λ < λ′ < δ. Our first claim is that since
λ′ < δ, inactive constraints at x0 must remain inactive (claim (a)), and second, we use the fact that
the projection is linear to show that the active constraints are maintained at all λ, λ′ ∈ (0, δ) (claim
(b)). Now, fix λ, λ′ ∈ (0, δ) arbitrarily such that λ′ > λ.

(a) Inactive constraints remain inactive: We show that AJg(λ) < bJ and AJg(λ′) < bJ
(component-wise). Since x0 + δd ∈ P ,

AJg(δ) = AJ(x0 + δd) ≤ bJ

which implies that AJd ≤ bJ−AJx0

δ . Now, for any λ < δ, we have

AJg(λ) = AJ(x0 + λd) ≤ AJx0 + λ
bJ −AJx0

δ
=

(
1− λ

δ

)
AJx0 + bJ

λ

δ
< bJ .

where the last (strict) inequality follows from the fact that we are taking a convex combi-
nation. This shows AJg(λ) < bJ (component-wise) for all λ ∈ (0, δ). This implies that
NP (g(λ)) ⊆ NP (x0) for all λ ∈ (0, δ).

(b) Active constraints are maintained: We show that active constraints at g(λ) and g(λ′)
are the same. Since we know AJg(λ) < bJ , AJg(λ′) < bJ , we need to check the
constraints in the index set I , the set of active constraints at x0. Consider any i ∈ I . Since
〈ai,x0〉 = bi and x0 + δd ∈ P (δ > 0), we know that 〈ai,d〉 ≤ 0. If 〈ai,d〉 = 0, then
since g(λ) = x0 + λd, we see that 〈ai, g(λ)〉 = bi for all λ ∈ [0, δ]. So the constraint
corresponding to ai is active at both g(λ) and g(λ′). On the other hand, if 〈ai,d〉 < 0, then
this constraint must become inactive at g(λ), for any λ > 0, i.e., we have

〈ai, g(λ)〉 = 〈ai,x0 + λd〉 < bi,

and therefore, any constraint in I inactive at g(λ) must also be inactive at g(λ′).

17

We have thus shown that the set of active constraints are the same, i.e. NP (g(λ)) = NP (g(λ′)) ⊆
NP (x0), for all λ, λ′ ∈ (0, δ).

So far, we have shown that equal normal cones at g(λ) and g(λ′) imply linear curve between these
(Lemma 2). There exists some δ > 0 such that normal cones up to g(λ) (λ < δ) do not change
around x0 (Lemma 5), and projections form a line from x0 to g(δ) (Corollary 1). We have also shown
the converse: if projections do form a line emanating from x0 up to some g(θ), then the normal cones
up to g(λ) (0 < λ < θ) must also be the same and a subset of normal cone at x0. We now show
that the maximum value of θ and δ is the same, and corresponds to the maximum step-size in the
directional derivative of w = ∇f(x0) at x0. These properties together give us Theorem 2.

We are now ready to prove the following:
Theorem 2. Let P ⊆ Rn be a polytope defined using m facet inequalities (e.g., as in (4)). Let
x0 ∈ P and we are given ∇f(x0) ∈ Rn. Let g(λ) = ΠP (x0 − λ∇f(x0)) be the parametric
projections curve. Let λ−1 = max{λ | x0 + λdΠ

x0
∈ P} be finite and let x1 = g(λ−1). We claim that

(i) NP (g(λ)) = NP (g(λ′)) ⊆ NP (x0), for all 0 < λ < λ′ < λ−1 , and

(ii) NP (x1) = NP (g(λ−1)) ⊃ NP (g(λ)), for all λ ∈ (0, λ−1).
Moreover, the projections curve is given by g(λ) = x0 + λdΠ

x0
, for all λ ∈ [0, λ−1].

Proof. We now put everything together to complete the proof of Theorem 2.

Claim. We first claim that:

g(λ) = x0 + λdΠ
x0

for all λ ∈ [0, λ−1], (27)

which, in particular, means that x1 = g(λ−1) = x0 + λ−1 d
Π
x0

, using the definition of x1.

Pf. We know using Corollary 1 that ∃δ > 0 such that g(λ) = x0 + λdΠ
x0

for all λ ∈ [0, δ).
Hence, to prove the claim, we have to show g(λ′) = x0 + λ′dΠ

x0
for all λ′ ∈ [δ, λ−1]. Using

(26), we know that

x0 + λ′dΠ
x0

= x0 +
λ′

λ
(g(λ)− x0) for any λ ∈ (0, δ).

Then, since x0 + λ′

λ (g(λ)− x0) ∈ P by definition of λ−1 and λ′ > λ, using Lemma 6 we
have g(λ′) = x0 + λ′

λ (g(λ) − x0) = x0 + λ′dΠ
x0

. The claim now follows since λ′ was
arbitrary.

We can now complete the proof of the theorem as follows.

Case (i) Since, g(λ) = x0 + λdΠ
x0

for all λ ∈ [0, λ−1], it follows from Lemma 7 that NP (g(λ)) =

NP (g(λ′)) ⊆ NP (x0) for all 0 < λ < λ′ < λ−1 . This shows that (i) in Theorem 2 holds.

Case (ii) Note that I(g(λ)) ⊆ I(x0) for any λ ∈ [0, λ−1) by property (i). Therefore, for any
i ∈ I(g(λ)), we have

〈ai, g(λ)〉 =
〈
ai,x0 + λdΠ

x0

〉
= bi =⇒

〈
ai,d

Π
x0

〉
= 0

=⇒ 〈ai,x1〉 =
〈
ai,x0 + λ−1 d

Π
x0

〉
= bi,

and so the constraint corresponding to ai (which is active at g(λ)) is also active at x1. We
have thus shown that NP (g(λ)) ⊆ NP (x1) for all λ ∈ (0, λ−1).

We will now show that this containment is strict, i.e. there is at least one constraint that is
active at x1 but is not active at g(λ) for all λ ∈ (0, λ−1). Note that since dΠ

x0
is a feasible

direction at x0, we have
〈
ai,d

Π
x0

〉
≤ 0 for all i ∈ I(x0). Thus, it follows that the maximum

step size in which we can move along dΠ
x0

is given by

λ−1 = min
j∈J:

〈aj ,d
Π
x0
〉>0

bj − 〈aj ,x0〉〈
aj ,dΠ

x0

〉 , (28)

18

where the feasible set of the above problem is non-empty, since otherwise this would imply
that dΠ

x0
is a recessive direction (i.e. direction of unboundedness), contradicting the fact that

P is a polytope. Let j∗ be any optimal index to the optimization problem in (28), where
〈aj∗ ,x1〉 = bj∗ . Now, for any λ ∈ (0, λ−1)

〈aj∗ , g(λ)〉 =
〈
aj∗ ,x0 + λdΠ

x0

〉
<
〈
aj∗ ,x0 + λ−1 d

Π
x0

〉
(choice of λ and

〈
aj∗ ,d

Π
x0

〉
> 0)

= bj∗ ,

implying that the constraint aj∗ is not active at g(λ). Thus, we have NP (g(λ)) ⊂ NP (x1)
for all λ ∈ (0, λ−1), which shows property (ii) in Theorem 2.

B.4 Proof of Theorem 3

To prove this theorem we first claim that under some conditions, the first linear segment of the
projection curve starting at the i− 1th breakpoint xi−1 with respect to any vector w is the same as
the ith piecewise linear segment of the projection curve starting from x0 with respect to w. Suppose
w = ∇f(x0), then the invariance property we would like to specifically show is:
Lemma 8 (Invariance of projections). Let P ⊆ Rn be a polytope. Let x0 ∈ P and ∇f(x0) ∈ Rn
be given. Further, let xi−1 ∈ P be the ith breakpoint in the projections curve g(λ) = ΠP (x0 −
λ∇f(x0)), with xi−1 = x0 for i = 1. Define λ−i−1 := min{λ | g(λ) = xi−1}, λ+

i−1 := max{λ |
g(λ) = xi−1}, λ̂i−1 := sup{λ | NP (g(λ′)) = NP (xi−1) ∀λ′ ∈ [λ−i−1, λ)}, and suppose that
λ+
i−1 = λ̂i−1. Then we claim the following invariance property of orthogonal projections:

g̃(λ) := ΠP (xi−1 − (λ− λ+
i−1)∇f(x0)) = g(λ) for λ ∈ [λ+

i−1, λ
−
i]. (29)

To prove this lemma, we need some technical results. The first result we have is a structural one about
minimizing strongly functions over polyhedrons, and states that if we know the optimal (minimal)
face then we can restrict the optimization to that optimal face and ignore the remaining faces of the
polyhedron:
Lemma 9 (Reduction of optimization problem to optimal face). Let P = {x ∈ Rn : 〈ai,x〉 ≤
bi ∀ i ∈ [m]} be a polyhedron and suppose that f : Rn → R be µ-strongly convex over P . Let
x∗ = arg minx∈P f(x), where uniqueness and existence of the optimal solution follow from the
strong convexity of f . Further, let

x̃ = arg min
x∈Rn

{f(x) | AI(x∗)x = bI(x∗)}. (30)

Then, we claim that x∗ = x̃.

Proof. Let J(x∗) denote the index set of inactive constraints at x∗. We assume that J(x∗) 6= ∅,
since otherwise the result follows trivially. Now, suppose for a contradiction that x∗ 6= x̃. Due to
uniqueness of the minimizer of the strongly convex function over P , we have that x̃ /∈ P (otherwise
it contradicts optimality of x∗ over P). Define

γ := min
j∈J(x∗):
〈aj ,x̃−x∗〉>0

bj − 〈aj ,x∗〉
〈aj , x̃− x∗〉

> 0, (31)

with the convention that γ = ∞ if the feasible set of (31) is empty, i.e. 〈aj , x̃− x∗〉 ≤ 0 for all
j ∈ J(x∗). Select θ̃ ∈ (0,min{γ, 1}). Further, define y := x∗ + θ̃(x̃ − x∗) 6= x∗ to be a strict
convex combination of x∗ and x̃. We claim that that (i) y ∈ P and (ii) f(y) < f(x∗), which
contradicts the optimality of x∗.

Claim (i): y ∈ P. Any inequality satisfied by x̃ is also satisfied by x∗ and therefore by y. Consider
j ∈ J(x∗) such that 〈aj , x̃〉 > bj ≥ 〈aj,x∗〉. Then, we have

〈aj ,y〉 = 〈aj ,x∗〉+ θ̃ 〈aj , x̃− x∗〉 ≤ 〈aj ,x∗〉+ γ 〈aj , x̃− x∗〉
≤ 〈aj ,x∗〉+ bj − 〈aj ,x∗〉 = bj ,

19

where we used the fact that θ̃ ≤ γ in the first inequality, and the definition of γ (31)
in the second inequality. This establishes the feasibility of y ∈ P .

Claim (ii): f(y) < f(x∗). Observe that f(x̃) ≤ f(x∗) since x∗ is feasible for (30). We can now complete the
proof of this claim as follows:

f(y) = f((1− θ̃)x∗ + θ̃x̃) (32)

≤ (1− θ̃)f(x∗) + θ̃f(x̃)− θ̃(1− θ̃)µ
2

‖x∗ − x̃‖2 (33)

< (1− θ̃)f(x∗) + θ̃f(x̃) (34)
≤ f(x∗), (35)

where we used the fact θ̃ ∈ (0, 1) and the strong convexity of f in (33), the fact that
x∗ 6= x̃ in (34), and finally the fact that f(x̃) ≤ f(x∗) in (35).

This completes the proof.

The second technical result we need for the proof of Lemma 8 is a continuity property of the
projections curve, and states that for any point on the projections curve g(λ), any inactive constraint
at g(λ) is also inactive at all points g(λ± ε) for ε ≥ 0 sufficiently small:
Lemma 10 (A continuity property of the projections curve). Let P ⊆ Rn be a polytope. Let x0 ∈ P
and∇f(x0) ∈ Rn be given. Further, let g(λ) = ΠP (x0 − λ∇f(x0)) denote the projections curve.
Fix λ > 0 and define y := g(λ). Let J(y) be the index set of inactive constraints at y. Then, there
exists a scalar δ > 0 such that J(y) = J(g(λ± ε)) for all ε ∈ (−δ, δ), that is for all j ∈ J(y) we
have

〈aj , g(λ+ ε)〉 < bj for all ε ∈ (−δ, δ).
In particular, if J(y) = ∅, then the polytope only contains a single point and δ = ∞, otherwise
δ <∞.

Proof. First, if J(y) = ∅, then the polytope P contains only one point y, in which case the result
trivially follows with δ =∞. So, we now assume that J(y) 6= ∅. Consider any δ satisfying

0 < δ ≤ min
j∈J(y)

bj − 〈aj ,y〉
‖aj‖‖∇f(x0)‖

. (36)

We will now show that δ satisfies the conditions stated in the lemma. For all j ∈ J(y) (so that
〈aj ,y〉 < bj) and ε ∈ (−δ, δ), we have

〈aj , g(λ+ ε)〉 = 〈aj ,y + g(λ+ ε)− y〉
≤ 〈aj ,y〉+ ‖aj‖‖g(λ+ ε)− y‖ (37)
= 〈aj ,y〉+ ‖aj‖‖g(λ+ ε)− g(λ)‖ (38)
≤ 〈aj ,y〉+ |ε|‖aj‖‖∇f(x0)‖ (39)
< 〈aj ,y〉+ δ‖aj‖‖∇f(x0)‖ (40)
≤ bj , (41)

where (37) follows from Cauchy-Schwartz, (39) from non-expansiveness of the projection operator
(15), (40) from the choice of ε < δ, and (41) from the choice of δ in (36).

The final technical result we need for the proof of Lemma 8 states that if NP (xi−1) ⊃ NP (g(λ+
i−1 +

ε)) for ε sufficiently small at a breakpoint xi−1 (i.e., a constraint is dropped at xi−1), then the normal
vector of the Euclidean projection of x0 − λ+

i−1∇f(x0) is orthogonal to the shadow at xi−1 with

respect to∇f(x0), that is
〈
x0 − λ+

i−1∇f(x0)− xi−1,d
Π
xi−1

(∇f(x0)
〉

= 0.

Lemma 11. Let P ⊆ Rn be a polytope. Let x0 ∈ P and ∇f(x0) ∈ Rn be given. Further,
let xi−1 ∈ P be the ith breakpoint in the projections curve g(λ) = ΠP (x0 − λ∇f(x0)), with
xi−1 = x0 for i = 1. Define λ−i−1 := min{λ | g(λ) = xi−1}, λ+

i−1 := max{λ | g(λ) = xi−1},
λ̂i−1 := sup{λ | NP (g(λ′)) = NP (xi−1) ∀λ′ ∈ [λ−i−1, λ)}, and suppose that λ+

i−1 = λ̂i−1. Then,〈
x0 − λ+

i−1∇f(x0)− xi−1,d
Π
xi−1

(∇f(x0)
〉

= 0. (42)

20

Proof. Assume dΠ
xi−1

(∇f(x0)) 6= 0 otherwise the statement follows trivially. For notational brevity
we let I and J denote the index-set of active and inactive constraints at xi−1 respectively. Recall that
(see Section 2)

dΠ
xi−1

(∇f(x0)) = arg min
d
{‖ − ∇f(x0)− d‖2 | AId ≤ 0}. (43)

Let Î ⊆ I be the subset of constraints that satisfy AÎd
Π
xi−1

(∇f(x0)) = 0. By reducing the above
optimization problem to the optimal face (9), we can rewrite the optimization problem in (43) as

dΠ
xi−1

(∇f(x0)) = arg min
d
{‖ − ∇f(x0)− d‖2 | AÎd = 0}, (44)

where its solution is given dΠ
xi−1

(∇f(x0)) = (I−A†
Î
AÎ)(−∇f(x0)).

Denote the normal vector p := x0 − λ+
i−1∇f(x0)− xi−1 and assume that p 6= 0, since otherwise

the statement follows trivially. Thus, since dΠ
xi−1

(∇f(x0)) is the projection of −∇f(x0) onto the

nullspace of AÎ and dΠ
xi−1

(∇f(x0)) 6= 0, it follows that
〈
p,dΠ

xi−1
(∇f(x0))

〉
= 0 if and only if p

is in the rowspace of AÎ , that is〈
p,dΠ

xi−1
(∇f(x0))

〉
= 0⇔ p = A>

Î
v for some v ∈ R|Î| (45)

Since xi−1 = g(λ+
i−1), we have p ∈ NP (xi−1), that is p = A>I µ for some µ ∈ R|I|+ . Thus, using

(45), to complete the proof we will show that p can be written as a conic combination using only
the subset of constraints Î , i.e µai

= 0 for i ∈ I \ Î , in the case that Î ⊂ I . The rest of the proof is
devoted to showing this fact.

By the continuity of the projections curve (Lemma 10 with y := g(λ+
i−1)), we know that there

exists some δ > 0 such that
〈
aj , g(λ+

i−1 + ε)
〉
< bj for all 0 < ε < δ. This shows that the inactive

constraints at xi−1 remain inactive at g(λ+
i−1 + ε)) for any 0 < ε < δ, i.e., NP (g(λ+

i−1 + ε))) ⊆
NP (xi−1). However, we are also given that λ+

i−1 = λ̂i−1, which together with our previous claim
implies that this containment is strict in a small neighborhood around xi−1, i.e. NP (g(λ+

i−1 + ε)) ⊂
NP (xi−1) for any 0 < ε < δ. So, some of the constraints at the breakpoint xi−1 are relaxed.

Furthermore, using the definition of dΠ
xi−1

(∇f(x0)) (43), it follows that for any ε sufficiently small,
the set of active constraints at g(λ+

i−1 +ε) will also be Î , i.e., the constraints relaxed by the projections
curve at xi−1 coincide with those relaxed by the shadow computation in (43). Denoting the normal
vector of the projection g(λ+

i−1 + ε) by

pε := x0 − (λ+
i−1 + ε)∇f(x0)− g(λ+

i−1 + ε) ∈ NP (g(λ+
i−1 + ε)), (46)

this implies that we can write pε = A>
Î
µ for some µ ∈ R|Î|+ . Since this is true for any ε > 0

arbitrarily small and the curve g(λ) is continuous, the result follows by letting ε ↓ 0. That is, we can

write the vector p ∈ NP (xi−1) as p = A>
Î
µ for some µ ∈ R|Î|+ , i.e. as a conic combination using

only the subset of constraints indexed by Î .

We are now ready to prove the lemma:

Proof of Lemma 8. Fix a non-negative scalar λ ∈ [λ+
i−1, λ

−
i] and suppose for a contradiction that

g̃(λ) = z and g(λ) = y where z 6= y. Then, since z is not the projection g(λ) = ΠP (x0−λ∇f(x0)),
we know there exists z̃ ∈ P :

〈x0 − λ∇f(x0)− z, z̃− z〉 > 0 (47)

⇒
〈
x0 − λ+

i−1∇f(x0)− xi−1, z̃− z
〉

+
〈
xi−1 − (λ− λ+

i−1)∇f(x0)− z, z̃− z
〉
> 0

⇒
〈
x0 − λ+

i−1∇f(x0)− xi−1, z̃− z
〉
> 0 (48)

⇒
〈
x0 − λ+

i−1∇f(x0)− xi−1, z̃− xi−1

〉
+
〈
x0 − λ+

i−1∇f(x0)− xi−1,xi−1 − z
〉
> 0,

⇒
〈
x0 − λ+

i−1∇f(x0)− xi−1,xi−1 − z
〉
> 0, (49)

21

where (48) follows by first-order optimality at z, and (49) follows by first-order optimality at xi−1.
Using Theorem 2 with the projections curve starting at xi−1 with parameter θ = (λ − λ+

i−1), we
have

g̃(θ+λ+
i−1) := ΠP (xi−1−θ∇f(x0)) = xi−1+θdΠ

xi−1
(∇f(x0)), for all θ ∈ [0, λ−i −λ

+
i−1], (50)

where recall that dΠ
xi−1

(∇f(x0)) is the directional derivative at xi−1 with respect to the direction
given by∇f(x0):

dΠ
xi−1

(∇f(x0)) = lim
ε↓0

Πp(xi−1 − ε∇f(x0))− xi−1

ε
.

Thus, using this fact in (50), we have〈
x0 − λ+

i−1∇f(x0)− xi−1,xi−1 − z
〉

=
〈
x0 − λ+

i−1∇f(x0)− xi−1,xi−1 − g̃(λ)
〉

=
〈
x0 − λ+

i−1∇f(x0)− xi−1,−(λ− λ+
i−1)dΠ

xi−1
(∇f(x0))

〉
> 0 for λ > λ+

i−1

⇒
〈
x0 − λ+

i−1∇f(x0)− xi−1,d
Π
xi−1

(∇f(x0))
〉
<0.

However, using Lemma 11, we know that
〈
x0 − λ+

i−1∇f(x0)− xi−1,d
Π
xi−1

(∇f(x0)
〉

= 0, which
gives us the desired contradiction.

Theorem 3 (Tracing the projections curve). Let P ⊆ Rn be a polytope defined using m facet
inequalities (e.g., as in (4)). Let xi−1 ∈ P be the ith breakpoint in the projections curve g(λ) =
ΠP (x0 − λ∇f(x0)), with xi−1 = x0 for i = 1. Suppose we are given λ−i−1, λ

+
i−1 ∈ R so that

they are respectively the minimum and the maximum step-sizes λ such that g(λ) = xi−1. Let
λ̂i−1 := sup{λ | NP (g(λ′)) = NP (xi−1) ∀λ′ ∈ [λ−i−1, λ)}. Then, we show that:
1. If λ−i−1 < λ+

i−1, then λ+
i−1 = λ̂i−1. Otherwise, λ−i−1 = λ+

i−1 ≤ λ̂i−1.

2. Linearity of the curve between g(λ−i−1) and g(λ̂i−1): i.e., g(λ−i−1 + (1− δ)λ̂i−1) = δg(λi−1) +

(1− δ)g(λ̂i−1), where δ ∈ [0, 1]. In particular, g(λ) = xi−1 for all λ ∈ [λ−i−1, λ
+
i−1].

3. If dΠ
xi−1

(∇f(x0)) = 0, then limλ→∞ g(λ) = xi−1 is the end point of the projections curve g(λ).

4. Otherwise dΠ
xi−1

(∇f(x0)) 6= 0, we get λ+
i−1 ≤ λ̂i−1 <∞ (from (1)). We then claim:

(a) In-face movements: If λ̂i−1 > λ+
i−1, then the next breakpoint in the curve occurs by walk-

ing in-face up to λ̂i−1, i.e., xi := g(λ̂i−1) = xi−1 + (λ̂i−1 − λ+
i−1)d̂Π

xi−1
(∇f(x0)) and

λ−i := λ̂i−1. Moreover, NP (xi−1) ⊆ NP (g(λ̂i−1)), with strict containment only when
the maximum movement along in-face direction takes place, i.e., λ̂i−1 = λ+

i−1 + max{δ :

xi−1 + δd̂Π
xi−1

(∇f(x0)) ∈ P}.
(b) Shadow movements: Otherwise if λ̂i−1 = λ+

i−1, then the movement is in the shadow direction,
i.e., xi := g(λ−i) = xi−1 + (λ−i − λ+

i−1)dΠ
xi−1

(∇f(x0)) where λ−i := λ+
i−1 + max{δ :

xi−1 + δdΠ
xi−1

(∇f(x0)) ∈ P}.
In particular, the projections curve is linear between λ+

i−1 and λ−i . Further, we show that properties
(i), (ii) and (iii) in Theorem 1 hold for their respective normal cones for λ, λ′ ∈ (λ+

i−1, λ
−
i), where

the containments in (i) and (iii) are strict for case (b).

Proof. We now prove the different cases in the theorem statement:

1. If xi−1 is the endpoint of the projections curve, then λ+
i−1 =∞ and the result trivially follows.

So, consider the case when xi−1 is not the endpoint of the projections curve. We will show that
there is a drop in the normal cone at xi−1 beyond the stepsize λ+

i−1: if λ−i−1 < λ+
i−1, then there

exists some δ > 0 such that NP (g(λ+
i−1 + ε)) ⊂ NP (xi−1) for all ε ∈ (0, δ), which implies that

λ̂i−1 = λ+
i−1 as claimed.

First, by the continuity of the projections curve (Lemma 10 with y := g(λ+
i−1)), we know that

there exists some δ ∈ (0,∞) such that NP (g(λ+
i−1 + ε)) ⊆ NP (xi−1) for any 0 < ε < δ.

We further claim that this containment is strict. To see this, suppose for a contradiction that

22

NP (g(λ)) = NP (xi−1) for some λ+
i−1 < λ̃ < λ+

i−1 + δ. Since λ+
i−1 := max{λ | g(λ) =

xi−1}, it follows that g(λ̃) 6= xi−1. Using Lemma 2 (linearity of projections), we know that

g(λ+
i−1) = δg(λ−i−1) + (1− θ)g(λ̃) for θ =

λ+
i−1−λ

−
i−1

λ̃−λ−i−1

∈ (0, 1). But this is a contradiction since

g(λ+
i−1) = g(λ−i−1) = xi−1 but g(λ̃) 6= xi−1.

2. As stated in the previous claim, there are two cases: λ−i−1 < λ+
i−1 = λ̂i−1 or λ−i−1 = λ+

i−1 ≤
λ̂i−1. In either case, the normal cones at λ−i−1, λ+

i−1, and λ̂i−1 are the same. Therefore, the
projections curve is linear between λ−i−1 and λ̂i−1 using Lemma 2. In particular, when λ−i−1 <

λ+
i−1, then g(λ) = xi−1 for all λ ∈ [λ−i−1, λ

+
i−1]. Otherwise, when λ−i−1 = λ+

i−1 ≤ λ̂i−1, then
g(δλ−i−1 + (1− δ)λ̂i−1) = δg(λ−i−1) + (1− δ)g(λ̂i−1) for δ ∈ (0, 1).

3. Since dΠ
xi−1

(∇f(x0)) = 0, it follows that−∇f(x0) ∈ NP (xi−1), i.e. 〈−∇f(x0), z− xi−1〉 ≤
0 for all z ∈ P . Using the first-order optimality condition of g(λ+

i−1) = xi−1, we have〈
x0 − λ+

i−1∇f(x0)− xi−1, z− xi−1

〉
≤ 0 ∀z ∈ P.

Since 〈−∇f(x0), z− xi−1〉 ≤ 0 for all z ∈ P and λ ≥ λ+
i−1, we get

〈x0 − λ∇f(x0)− xi−1, z− xi−1〉 ≤ 0 ∀z ∈ P
so that xi−1 satisfies the first-order optimality condition for g(λ) when λ ≥ λ+

i−1.

4. We now consider the case when dΠ
xi−1

(∇f(x0)) 6= 0 so that xi−1 is not the endpoint of the
projections curve. Then, in this case λ̂i−1 < ∞ as xi−1 is not the endpoint of g(λ), and
λ̂i−1 ≥ λ−i−1 by the definition of λ̂i−1. We now prove the different sub-cases in the (a) and (b)
claimed in the theorem statement:

(a) In-face movements: Recall that λ̂i−1 := sup{λ | NP (g(λ′)) = NP (xi−1) ∀λ′ ∈
[λ−i−1, λ)} and let λ̂i−1 > λ+

i−1. We will now show that xi := g(λ̂i−1) is in fact the
next breakpoint. Also, that xi is obtained by movement along the in-face direction, i.e.,
xi = xi−1 + (λ̂i−1 − λ+

i−1)d̂Π
xi−1

(∇f(x0)). Moreover, NP (xi−1) ⊆ NP (g(λ̂i−1)), with
strict containment only when the maximum movement along in-face direction takes place,
i.e., λ̂i−1 = λ+

i−1 + max{δ : xi−1 + δd̂Π
xi−1

(∇f(x0)) ∈ P}. This shows Theorem 1(iii).

Note that, the projections curve is linear between λ+
i−1 and λ−i , since the normal cone is

unchanged by definition of λ̂i−1, which shows Theorem 1(ii). Further, since λ̂i−1 > λ+
i−1,

we know that when leaving the breakpoint xi−1 no constraint is dropped (hence, Theorem
1(i) holds), i.e., NP (xi−1) = NP (g(λ)), for λ ∈ [λ+

i−1, λ̂i−1).

Proof of case (a). For notational brevity we will use I to denote I(xi−1). We first claim
that since the projections curve is continuous, NP (xi−1) ⊆ NP (g(λ̂i−1)):
Claim 4.1. Growth in normal cone λ̂i−1: NP (xi−1) ⊆ NP (g(λ̂i−1)).
Pf. We are given that λ̂i−1 > λ+

i−1. Now, suppose for a contradiction that NP (xi−1) 6⊆
NP (g(λ̂i−1)). Then, there exists some i ∈ I such that

〈
ai, g(λ̂i−1)

〉
< bi. By the

continuity of the projections curve (Lemma 10 with y := g(λ̂i−1)), we know that there
exists some δ < ∞ such that

〈
ai, g(λ̂i−1 − ε)

〉
< bi for all ε ∈ (0, δ). Consider any

ε′ ∈ (0,min{λ̂i−1 − λ+
i−1, δ}) and define λ′ := λ̂i−1 − ε′. Then λ′ ∈ (λ+

i−1, λ̂i−1) but
〈ai, g(λ′)〉 < bi, i.e. NP (g(λ′)) 6= NP (xi−1), which is a contradiction.

Claim 4.2. We will show that the projections curve in-face is given by d̂Π
xi−1

(∇f(x0)) (58)
upto λ̂i−1, that is

g(λ) = xi−1 + (λ− λ−i−1)d̂Π
xi−1

(∇f(x0)) for all λ ∈ [λ−i−1, λ̂i−1]. (51)

23

Pf. To show (51), note that we have NP (g(λ)) = NP (xi−1) for all λ ∈ [λ−i−1, λ̂i−1) and
NP (g(λ̂i−1)) ⊇ NP (xi−1) at the limit point using Claim 4.1 above. In other words,
g(λ) lies on the face defined by AI(xi−1)g(λ) = bI(xi−1) for λ ∈ [λ−i−1, λ̂i−1] until the
projections curve is about to leave the minimal face. Thus, by reducing the projection
optimization problem (51) to the optimal face (Lemma 9) and using the definition of
λ̂i−1, we can write

g(λ) = arg min
y
{‖x0−λ∇f(x0)−y‖2 | AI(xi−1)y = bI(xi−1)} ∀λ ∈ [λ−i−1, λ̂i−1].

(52)
The least-squares optimization problem in (52) could be computed in closed form as
follows (see Section 5.13 in [25] for example):

g(λ) = (I−A†IAI)(x0 − λ∇f(x0)) + A†IbI (53)

= x0 − λ∇f(x0)−A†I(AI(x0 − λ∇f(x0))− bI) (54)

= x0 − λ+
i−1∇f(x0)−A†I(AI(x0 − λ+

i−1∇f(x0))− bI)

+ (I−A†IAI)((λ− λ+
i−1)−∇f(x0)) (55)

= (I−A†IAI)(x0 − λ+
i−1∇f(x0)) + A†IbI

+ (I−A†IAI)((λ− λ+
i−1)−∇f(x0)) (56)

= ΠP (x0 − λ+
i−1∇f(x0)) + (λ− λ+

i−1)(I−A†IAI)(−∇f(x0)) (57)

= xi−1 + (λ− λ+
i−1)d̂Π

xi−1
(∇f(x0)) ∀λ ∈ [λ−i−1, λ̂i−1], (58)

where we used the equivalence of projection on the whole polytope P and the projection
onto the optimal face (Lemma 9) in (57).

Claim 4.3 We claim that xi := g(λ̂i−1) is the next breakpoint, since the projections curve
leaves the minimal face by definition of λ̂i−1, after this point, and therefore a direction
change in the projections curve must happen (by Lemma 2).

Finally, to complete the proof of this case we show the following claim.
Claim 4.4. We know show that NP (xi−1) ⊂ NP (g(λ̂i−1)) if and only if λ−i = λ+

i−1 +

max{δ : xi−1 + δd̂Π
xi−1

(∇f(x0)) ∈ P}.
Pf. First, note that d̂Π

xi−1
(∇f(x0)) 6= 0 from Claim 4.2.

Suppose λ−i = λ̂i−1 = λ+
i−1 + max{δ : xi−1 + δd̂Π

xi−1
(∇f(x0)) ∈ P}. Since we

cannot suddenly drop constraints at the limit point (Claim 4.1) we have NP (xi−1) ⊆
NP (g(λ̂i−1)). However this containment must be strict since λ̂−i−1 corresponds to the
maximum movement along d̂Π

xi−1
(∇f(x0)) 6= 0, and thus it follows that we add at least

one tight constraint at g(λ̂i−1)), i.e. NP (xi−1) ⊂ NP (g(λ̂i−1)).
Conversely, suppose that NP (xi−1) ⊂ NP (g(λ̂i−1)). Let δ∗ := max{δ : xi−1 +

δd̂Π
xi−1

(∇f(x0)) ∈ P}. Thus, we need to show that λ̂i−1 − λ+
i−1 = δ∗.

First, using (58) we know that g(λ̂i−1) = xi−1 + (λ̂i−1 − λ+
i−1)d̂Π

xi−1
(∇f(x0)) ∈ P ,

which implies by the definition of δ∗ that δ∗ ≥ λ+
i−1 − λ̂i−1. We now show that

δ∗ ≤ λ̂i−1 − λ+
i−1, which proves the claim.

Since NP (xi−1) ⊂ NP (g(λ̂i−1)), we add at least one tight constraint aj for some

j ∈ J (so that 〈aj ,xi−1) < bj〉) at the point g(λ̂i−1), i.e.
〈
aj , g(λ̂i−1)

〉
= bj . Since

the movement to g(λ̂i−1) is in the direction d̂Π
xi−1

(∇f(x0)) (using (58)), it follows that〈
aj , d̂

Π
xi−1

(∇f(x0)))
〉
> 0. This implies that xi−1 + (λ− λ+

i−1)d̂Π
xi−1

(∇f(x0)) 6∈ P

for λ > λ̂i−1, which yields δ∗ ≤ λ̂i−1 − λ+
i−1.

(b) Shadow movements: λ̂i−1 = λ+
i−1. if λ̂i−1 = λ+

i−1, then the movement is in the
shadow direction, i.e., xi := g(λ−i) = xi−1 + (λ−i − λ

+
i−1)dΠ

xi−1
(∇f(x0)) where λ−i :=

24

λ+
i−1 + max{δ : xi−1 + δdΠ

xi−1
(∇f(x0)) ∈ P}. In particular, the projections curve is

linear between λ+
i−1 and λ−i . Further, we show that properties (i), (ii) and (iii) in Theorem 1

hold for their respective normal cones for λ, λ′ ∈ (λ+
i−1, λ

−
i), where the containments in (i)

and (iii) are strict for case (b).

Proof of case (b). Finally, suppose that λ̂i−1 = λ+
i−1. Thus, we satisfy the conditions of the

invariance property of orthogonal projections (Lemma 8) and will now invoke this property.
By the invariance property of orthogonal projections (equations (29) and (50) in Lemma
8), we have g̃(λ) = xi−1 + (λ − λ+

i−1)dΠ
xi−1

(∇f(x0)) = g(λ) for λ ∈ [λ+
i−1, λ

−
i]. This

shows that the projections curve is linear between λ+
i−1 and λ−i . Moreover, using Theorem

2 with characterization in (50), we immediately have that xi = g(λ−i) = xi−1 + (λ−i −
λ+
i−1)dΠ

xi−1
(∇f(x0)) and NP (g(λ)) = NP (g(λ′)) ⊆ NP (xi−1), for all λ+

i−1 < λ < λ′ <

λ−i . In particular, this containment holds strictly since, as stated above, λ̂i−1 = λ+
i−1. This

shows that the the first part of property (i) (NP (xi−1) = NP (g(λ+
i−1)) ⊇ NP (g(λ))) and

property (ii) hold. Moreover, the containment in property (iii) holds strictly by using (ii)
in Theorem 2 with (λ− λ+

i−1) in place λ and g(λ+
i−1) in place of x0. Moreover the second

part of property (i), the drop in the normal cone, follows from (1).

This concludes the entire proof.

B.5 Number of Breakpoints in the Projections Curve

Theorem 8 (Bound on breakpoints in parametric projection curve). Let P ⊆ Rn be a polytope, with
m facet inequalities (e.g., as in (4)) and fix x ∈ P . Then, the procedure TRACE(x,∇f(x)) is correct
and traces the projection piecewise linear curve g(λ) = ΠP (x− λ∇f(x)). Moreover, it terminates
in at most O(2m) steps.

Proof. Fix x ∈ P and consider the procedure TRACE(x,∇f(x)). The fact that TRACE(x,∇f(x))
correctly traces the curve g(λ) = ΠP (x− λ∇f(x)) follows from the constructive proof given for
Theorem 3. Moreover, upon termination there are two things that can happen: (i) the line-search
evaluates to a step-size that is not maximal in one of the segments of g(λ), (ii) we reach the end
point of the curve v∗ = limλ→∞ g(λ) (as defined in Theorem 4). At this point, we know that
−∇f(x) ∈ NP (v∗). Recall that for any x ∈ P , we can compute the directional derivative using a
single projection:

dΠ
x =

ΠP (x− ε∇f(x))− x

ε
,

where ε is sufficiently small. Thus, when recomputing the directional derivative in the subsequent
iteration:

ΠP (v∗ − ε∇f(x))− v∗

ε
=

v∗ − v∗

ε
= 0,

where ε is again sufficiently small. The second equality above follows from the definition of v∗ and
Lemma 1. This proves the correctness of the termination criterion given in Algorithm 3.

Once the curve leaves the interior of a face, it can no longer visit the face again. This is because
equivalence of normal cones at two projections implies the projections curve is linear between the
two points (Lemma 2). Therefore, the number of breakpoints can be at most the number of faces, i.e.,
O(2m).

We now discuss the implementation of step 2 in Algorithm 4 in what follows. First, following the
discussion after the proof of Theorem 3 we check whether

〈
x0 − λxd− x,dΠ

x

〉
= 0. If this turned

out to be true then we can skip steps 3-7 in algorithm 3 and take a shadow step, in which case we do
need to enter Algorithm 4 to begin with.

Otherwise, if this is not the case, then we check whether we add a tight constraint when moving
in-face by doing a line-search for feasibility in the direction d̂Π

x when d̂Π
x 6= 0, i.e. we let γ̂max =

25

Algorithm 3 Tracing Parametric Projections Curve: TRACE(x,∇f(x))

Input: Polytope P ⊆ Rn, function f : P → R and initialization x ∈ P .
1: Let d = ∇f(x), x0 = x and γ total = 0. . fix gradient and starting point
2: while True do
3: d̂Π

x , λ̂ = TRACE-IN-FACE(x0,x,d, γ
total).

4: if λ̂ > γ total then . case (a.ii) in Theorem 3
5: Let γmax = λ̂ and γ∗ ∈ arg minγ∈[0,γmax] f(x + γd̂Π

x). . check line-search solution
6: Update x = x + γ∗d̂Π

x . . projections curve moves in-face
7: else
8: Compute dΠ

x := limε↓0
ΠP (x−ε∇f(x))−x

ε
and let γmax = max{δ | x + δdΠ

x ∈ P}.
9: γ∗ ∈ arg minγ∈[0,γmax] f(x + γdΠ

x). . check optimality of line-search solution
10: Update x = x + γ∗dΠ

x . . invariance of projections gives next curve segment
11: end if
12: Recompute dΠ

x := limε↓0
ΠP (x−εd)−x

ε
.

13: Update γ total = γ total + γ∗. . keeping track of total step-size accrued
14: if γ∗ ≤ γmax or dΠ

x = 0 then . either sufficient progress or we reached endpoint
15: break . suffices to also terminate when γtotal ≥ 1/L
16: end if
17: end while
Return: x

Algorithm 4 Tracing Parametric Projections Curve In-face: TRACE-IN-FACE(x0,x,d, λx)

Input: Polytope P ⊆ Rn, starting point of projections curve x0 ∈ P , current breakpoint x ∈ P and λx

satisfying g(λx) := ΠP (x0 − λxd) = x.
1: Compute d̂Π

x = (I−A>I(x)(AI(x)A
>
I(x))

†AI(x))(−d) . project −d onto minimal face of x

2: Evaluate λ̂ = sup{λ | NP (g(λ′)) = NP (xi−1) ∀λ′ ∈ [λx, λ)} = max{λ | g(λ) = x + (λ −
λx)d̂Π

x } . This gives λ̂ same as the one defined in Theorem 3. See text for an
implementation of this step

Return: d̂Π
x , λ̂

max{δ | x + δd̂Π
x ∈ P}. Then we can check whether g(λx + γ̂max) = x + γ̂maxd̂Π

x or not. This
amounts to checking the first-order optimality condition:〈

x0 − (λx + γ̂max)d− (x + γ̂maxd̂Π
x), z− (x + γ̂maxd̂Π

x

〉
≤ 0 ∀z ∈ P, (59)

which could be done by solving a linear program that maximizes the above inner product over all
z ∈ P , and then checking whether the objective value is non-positive. If this turned out to be true,
then we are done.

Otherwise, we know that λ̂ < γ̂max and thus λ̂ = max{λ | NP (g(λ′)) = NP (x) ∀λ′ ∈ [λx, λ]}.
Furthermore, using Theorem 3, we know that g(λ) = x + (λ− λx)d̂Π

x for all λ ∈ [λx, λ̂]. We can
thus do a binary search until this condition is satisfied.

C Missing Proofs for Section 4 on Descent Directions

C.1 Proof of Lemma 3

Lemma 3 (Local Optimality of Shadow Steps). Let P be a polytope defined as in (4) and let x ∈ P
with gradient∇f(x). Let y be any feasible direction at x, i.e., ∃γ > 0 s.t. x + γy ∈ P . Then〈

−∇f(x),
dΠ
x

‖dΠ
x ‖

〉2

= ‖dΠ
x ‖2 ≥

〈
dΠ
x ,

y

‖y‖

〉2

≥
〈
−∇f(x),

y

‖y‖

〉2

. (9)

Proof. We prove the result using first-order optimality of projections. First, observe that we can
uniquely decompose −∇f(x) = p−∇f(x)P such that 〈−∇f(x)P ,p〉 = 0, where ∇f(x)P is the
component of ∇f(x) projected onto the cone of feasible directions at x, and p is the orthogonal
component. Recall from Section 2 that dΠ

x = arg mind{‖ − ∇f(x)− d‖2 : AI(x)d ≤ 0}, and so
by definition we have −∇f(x)P = dΠ

x . Therefore,
〈
−∇f(x),dΠ

x

〉
= ‖dΠ

x ‖2. This gives the first
equality in (9).

26

We will now show that 〈
dΠ
x ,y

〉
≥ 〈−∇f(x),y〉 . (60)

To do that, we recall the first-order optimality condition for g(λ) = ΠP (x− λ∇f(x)) for λ > 0:

〈g(λ)− x + λ∇f(x), z− g(λ)〉 ≥ 0 ∀ z ∈ P.
Using Theorem 2, we know that there exists some scalar λ− such that g(λ) = x + λdΠ

x for any
0 < λ < λ−. Hence, for any such λ ∈ (0, λ−), the first-order optimality condition becomes:〈

x + λdΠ
x − x + λ∇f(x), z− x− λdΠ

x

〉
= λ

〈
dΠ
x +∇f(x), z− x− λdΠ

x

〉
≥ 0, (61)

for all z ∈ P . Note that the above equation holds for any z ∈ P and λ ∈ (0, λ−).

Since, x + γy ∈ P , it follows that x + λ̄y is also in P , where λ̄ = min{λ−/2, γ}. Thus,
since λ̄ ∈ (0, λ−) and x + λ̄y ∈ P , we can plug in λ̄ for λ and x + λ̄y for z in (61) to ob-
tain λ̄2

〈
dΠ
x +∇f(x),y − dΠ

x

〉
≥ 0. Thus, using the fact that

〈
−∇f(x),dΠ

x

〉
= ‖dΠ

x ‖2, this
implies 〈

dΠ
x ,y

〉
≥ ‖dΠ

x ‖2 +
〈
−∇f(x),y − dΠ

x

〉
= 〈−∇f(x),y〉

as claimed in (60).

We can now complete the proof using (60) as follows〈
−∇f(x),

dΠ
x

‖dΠ
x ‖

〉2

= ‖dΠ
x ‖2 (definition of dΠ

x)

≥
〈
dΠ
x ,

y

‖y‖

〉2

(Cauchy-Schwartz)

≥
〈
−∇f(x),

y

‖y‖

〉2

, (using (60))

which concludes the proof.

C.2 Using the derivative of the projection operator to estimate primal gaps

We will now show that ‖dΠ
xt
‖ = 0 if and only if xt = x∗. On the other hand, note that, e.g., ‖∇f(xt)‖

does not satisfy this property and can be strictly positive at the constrained optimal solution. Hence,
‖dΠ

xt
‖ is a natural quantity to use for estimating primal gaps without any dependence on geometric

constants like those used in CG variants.
Lemma 12 (Primal Gap Estimate). Let P be a polytope defined as in (4) and fix x ∈ P . Let
g(λ) = ΠP (x − λ∇f(x)) be the curve parameterized by the step-size λ. Then, ‖dΠ

x ‖ = 0 if and
only if x = x∗, where x∗ = arg minx∈P f(x).

Proof. First assume that ‖dΠ
x ‖ = 0 so that dΠ

x = 0. From (26) in Corollary 1, we know that
dΠ
x = g(ε)−x

ε for ε > 0 sufficiently small. Hence, the assumption that dΠ
x = 0 implies that g(ε) = x.

Using the first-order optimality of g(ε) we have

〈x− ε∇f(x)− g(ε), z− g(ε)〉 ≤ 0 ∀z ∈ P.
However, since g(ε) = x, this becomes

〈−ε∇f(x), z− x〉 ≤ 0 ∀z ∈ P.
In other words, this is equivalent to saying −∇f(x) ∈ NP (x), so that x = x∗.

Conversely suppose that x = x∗. Then, it follows that −∇f(x) ∈ NP (x). Using Lemma 1, this
implies that g(λ) = x for all λ > 0. Since from (8) we know that dΠ

x = g(ε)−x
ε for ε > 0 sufficiently

small, it follows that dΠ
x = 0. Thus, ‖dΠ

x ‖ = 0 as desired.

To prove convergence results for our algorithms, we additionally need dual gap bound on h(xt) :=
f(xt) − f(x∗) using dΠ

xt
. To do this, consider the strong convexity inequality given in Section 2

with y← xt + γ(x∗ − xt) and x← xt:

f(xt + γ(x∗ − xt))− f(xt) ≥ γ 〈∇f(xt),x
∗ − xt〉+

µγ2‖x∗ − xt‖2

2
.

27

The RHS is convex in γ and is minimized when γ∗ = 〈−∇f(xt),x
∗−xt〉

µ‖x∗−xt‖2 . Plugging γ∗ in the above
expression and re-arranging we obtain

f(xt + γ(x∗ − xt))− f(x∗) ≤ 〈−∇f(xt),x
∗ − xt〉2

2µ‖x∗ − xt‖2
.

As the LHS is independent of γ, we can set γ = 1, which gives

h(xt) := f(xt)− f(x∗) ≤ 〈−∇f(xt),x
∗ − xt〉2

2µ‖x∗ − xt‖2
. (62)

Now using Lemma 3 with x∗ − xt substituted for y in (9) we obtain〈
−∇f(xt),

dΠ
xt

‖dΠ
xt
‖

〉2

≥
〈
−∇f(xt),

x∗ − xt
‖x∗ − xt‖

〉2

≥ 2µh(xt), (63)

where the last inequality follows from (62).

C.3 Relating projections to FW vertices

Theorem 4 (Optimism in Frank-Wolfe Vertices). Let P ⊆ Rn be a polytope and let x ∈ P . Let
g(λ) = ΠP (x − λ∇f(x)) for λ ≥ 0. Then, the end point of this curve is: limλ→∞ g(λ) = v∗ =
arg minv∈F ‖x − v‖2, where F = arg minv∈P 〈∇f(x),v〉, i.e., the face of P that minimizes the
gradient∇f(x). In particular, if F is a vertex, then limλ→∞ g(λ) = v∗ is the Frank-Wolfe vertex.

Proof. If ∇f(x) = 0, then g(λ) = x for all λ ∈ Rn, and the theorem holds trivially. We therefore
assume that∇f(x) 6= 0. Let xi ∈ P be the ith breakpoint in the projections curve g(λ) = ΠP (x0 −
λ∇f(x0)), with xi = x for i = 0. Using Theorem 8, we know that the number of breakpoints curve
k ≤ 2m. Consider the last breakpoint xk in the curve and let λ−k = min{λ ≥ 0 | g(λ) = xk}. We
will now show that xk = v∗.

(i) We first show that xk ∈ F , i.e. −∇f(x) ∈ NP (xk). Suppose for a contradiction that this
not true. Then there exists some z ∈ P such that 〈−∇f(x), z− xk〉 > 0. Consider any
scalar λ̄ satisfying λ̄ > max{− 〈x−xk,z−xk〉

〈−∇f(x),z−xk〉 , λ
−
k }. Then, using the choice of λ̄ we have

〈x− xk, z− xk〉+ λ̄ 〈−∇f(x), z− xk〉 > 0

=⇒
〈
x− xk − λ̄∇f(x), z− xk

〉
> 0.

Now, since g(λ) = xk for λ ≥ λ−k , we know that g(λ̄) = xk. Thus, the above equation
could be written as 〈

x− λ̄∇f(x)− g(λ̄), z− g(λ̄)
〉
> 0,

which contradicts the first-order optimality for g(λ̄).

(ii) We will now show that xk is additionally the closest point to x in `2 norm. Again, suppose
for contradiction that this not true. Let ε := ‖xk − v∗‖ > 0. First, note that by definition,
g(λ) = arg miny∈P

{
‖x−y‖2

2λ + 〈∇f(x),y〉
}

for any λ > 0. Then, since g(λ−k) = xk we
have

‖x− xk‖2

2λ−k
+ 〈∇f(x),xk〉 ≤

‖x− z‖2

2λ−k
+ 〈∇f(x), z〉 , ∀z ∈ P . (64)

Moreover, the first-order optimality condition for v∗ (for minimizing ‖x−y‖2 over y ∈ F)
implies 〈v∗ − x, z− v∗〉 ≥ 0 for all z ∈ F . In particular, (v∗ − x)T (xk − v∗) ≥ 0 since
xk ∈ F . Therefore,

‖x− v∗‖2 + ‖xk − v∗‖2 = ‖x‖2 + 2‖v∗‖2 − 2xTv∗ + ‖xk‖2 − 2xTk v
∗ (65)

= ‖xk − x‖2 − 2(v∗ − x)T (xk − v∗) (66)

≤ ‖xk − x‖2. (67)

28

But then, since xk ∈ F , we know that 〈∇f(x),xk〉 = 〈∇f(x),v∗〉, which implies

‖x− v∗‖2

2λ−k
+ 〈∇f(x),v∗〉 ≤ ‖xk − x‖2 − ‖xk − v∗‖2

2λ−k
+ 〈∇f(x),v∗〉 (using (67))

=
‖xk − x‖2 − ε

2λ−k
+ 〈∇f(x),v∗〉 (‖xk − v∗‖ = ε)

<
‖xk − x‖2

2λ−k
+ 〈∇f(x),xk〉 , (ε > 0)

contradicting optimality of xk (64).

C.4 Connecting Shadow-steps to Away-steps

Lemma 4 (Away-Steps). Let P be a polytope defined as in (4) and fix x ∈ P . Let F = {z ∈ P :
AI(x)z = bI(x)} be the minimal face containing x. Further, choose δmax = max{δ : x−δdΠ

x ∈ P}
and consider the maximal backward away point ax = x − δmaxd

Π
x . Then, ax lies in F and the

corresponding away-direction is simply x− ax = δmaxd
Π
x .

We first recall this result from Bashiri and Zhang [3]:

Lemma 13 (Best away vertex, [3]). Let P be a polytope defined as in (4) and fix x ∈ P .
Let F = {z ∈ P : AI(x)z = bI(x)} be the minimal face containing x and define A :=
{v ∈ vert(P) : v ∈ F} to be the set of vertices in F . Also, let S(x) := {S : S ⊆
vert(P) | x is a proper convex combination of all the elements in S} be the set of all possible active
sets for x. Then,

max
v∈A
〈∇f(x),v〉 = max

S∈S(x)
max
v∈S
〈∇f(x),v〉 .

Proof. For the first direction, we claim that any S ∈ S(x) must be contained in A = vert(F). Let
S ∈ S(x). Then, we can write x =

∑
v∈S αvv, where αv ∈ (0, 1) and

∑
v∈S αv = 1. Fix y ∈ S

and let z := 1
1−αy

∑
v∈S\{y} αvv ∈ P . Then, x = αyy + (1 − αy)z. Now, if 〈ai,x〉 = bi, then

the fact that 〈ai, z〉 ≤ bi implies that 〈ai,y〉 = bi, so that y ∈ A.

Conversely, we claim that any v ∈ A lies in some S ∈ S(x). Let v ∈ A. Consider zα =
1

1−α (x − αv) for α ∈ (0, 1). First, if 〈ai,x〉 = bi (i.e. i ∈ I(x)), since we have 〈ai,v〉 = bi
by choice of v, it follows that 〈ai, zα〉 = bi. Otherwise, if 〈ai,x〉 < bi (i.e. i ∈ J(x)) then
limα↓0 〈ai, zα〉 = 〈ai,x〉 < bi. Thus, since we have a finite number of constraints, we can ensure
that 〈ai, zα∗〉 ≤ bi for all i ∈ J(x), where α∗ is sufficiently small. Thus, we have shown we can
write xt = (1 − α∗)zα∗ + α∗v, where zα∗ ∈ P . Therefore, there exists some active S ∈ S(xt)
containing v.

Proof of Lemma 4. First, if δmax = 0, then at = xt, and the result holds trivially. Now assume
that δmax > 0. By definition of dΠ

x , we know that AI(x)d
Π
x ≤ 0. Hence, since −dΠ

x is also feasible,
it follows that we must have AI(x)d

Π
x = 0. This then implies that AI(x)ax = AI(x)(x−δmaxd

Π
x) =

AI(x)x = bI(x). Thus, we have ax ∈ F . Moreover, in the proof of the previous lemma (Lemma 13),
we show that the vertices of F in fact form all possible away steps. The result then follows.

D Continuous-time Dynamics and SHADOW-WALK Algorithm

We now present the continuous-time dynamics for moving along the shadow of the gradient in
the polytope. In this section we let D∗ be the dual space of D (in our case since D ⊆ Rn, D∗
can also be identified with Rn). Let φ : D → R be a strongly convex and differentiable function.
This function will be used as the mirror-map in a generalization of projected gradient descent
algorithm, known as mirror descent [8]. Let φ∗ be the Fenchel-conjugate of φ with effective domain

29

P , that is φ∗(y) = maxx∈P {〈y,x〉 − φ(x)}. From Danskin’s theorem (see e.g., [29]), we know
that ∇φ∗(y) = arg maxx∈P {〈y,x〉 − φ(x)}, so that ∇φ∗ : D∗ → P is the mirror-map operator
mapping from D∗ to D. We use ∇2φ∗(·) to denote the Hessian of φ∗.

D.1 ODE for moving in the shadow of gradient

Let X(t) denote the continuous-time trajectory of our dynamics and Ẋ denote the time-derivative
of X(t), i.e., Ẋ(t) = d

dtX(t). In [30], Krichene et. al propose the following coupled dynamics
(X(t), Z(t)) for mirror descent, where X(t) evolves in the primal space D, and Z(t) evolves in the
dual space D∗, as follows, initialized with Z(0) = z0 with∇φ∗(z0) = x0 ∈ P :

Ż(t) = −∇f(X(t)), X(t) = ∇φ∗(Z(t)). (68)

This ODE corresponds to continuous time dynamics of projected gradient descent when φ = 1
2‖x‖

2

(and∇φ(x) = x). Let dφX(t) be the directional derivative with respect to the Bregman projections in
the mirror descent algorithm, i.e.,

dφX(t) = lim
ε↓0

∇φ∗(∇φ(X(t))− ε∇f(X(t)))−X(t)

ε
.

The continuous time dynamics of tracing the shadow are simply

Ẋ(t) = dφX(t). (69)

They solely operate in the primal space and one can initialize these with X(0) = x0 ∈ P and show
that they are equivalent to (68) under mild technical conditions:

Theorem 9. Let φ : D → R be a mirror map that is strongly convex and differentiable, and
assume that the directional derivative dφX(t) exists for all t ≥ 0. Then, the dynamics for mirror

descent (68) are equivalent to the shadow dynamics Ẋ(t) = dφX(t) with the same initial conditions
X(0) = x0 ∈ P .

Proof. Consider the dynamics given in (68). Using the chain rule we know that

Ẋ(t) =
d

dt
∇φ∗(Z(t)) =

〈
∇2φ∗(Z(t)), Ż(t)

〉
=
〈
∇2φ∗(Z(t)),−∇f(X(t))

〉
.

By definition, the directional derivative of∇φ∗ with respect to the direction −∇f(X(t)) is given by
(see for example [23])

∇2
−∇f(X(t))φ(Z(t)) := lim

ε↓0

∇φ∗(Z(t)− ε∇f(X(t)))−∇φ∗(Z(t))

ε
=
〈
∇2φ∗(Z(t)),−∇f(X(t))

〉
Hence, using this fact we have

Ẋ(t) =
〈
∇2φ∗(Z(t)),−∇f(X(t))

〉
= lim

ε↓0

∇φ∗(Z(t)− ε∇f(X(t)))−∇φ∗(Z(t))

ε

= lim
ε↓0

∇φ∗(Z(t)− ε∇f(X(t)))−X(t)

ε
(using ODE definition in (68))

Since φ is differentiable on the image of ∇φ∗, it is known that ∇φ = (∇φ∗)−1 (in particular, from
the duality of φ and φ∗ we know that x = ∇φ∗(x̃) if any only x̃ = ∇φ(x); see Theorem 23.5 in
[31]). Moreover, by definition of the mirror descent ODE given in (68), we have X(t) = ∇φ∗(Z(t)).
Using these facts we get Z(t) = (∇φ∗)−1(X(t)) = ∇φ(X(t)). Thus,

Ẋ(t) = lim
ε↓0

∇φ∗(∇φ(X(t))− ε∇f(X(t)))−X(t)

ε
= dφX(t)

which coincides with dynamics for moving in the shadow of the gradient given in (69).

30

Although the results of Theorem 9 hold for general mirror-maps, in this work we focus on the case
when φ = 1

2‖ · ‖
2 to exploit the piecewise linear structure of the shadow of the gradient proved in

Theorem 1. Note that when the mirror map φ = 1
2‖ · ‖

2, we have

∇φ∗(y) = arg max
x∈P

{〈y,x〉 − φ(x)} = arg min
x∈P

{
1

2
‖x‖ − 〈y,x〉

}
= arg min

x∈P

{
1

2
‖x‖2 +

1

2
‖y‖2 − 〈y,x〉

}
= arg min

x∈P

1

2
‖y − x‖2.

This implies

dφX(t) = lim
ε↓0

∇φ∗(X(t)− ε∇f(X(t)))−X(t)

ε
(∇φ(X(t)) = X(t))

= lim
ε↓0

arg minx∈P
1
2‖X(t)− ε∇f(X(t))− x‖2 −X(t)

ε
(using definition of∇φ∗)

= dΠ
X(t).

Therefore, Theorem 9 shows that the continuous-time dynamics of moving in the (Euclidean) shadow
of the gradient are equivalent to those of PGD.

D.2 Proof of Theorem 5

We now analyze the convergence rate continuous-time dynamics of moving in the Euclidean shadow
of the gradient:

Theorem 5. Let P ⊆ Rn be a polytope and suppose that f : P → R is differentiable and µ-strongly
convex over P . Consider the shadow dynamics Ẋ(t) = dΠ

X(t) with initial conditionsX(0) = x0 ∈ P .
Then for each t ≥ 0, we have X(t) ∈ P . Moreover, the primal gap h(X(t)) := f(X(t)) − f(x∗)
associated with the shadow dynamics decreases as: h(X(t)) ≤ e−2µth(x0).

Proof. First, the fact that X(t) ∈ P for all t ≥ 0 is guaranteed by the equivalence between the
dynamics of PGD (68) and shadow dynamics asserted in Theorem 5, which by construction satisfy
X(t) ∈ P for all t ≥ 0.

Now the proof for the convergence rate uses a Lyapunov argument, where we let h(X(t)) be our
Lyapunov potential function. Using the chain rule we have

dh(X(t))

dt
=
〈
∇f(X(t)), Ẋ(t)

〉
(70)

=
〈
∇f(X(t)),dΠ

X(t)

〉
(71)

= −‖dΠ
X(t)‖

2 (72)

≤ −2µh(X(t)), (73)

where we used the fact that Ẋ(t) = dΠ
X(t) in (71), the fact that

〈
−∇f(X(t)),dΠ

X(t)

〉
= ‖dΠ

X(t)‖
2

in (72), and finally the primal gap estimate (63) in (73).

Using Grönwall’s inequality [32] to integrate both sides of the above inequality we have∫ t

0

dh(X(t))

h(X(t))
≤
∫ t

0

−µdt =⇒ ln

(
h(X(t))

h(x0)

)
≤ −2µt,

which further implies h(X(t)) ≤ e−2µth(x0) as claimed.

D.3 Discretization and Analysis

Suppose we try to discretize the dynamics in (69) using a forward Euler approach (see for example
chapter 2 in [33]): xk+1 = xk + λkd

Π
xk

, where λk is the discretization parameter chosen in a way

31

Algorithm 5 SHADOW-WALK Algorithm (detailed)
Input: Polytope P ⊆ Rn, function f : P → R and initialization x0 ∈ P .
1: for t = 0,T do
2: Compute dΠ

xt
and let γmax

t = max{δ | x + δdΠ
xt
∈ P} . derivative of projection

3: Evaluate γt ∈ arg minγ∈[0,γmax
t] f(xt + γdΠ

xt
). . line-search along shadow

4: if γt = γmax
t then . boundary case

5: Update xt+1 := TRACE(xt,∇f(xt)) . . trace projection piecewise linear curve
6: else
7: Update xt+1 := xt + γtd

Π
xt

. . update using line-search
8: end if
9: end for

Return: xT+1

ensuring feasibility. We know from (8) that there exists a scalar λ− > 0 such that xk + λkd
Π
xk

is feasible whenever λk ≤ λ−. The problem is that λ− can be arbitrarily small, thus making it
impossible to show sufficient progress per iteration to obtain linear convergence. However, this is not
a problem when discretizing (68), since we can take unconstrained gradient descent steps in D∗ and
then map these unconstrained steps back to a feasible point in P by computing a Bregman projection.
The PGD algorithm is thus able to ‘wrap’ around the polytope, and avoid this phenomenon of being
restricted to small step sizes that feasible descent methods like CG variants inevitably run into.

This is a phenomenon similar to that in the Away-Step and Pairwise CG variants, where the maximum
step-size that one can take might not be big enough to show sufficient progress. In [10], the authors
overcome this problem by bounding the number of such ‘bad’ steps using dimension reduction
arguments crucially relying on the fact that these algorithms maintain their iterates as a convex
combination of vertices. However, unlike away-steps in CG variants, we consider dΠ

x as direction for
descent, which is independent from the vertices of P and thus eliminating the need to maintain active
sets for the iterates of the algorithm. We overcome these problematic cases by tracing the piecewise
linear curve of g(λ), which is guaranteed to be at least as good as PGD step, essentially using the
structure of projections to wrap around the polytope and ensure sufficient progress. We give a more
detailed algorithmic description (Algorithm 5) than the one included in the main body of the paper
for SHADOW-WALK.

We established the following guarantee in the main body of the paper:
Theorem 6. Let P ⊆ Rn be a polytope and suppose that f : P → R is L-smooth and µ-strongly
convex over P . Then the primal gap h(xt) := f(xt) − f(x∗) of the SHADOW WALK algorithm
decreases geometrically: h(xt+1) ≤

(
1− µ

L

)
h(xt) with each iteration of the SHADOW WALK

algorithm (assuming TRACE is a single step). Moreover, the number of oracle calls to shadow, in-face
direction and line-search oracles to obtain an ε-accurate solution is O

(
β Lµ log(1

ε)
)

, where β is the
maximum number of breakpoints of the parametric projections curve that the TRACE method visits.

To analyze the algorithm and prove the above theorem we need some preliminary results, which we
first state in the following subsection.

D.3.1 Preliminaries needed for the proof

Recall that x∗ = arg minx∈P f(x) denotes the constrained optimal solution. Consider an iterative
descent scheme of the form xt+1 = xt + γtdt. First, to obtain a measure of progress, consider the
smoothness inequality given in Section 2 with y← xt+1 and x← xt:

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2 (74)

= f(xt) + γt 〈∇f(xt),dt〉+
Lγ2

t

2
‖dt‖2 (75)

Let γmax
t = max{δ | x + δdt ∈ P}. Now consider the step-size γdt

:= 〈−∇f(xt),dt〉
L‖dxt‖2

minimizing
the RHS of the inequality above and suppose that γdt ≤ γmax

t . Then, plugging in γdt in (75) and
rearranging we have

h(xt)− h(xt+1) = f(xt)− f(xt+1) ≥ 〈−∇f(xt),dt〉2

2L‖dt‖2
. (76)

32

It is important to note that γdt is not the step-size we obtain from line-search. It is just used as means
to lower bound the progress obtained from the line-search step.

Another measure of optimality that we will use is the Wolfe Gap:

h(xt) := f(xt)− f(x∗) ≤ 〈−∇f(xt),x
∗ − xt〉 ≤ max

v∈P
〈−∇f(xt),v − xt〉 . (77)

where the first inequality uses the convexity of f .

Finally, we will invoke the following theorem in the global linear convergence proof of Theorem 7
and Theorem 6:

Theorem 10 (Theorem 5 in [34]). Consider the problem minx∈X f(x), where X ⊆ Rn is a convex
and compact domain, and f : X → R is L-smooth and µ-strongly convex over X . Further, consider
the projected gradient descent (PGD) algorithm with a fixed step-size of 1/L:

xt+1 := ΠX (xt −∇f(xt)/L). (78)

Then the primal gap h(xt) := f(xt)− f(x∗) of the PGD algorithm decreases geometrically:

h(xt+1) ≤
(

1− µ

L

)
h(xt) (79)

with each iteration of the PGD algorithm.

We now give a proof of this result for completeness. First, we need the following lemma for the
proof:

Lemma 14 (Lemma 1 in [34]). Let X ⊆ Rn be a convex and compact domain and suppose that
f : X → R is L-smooth and µ-strongly convex over X . For any x ∈ X and c ∈ R, define

D(x, c) := −2cmin
y∈X

{
〈∇f(x),y − x〉+

c

2
‖y − x‖2

}
.

Then, we have D(x, L) ≥ D(x, µ) for all x ∈ X .

Proof. Fix any x ∈ X . Therefore, by completing the square we have

D(x, c) = −min
y∈X

{
2c 〈∇f(x),y − x〉+ c2‖y − x‖2

}
= min

y∈X

{
‖∇f(x)‖2 − ‖∇f(x)‖2 − 2c 〈∇f(x),y − x〉 − c2‖y − x‖2

}
= ‖∇f(x)‖2 −min

y∈X
‖c(y − x) +∇f(x)‖2

= ‖∇f(x)‖2 − min
ȳ∈c(X−x)

‖ȳ +∇f(x)‖2,

where in the last equality we used the change of variables ȳ = c(y − x).

We claim that, since by definition µ ≤ L, we have µ(X −x) ⊆ L(X −x). Indeed, let z ∈ µ(X −x).
Then, z = µ(y−x) = L(µL (y−x)) for some y ∈ X . Since y−x ∈ X −x and 0 = x−x ∈ X −x,
it follows that µL (y − x) = µ

L (y − x) + (1− µ
L)0 ∈ X − x by the convexity of X − x and the fact

that µ ≤ L. Thus, we have z ∈ L(X − x) and the claim follows.

Now using this claim we have

D(x, L) = ‖∇f(x)‖2 − min
ȳ∈L(X−x)

‖ȳ +∇f(x)‖2

≥ ‖∇f(x)‖2 − min
ȳ∈µ(X−x)

‖ȳ +∇f(x)‖2 (using µ(X − x) ⊆ L(X − x))

= D(x, µ)

as desired.

33

Proof of Theorem 10. Let g(λ) = ΠP (x− λ∇f(x)) be the curve parameterized by the step-size
λ. Recall that by the proximal definition of the projection (see e.g., [23]) we have

g(1/L) = ΠX (xt −∇f(xt)/L) = arg min
y∈X

{
〈∇f(xt),y − xt〉+

L

2
‖y − xt‖2

}
. (80)

We can now show the (1− µ
L) rate of decrease as follows:

h(xt)− h(xt+1) = f(xt)− f(xt+1) (81)
= f(xt)− f(g(1/L)) (82)

≥ −
(
〈∇f(xt), g(1/L)− xt〉+

L

2
‖g(1/L)− xt‖2

)
(83)

= −min
y∈X

{
〈∇f(xt),y − xt〉+

L

2
‖y − xt‖2

}
(84)

=
1

2L

(
−2Lmin

y∈X

{
〈∇f(xt),y − xt〉+

L

2
‖y − xt‖2

})
(85)

≥ µ

L

(
−min

y∈X

{
〈∇f(xt),y − xt〉+

µ

2
‖y − xt‖2

})
(86)

=
µ

L

(
max
y∈X

{
〈−∇f(xt),y − xt〉 −

µ

2
‖y − xt‖2

})
(87)

≥ µ

L

(
〈−∇f(xt),x

∗ − xt〉 −
µ

2
‖x∗ − xt‖2

)
(88)

≥ µ

L
h(xt), (89)

where (83) follows from the smoothness inequality given in Section 2 applied with y← g(1/L) and
x← xt, (84) follows from the definition of g(1/L) given in (80), (86) follows from Lemma 14, (88)
follows from the fact that x∗ ∈ X , and finally (89) follows from the strong convexity inequality given
in Section 2 applied with y← x∗ and x← xt.

D.3.2 Proof of Theorem 6

Let γt be the step size chosen by line-search and γmax
t be the maximum step size that one can

move along our chosen direction dt while maintaining feasibility. In other words, γmax
t = max{δ |

xt + δdt ∈ P}. Finally, we also note from the previous section that γdt
= 〈−∇f(xt),dt〉

L‖dxt‖2
is the

step-size obtained from optimizing the smoothness inequality so that we get (76). In the algorithm, we
have dt = dΠ

xt
. We split the proof of convergence into two cases depending on whether γt < γmax

t
or not.

(a) Case 1: We have γt < γmax
t . In this case we can use the step-size γdt to lower bound the

progress even if γdt is not a feasible step size. To see this, note that the optimal solution of
the line-search step is in the interior of the interval [0, γmax

t]. Define xγ := xt + γdt. Then,
because f(xγ) is convex in γ, we know that minγ∈[0,γmax

t] f(xγ) = minγ≥0 f(xγ) and thus
minγ∈[0,γmax

t] f(xγ) = f(xt+1) ≤ f(xγ) for all γ ≥ 0. In particular, f(xt+1) ≤ f(xγdt
).

Hence, we can use (76) to bound the progress per iteration as follows:

h(xt)− h(xt+1) ≥
〈
−∇f(xt),d

Π
xt

〉2
2L‖dΠ

xt
‖2

(using (76))

≥ µ

L
h(xt) (using (63))

(b) Case 2: We have a boundary case: γt = γmax
t . This is a step where we run the

TRACE(xt,∇f(xt)) procedure. Now, by Theorem 8, we know that TRACE(xt,∇f(xt))
traces the whole curve of g(λ) = ΠP (xt−λ∇f(xt)). Since we are doing exact line-search,
we know that at the point xt+1 := TRACE(xt,∇f(xt)) we have f(xt+1) ≤ f(g(λ)) for all
λ > 0. In particular, f(xt+1) ≤ f(g(1/L)). Thus,

h(xt)− h(xt+1) = f(xt)− f(xt+1) ≥ f(xt)− f(g(1/L)),

34

Figure 4: Figure from Lacoste-Julien and Jaggi’s work [10] showing the pyramidal width δ of a
simple triangle domain as a function of the angle θ.

and hence we get the same rate (1− µ
L) of decrease as PGD with fixed step size 1/L using

Theorem 10.

The iteration complexity of the number of oracle calls stated in the theorem, now follows using the
above rate of decrease in the primal gap.

D.4 A note on the linear convergence rate

Although our linear convergence rate depends on the number of facet inequalities m, it eliminates the
dependence on the geometry of the domain that is needed in CG variants. For example, Jaggi and
Lacoste-Julien [10] prove a linear rate of

(
1− µ

L

(
δ
D

)2)
to get an ε−accurate solution for Away FW,

where δ is the pyramidal width of the domain. Now, consider the example in Figure 4 showing how
the pyramidal width δ of a simple triangle domain changes as the angle θ changes. In particular, the
pyramidal width will be arbitrarily small for small θ. However, note that the number of facets for this
triangle domain is m = 3, and the number of breakpoints of the projections curve β is not dependent
on the angle θ. Therefore, we smoothly interpolate between the

(
1− µ

L

)
rate for PGD and the rates

for CG variants (see Table 1 for a summary of these rates).

E Missing Proofs in Section 6

We give a more detailed algorithmic description (Algorithm 6) than the one included in the main
body of the paper for SHADOW-CG. Using our insights on descent directions, we propose using
Frank-Wolfe steps earlier in the algorithm, and use shadow steps more frequently towards the end of
the algorithm. Frank-Wolfe steps allow us to greedily skip a lot of facets by wrapping maximally over
the polytope (Lemma 4). Shadow steps operate as “optimal” away-steps (Lemma 4) thus reducing
zig-zagging phenomenon [10] close to the optimal solution. As the algorithm progresses, one can
expect Frank-Wolfe directions to become close to orthogonal to the negative gradient. However,
in this case the norm of the shadow also starts diminishing. Therefore, we make the choice of
Frank-Wolfe direction versus shadow steps by comparing the inner product of negative gradient with
normalized shadow direction and the Frank-Wolfe direction.

In line 7 of Algorithm 6, we choose the FW direction whenever
〈
−∇f(xt),d

Π
xt
/‖dΠ

xt
‖
〉
≤〈

−∇f(xt),d
FW
t

〉
. Recall from Lemma 3 that

〈
−∇f(x),dΠ

x /‖dΠ
x ‖
〉2 ≥ 〈−∇f(x),y/‖y‖〉2 for

any direction y that is feasible at x. With this choice criterion, we choose the FW direction whenever
it is sufficiently aligned with the gradient, which allows us to wrap around the polytope and also
obtain sufficient descent progress. This choice criterion will not be satisfied once FW starts to
zig-zag, at which point the algorithm will take shadow steps. We also note that we need to enter the
TRACE(xt,∇f(xt)) procedure only when we hit a boundary case when taking a shadow step, since
at this point we cannot guarantee sufficient progress as explained in Figure 1. Since FW steps allow
us to greedily skip a lot of facets by wrapping maximally over the polytope, we are able reduce the
number of iterations spent in the TRACE(xt,∇f(xt)) procedure.

35

Algorithm 6 Shadow Conditional Gradients (SHADOW-CG-detailed)
Input: Polytope P ⊆ Rn, function f : P → R,initialization x ∈ P and accuracy parameter ε.
1: for t = 0,T do
2: Let vt := arg minv∈P 〈∇f(xt),v〉 and dFW

t := vt − xt. . FW direction
3: if

〈
−∇f(xt),d

FW
t

〉
≤ ε then

4: return xt. . primal gap is small enough
5: end if
6: Compute dΠ

xt
:= limε↓0

ΠP (xt−ε∇f(xt))−xt

ε
. . derivative of projection

7: if
〈
−∇f(xt),

dΠ
xt

‖dΠ
xt
‖

〉
≤

〈
−∇f(xt),d

FW
t

〉
then . wrap-around using FW

8: dt := dFW
t and γmax

t = 1. . choose optimistic step
9: else

10: dt := dΠ
xt

and γmax
t = max{δ | xt + δdt ∈ P}. . choose pessimistic step

11: end if
12: γt ∈ arg minγ∈[0,γmax

t] f(xt + γdt). . line-search along chosen descent direction
13: if dt = dΠ

xt
and γt = γmax

t then
14: Update xt+1 := TRACE(xt,∇f(xt)) . . trace projection piecewise linear curve
15: else
16: Update xt+1 := xt + γtdt. . update using line search
17: end if
18: end for
Return: xT+1

E.1 Proof of Theorem 7

Theorem 7. Let P ⊆ Rn be a polytope with diameter D and suppose that f : P → R is L-smooth
and µ-strongly convex over P . Then, the primal gap h(xt) := f(xt) − f(x∗) of SHADOW-CG
decreases geometrically: h(xt+1) ≤

(
1− µ

LD2

)
h(xt), with each iteration of the SHADOW-CG

algorithm (assuming TRACE is a single step). Moreover, the number of shadow, in-face directions
and line oracle calls for an ε-accurate solution is O

(
(D2 + β)Lµ log(1

ε)
)

, where β is the number of
breakpoints of the parametric projections curve that the TRACE method visits.

Proof. Let γt be the step size chosen by line-search and γmax
t be the maximum step size that one can

move along our chosen direction dt while maintaining feasibility. In other words, γmax
t = max{δ |

xt + δdt ∈ P}. Finally, we also note from the previous section that γdt
= 〈−∇f(xt),dt〉

L‖dxt‖2
is the step

size obtained from optimizing the smoothness inequality so that we get (76). In the algorithm, we
have either have dt = dΠ

xt
or dt = dFW

t . We split the proof of convergence into two cases depending
on whether γt < γmax

t or not.

(a) Case 1: We have γt < γmax
t . In this case we can use the step size from γdt to lower bound

the progress even if γdt is not a feasible step size. To see this, note that the optimal solution of
the line-search step is in the interior of the interval [0, γmax

t]. Define xγ := xt + γdt. Then,
because f(xγ) is convex in γ, we know that minγ∈[0,γmax

t] f(xγ) = minγ≥0 f(xγ) and thus
minγ∈[0,γmax

t] f(xγ) = f(xt+1) ≤ f(xγ) for all γ ≥ 0. In particular, f(xt+1) ≤ f(xγdt
).

Hence, we can use (76) to bound the progress per iteration. We split this into two further
sub-cases depending on whether we take a FW step or a shadow step:

(i) First suppose that we take a shadow step so that dt = dΠ
xt

. Then we have

h(xt)− h(xt+1) ≥
〈
−∇f(xt),d

Π
xt

〉2
2L‖dΠ

xt
‖2

(using (76))

≥ µ

L
h(xt) (using (63)).

(ii) Now suppose that dt = dFW
t . Then we can bound the progress as follows:

h(xt)− h(xt+1) ≥
〈
−∇f(xt),d

FW
t

〉2
2L‖dFW

t ‖2
(using (76))

36

≥
〈
−∇f(xt),d

FW
t

〉2
2LD2

≥

〈
−∇f(xt),

dΠ
xt

‖dΠ
xt
‖

〉2

2LD2
(choice of descent step)

≥ µ

LD2
h(xt) (using (63)).

This shows the rate stated in the theorem.

(b) Case 2: We have a boundary case: γt = γmax
t . We further divide this case into two

sub-cases:

(i) First assume that γdt
≤ γmax

t so that the step size from smoothness is feasible. Then,
using the same argument as above we again have a worst-case geometric rate of
decrease of (1− µ

LD2).
(ii) Now assume γdt

> γmax
t . First suppose that we take a shadow step, i.e. dt = dΠ

xt
.

Then, in this step we run the TRACE(xt,∇f(xt)). Now, by Theorem 8, we know that
TRACE(xt,∇f(xt)) traces the whole curve of g(λ) = ΠP (xt − λ∇f(xt)). Since we
are doing exact line-search, we know that at the point xt+1 := TRACE(xt,∇f(xt))
we have f(xt+1) ≤ f(g(λ)) for all λ > 0. In particular, f(xt+1) ≤ f(g(1/L)). Thus,

h(xt)− h(xt+1) = f(xt)− f(xt+1) ≥ f(xt)− f(g(1/L)),

and hence we get the same rate (1− µ
L) of decrease as PGD with fixed step size 1/L

using Theorem 10.
(iii) Finally assume that γdt

> γmax
t and dt = dFW

t . Observe that γdt
=

〈−∇f(xt),d
FW
t 〉

L‖dFW
t ‖2 > γmax

t = 1 implies that
〈
−∇f(xt),d

FW
t

〉
≥ L‖dFW

t ‖22. Hence,
using the fact that γt = γmax

t in the smoothness inequality in (75), we have

h(xt)− h(xt+1) ≥
〈
−∇f(xt),d

FW
t

〉
− L

2
‖dFW

t ‖22

≥
〈
−∇f(xt),d

FW
t

〉
2

(using γdt
> γmax

t)

≥ h(xt)

2
(using Wolfe gap (77))

Hence, we get a geometric rate of decrease of 1/2.

The iteration complexity of the number of oracle calls stated in the theorem now follows using the
above rate of decrease in the primal gap.

F Computations

We implemented all algorithms in Python 3.5, utilizing numpy and scipy for some of our functions.
We used these packages from the Anaconda 4.7.12 distribution as well as Gurobi 9 [35] as a black
box solver for some of the oracles assumed in the paper. All experiments were performed on a
16-core machine with Intel Core i7-6600U 2.6-GHz CPUs and 256GB of main memory.

For the computations, we need to solve the following subproblems:

(i) Linear optimization (LO): Compute v = arg minx∈P 〈c,x〉 for any c ∈ Rn.

(ii) Shadow computation: Given any point x ∈ P and direction w ∈ Rn, compute dΠ
x (w).

(iii) Feasibility: Given any point x ∈ P and direction d ∈ Rn, evaluate γmax = max{δ :
x + δd ∈ P}.

(iv) Line-search: Given any point x ∈ P and direction d ∈ Rn, solve the one-dimensional
problem minγ∈[0,γmax] f(x + γd).

37

Algorithm 7 Tracing Parametric Projections Curve Approximately: TRACE-APP(x,∇f(x))

Input: Polytope P ⊆ Rn, function f : P → R and initialization x ∈ P .
1: Compute dΠ

x := limε↓0
ΠP (x−ε∇f(x))−x

ε
and let γmax = max{δ | x + δdΠ

x ∈ P}.
2: Let d = ∇f(x) and γ∗ ∈ arg minγ∈[0,γmax] f(x + γdΠ

x). . line-search along derivative
3: while γ∗ = γmax do
4: x = x + γmaxdΠ

x . Approximately obtain next segment in PW curve
5: Recompute dΠ

x := limε↓0
ΠP (x−εd)−x

ε
and let γmax = max{δ | x + δdΠ

x ∈ P}.
6: if dΠ

x = 0 then
7: break and return x . we reached endpoint of projections curve
8: end if
9: γ∗ ∈ arg minγ∈[0,γmax] f(x + γdΠ

x). . check optimality of line-search solution
10: end while
Return: x + γ∗dΠ

x

We elaborate on the implementation of the LO subproblems later on as it is dependent on the
application. For the shadow oracle, given any point x ∈ P and direction w ∈ Rn we solve the
problem dΠ

x (w) = arg mind{‖ − ∇f(x) − d‖2 : AI(x)d ≤ 0} using Gurobi. Moreover, for the
feasibility problem, given x ∈ P and descent direction d ∈ Rn, we compute the maximum step-size
ensuring feasibility as follows:

γmax = min
j∈J(x):
〈aj ,d〉>0

bj − 〈aj ,x〉
〈aj ,d〉

, (90)

where the feasible set of the above problem is non-empty, since otherwise this would imply that d is
a recessive direction (i.e. direction of unboundedness), contradicting the fact that P is a polytope. We
consider polytopes with a polynomial number of constraints, and hence (90) can be efficiently solved.
For the line-search sub-problem, we utilize a bracketing method8 for line search (see, for example
[23]). Finally, regarding the TRACE procedure used in the computations, we consider a preliminary
approximate TRACE procedure TRACE-APP(x,∇f(x)) that excludes the in-face trace steps. The
exact implementation we use is given in Algorithm 7.

F.1 Video Co-localization

The first application we consider is the video co-localization problem from computer vision, where
the goal is to track an object across different video frames. We used the YouTube-Objects dataset9

and the problem formulation of Joulin et. al [5]. This consists of minimizing a quadratic function
f(x) = 1

2x
TAx + bTx, where x ∈ R660, A ∈ R660×660 and b ∈ R660, over a flow polytope, the

convex hull of paths in a network. Our linear minimization oracle over the flow polytope amounts
to computing a shortest path in the corresponding directed acyclic graph. We now present the
computational results in Figure 5.

We find that SHADOW-CG has a lower iteration count than other CG variants DICG, AFW and
PFW (slightly higher than PGD) for this experiment. Without assuming oracle access, SHADOW-CG
improves on the wall-clock time compared to PGD (i.e., close to CG). Moreover, we also find that
assuming access to shadow oracle, the SHADOW-CG algorithm outperforms the CG variants both in
iteration count and wall-clock time. For completeness, we also compare these different algorithms
with respect to the duality gap 〈−∇f(xt),vt − xt〉 (77) in Figure 6.

8We specifically use golden-section search that iteratively reduces the interval locating the minimum.
9We obtained the data from https://github.com/Simon-Lacoste-Julien/linearFW.

38

https://github.com/Simon-Lacoste-Julien/ linearFW

Figure 5: Optimality gap for the video co-localization problem: Away-step FW (AFW) [10], pairwise
FW (PFW) [10], decomposition-invariant CG (DICG) [16], SHADOW-WALK (Algorithm 1), and
SHADOW-CG (Algorithm 2). Left plot compares iteration count, middle and right plots compare
wall-clock time with and without access to shadow oracle. We removed the PGD from the rightmost
plot for a better comparison of other algorithms as it takes significantly more time due to the projection
step and thus skews the plot.

Figure 6: Duality gap for the video co-localization problem: Away-step FW (AFW) [10], pairwise
FW (PFW) [10], decomposition-invariant CG (DICG) [16], SHADOW-WALK (Algorithm 1), and
SHADOW-CG (Algorithm 2). Left plot compares iteration count, middle and right plots compare
wall-clock time with and without access to shadow oracle. We removed the PGD from the rightmost
plot for a better comparison of other algorithms as it takes significantly more time due to the projection
step and thus skews the plot.

Figure 7: Left: Comparing the number of shadow oracles calls made per iteration in the video co-
localization problem, by SHADOW-WALK (goes upto 10) and SHADOW-CG (goes upto 4 iterations)
in the Lasso regression problem. Right: Comparing the cumulative number of shadow steps taken,
where the FW steps in SHADOW-CG cause a significant reduction in the number of shadow steps
taken compared to the SHADOW-WALK algorithm. Each iteration of SHADOW-CG requires a single
computation of the shadow to evaluation condition for selecting FW or shadow step. Instead, we only
plot the shadow steps actually taken by each of the algorithms.

F.2 Lasso Regression

The second application we consider is the Lasso regression problem, i.e. `1−regularized least squares
regression. This consists of minimizing a quadratic function f(x) = ‖Ax− b‖ over a scaled `1−
ball. We considered a random Gaussian matrix A ∈ R50×100 and a noisy measurement b = Ax∗

with x∗ being a sparse vector with 25 entries ±1, and some additive noise. Linear minimization over

39

Figure 8: Optimality gaps for the Lasso regression problem: Away-step FW (AFW) [10], pairwise
FW (PFW) [10], decomposition-invariant CG (DICG) [16], SHADOW-WALK (Algorithm 1), and
SHADOW-CG (Algorithm 2). Left plot compares iteration count, middle and right plots compare
wall-clock time with and without access to shadow oracle.

Figure 9: Duality gaps for the Lasso regression problem: Away-step FW (AFW) [10], pairwise
FW (PFW) [10], decomposition-invariant CG (DICG) [16], SHADOW-WALK (Algorithm 1), and
SHADOW-CG (Algorithm 2). Left plot compares iteration count, middle and right plots compare
wall-clock time with and without access to shadow oracle.

Figure 10: Left: Comparing the number of shadow oracles calls made per iteration in the Lasso
regression problem by SHADOW-WALK (goes upto 10) and SHADOW-CG (goes upto 3 iterations) in
the Lasso regression problem. Right: Comparing the cummulative number of shadow steps taken,
where the FW steps in SHADOW-CG cause a significant reduction in the number of shadow steps
taken compared to the SHADOW-WALK algorithm. Each iteration of SHADOW-CG requires a single
computation of the shadow to evaluation condition for selecting FW or shadow step. Instead, we only
plot the shadow steps actually taken by each of the algorithms.

the `1−ball, simply amounts to selecting the column of A with best inner product with the residual
vector Ax− b.

We present its computational results in Figure 8. In these experiments, we observe that SHADOW-
WALK algorithm is superior in iteration count and outperforms all other CG variants. Moreover,
SHADOW-CG, SHADOW-CG has a significantly lower iteration count than AFW as expected. In
addition, assuming access to a shadow oracle, both the SHADOW-WALK and SHADOW-CG algorithm
have improvements over CG variants both in iteration count and wall-clock time. For completeness,
we also compare these different algorithms with respect to the duality gap 〈−∇f(xt),vt − xt〉 (77)
in Figure 9.

Finally, we demonstrate computationally that the number of iterations spent in the TRACE procedure
is a lot better than the worst-case bound we prove in Theorem 8 by looking at the number of oracles
calls made by the SHADOW CG and SHADOW-WALK algorithms per iteration. In particular, we find

40

that the number of shadow oracle calls made per iteration by the SHADOW CG algorithm is smaller
than the number of calls made by the SHADOW-WALK algorithm, which in turn implies that SHADOW
CG spends a smaller number of iterations in the TRACE procedure as expected. Moreover, we also
find that the addition of FW steps causes the SHADOW CG algorithm to take a significantly smaller
number of shadow steps than SHADOW-WALK does. This behavior is demonstrated in Figures 7 and
10 corresponding to the two experiments. Note that both algorithms have to make at least one call
to a shadow oracle every iteration, however the SHADOW CG algorithm has the flexibility of not
actually taking a shadow step and choosing to take a FW step instead, in which case the orange curve
in the right plot of Figures 7 and 10 remains flat, and hence the step-wise structure of the curve.

F.3 A Smaller Lasso Regression Instance

To distinguish between the algorithms further and highlight the theoretical aspects presented in this
paper, we consider a smaller instance of the same Lasso regression problem given in previous section:
we now consider a smaller random Gaussian matrix A ∈ R40×60 and a noisy measurement b = Ax∗

with x∗ being a sparse vector with 15 entries ±1, and some additive noise. We present the results in
Figures 11 and 12.

Our findings regarding the iteration count and wall-clock time of the different algorithms are the same
as the previous Lasso regression instance. We now focus on the difference between the SHADOW
CG and SHADOW-WALK algorithms in terms of the number of shadow steps taken and number of
calls made to shadow oracles in more details. First, we find that the SHADOW CG algorithms takes
FW steps only at the end when the FW directions start to become more orthogonal to the gradient.
This behavior is now more pronounced in Figure 13. Moreover, we again find that the number of
shadow oracle calls made per iteration by the SHADOW CG algorithm is smaller than the number of
calls made by the SHADOW-WALK algorithm. Finally, upon comparing the cumulative number of
shadow steps taken, we see that the curve for the SHADOW-WALK algorithm given in the right plot of
Figure 13 is concave-like. This implies that the SHADOW-WALK algorithm spends a bigger number
of iterations in the TRACE procedure in the beginning as it wants to wrap around the polytope. On the
other hand, we see that the curve for the SHADOW-CG algorithm in Figure 13 is a step-wise curve
where we only take shadow steps in the end; these steps essentially serve as optimal away-steps that
help us overcome zig-zagging.

Figure 11: Optimality gaps for the smaller Lasso regression instance: Away-step FW (AFW) [10],
pairwise FW (PFW) [10], decomposition-invariant CG (DICG) [16], SHADOW-WALK (Algorithm 1),
and SHADOW-CG (Algorithm 2) Left plot compares iteration count, middle and right plots compare
wall-clock time with and without access to shadow oracle.

41

Figure 12: Duality gaps for the smaller Lasso regression instance: Away-step FW (AFW) [10],
pairwise FW (PFW) [10], decomposition-invariant CG (DICG) [16], SHADOW-WALK (Algorithm 1),
and SHADOW-CG (Algorithm 2). Left plot compares iteration count, middle and right plots compare
wall-clock time with and without access to shadow oracle.

Figure 13: Left: Comparing the number of shadow oracles calls made per iteration in the smaller
Lasso regression instance by SHADOW-WALK (goes upto 4) and SHADOW-CG (goes upto 2 iterations)
in the the smaller Lasso regression instance. Right: Comparing the cummulative number of shadow
steps taken, where the FW steps in SHADOW-CG cause a significant reduction in the number of
shadow steps taken compared to the SHADOW-WALK algorithm. Each iteration of SHADOW-CG
requires a single computation of the shadow to evaluation condition for selecting FW or shadow step.
Instead, we only plot the shadow steps actually taken by each of the algorithms.

42

	Introduction
	Preliminaries
	Structure of the Parametric Projections Curve
	Descent Directions
	Shadow-Walk and Continuous-time Dynamics
	ODE for moving in the shadow of gradient
	Shadow-Walk Method

	Shadow Conditional Gradient Method
	Computations
	Broader Impact
	Acknowledgements
	Related Work
	Missing Proofs and Results for Section 3
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Theorem 3
	Number of Breakpoints in the Projections Curve

	Missing Proofs for Section 4 on Descent Directions
	Proof of Lemma 3
	Using the derivative of the projection operator to estimate primal gaps
	Relating projections to FW vertices
	Connecting Shadow-steps to Away-steps

	Continuous-time Dynamics and Shadow-Walk Algorithm
	ODE for moving in the shadow of gradient
	Proof of Theorem 5
	Discretization and Analysis
	Preliminaries needed for the proof
	Proof of Theorem 6

	A note on the linear convergence rate

	Missing Proofs in Section 6
	Proof of Theorem 7

	Computations
	Video Co-localization
	Lasso Regression
	A Smaller Lasso Regression Instance

