
Supplementary Material

A Proofs

A.1 Theorem 1’s Proof

Theorem 1. We consider a simplified scenario, where a multinomial random variable y follows a
K-class categorical distribution: y ∼ Cal(p), the class probabilities p follow a Dirichlet distribution:
p ∼ Dir(α), and α refer to the Dirichlet parameters. Given a total Dirichlet strength S =

∑K
i=1 αi,

for any opinion ω on a multinomial random variable y, we have
1. General relations on all prediction scenarios.

(a) uv + udiss ≤ 1; (b) uv > uepis.

2. Special relations on the OOD and the CP.

(a) For an OOD sample with a uniform prediction (i.e., α = [1, . . . , 1]), we have
1 = uv = uen > ualea > uepis > udiss = 0

(b) For an in-distribution sample with a conflicting prediction (i.e., α = [α1, . . . , αK ] with
α1 = α2 = · · · = αK , if S →∞), we have

uen = 1, lim
S→∞

udiss = lim
S→∞

ualea = 1, lim
S→∞

uv = lim
S→∞

uepis = 0

with uen > ualea > udiss > uv > uepis.

Interpretation. Theorem 1.1 (a) implies that increases in both uncertainty types may not happen at
the same time. A higher vacuity leads to a lower dissonance, and vice versa (a higher dissonance
leads to a lower vacuity). This indicates that a high dissonance only occurs only when a large amount
of evidence is available and the vacuity is low. Theorem 1.1 (b) shows relationships between vacuity
and epistemic uncertainty in which vacuity is an upper bound of epistemic uncertainty. Although
some existing approaches [5, 17] treat epistemic uncertainty the same as vacuity, it is not necessarily
true except for an extreme case where a sufficiently large amount of evidence available, making
vacuity close to zero. Theorem 1.2 (a) and (b) explain how entropy differs from vacuity and/or
dissonance. We observe that entropy is 1 when either vacuity or dissonance is 0. This implies that
entropy cannot distinguish different types of uncertainty due to different root causes. For example,
a high entropy is observed when an example is an either OOD or misclassified example. Similarly,
a high aleatoric uncertainty value and a low epistemic uncertainty value are observed under both
cases. However, vacuity and dissonance can capture different causes of uncertainty due to lack of
information and knowledge and to conflicting evidence, respectively. For example, an OOD objects
typically show a high vacuity value and a low dissonance value while a conflicting prediction exhibits
a low vacuity and a high dissonance.

Proof. 1. (a) Let the opinion ω = [b1, . . . , bK , uv], where K is the number of classes, bi is the belief
for class i, uv is the uncertainty mass (vacuity), and

∑K
i=1 bi + uv = 1. Dissonance has a upper

bound with

udiss =

K∑
i=1

(bi∑K
j=1,j 6=i bjBal(bi, bj)∑K

j=1,j 6=i bj

)
(1)

≤
K∑
i=1

(bi∑K
j=1,j 6=i bj∑K
j=1,j 6=i bj

)
, (since 0 ≤ Bal(bi, bj) ≤ 1)

=

K∑
i=1

bi,
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where Bal(bi, bj) is the relative mass balance, then we have

uv + udiss ≤
K∑
i=1

bi + uv = 1. (2)

1. (b) For the multinomial random variable y, we have

y ∼ Cal(p), p ∼ Dir(α), (3)

where Cal(p) is the categorical distribution and Dir(α) is Dirichlet distribution. Then we have

Prob(y|α) =

∫
Prob(y|p)Prob(p|α)dp, (4)

and the epistemic uncertainty is estimated by mutual information,

I[y,p|α] = H
[
EProb(p|α)[P (y|p)]

]
− EProb(p|α)

[
H[P (y|p)]

]
. (5)

Now we consider another measure of ensemble diversity: Expected Pairwise KL-Divergence between
each model in the ensemble. Here the expected pairwise KL-Divergence between two independent
distributions, including P (y|p1) and P (y|p2), where p1 and p2 are two independent samples from
Prob(p|α), can be computed,

K[y,p|α] = EProb(p1|αProb(p2|α)

[
KL[P (y|p1)‖P (y|p2)]

]
(6)

= −
K∑
i=1

EProb(p1|α)[P (y|p1)]EProb(p2|α)[lnP (y|p2)]− EProb(p|α)

[
H[P (y|p)]

]
≥ I[y,p|α],

where I[y,p1|α] = I[y,p2|α]. We consider Dirichlet ensemble, the Expected Pairwise KL Diver-
gence,

K[y,p|α] = −
K∑
i=1

αi
S

(
ψ(αi)− ψ(S)

)
−

K∑
i=1

−αi
S

(
ψ(αi + 1)− ψ(S + 1)

)
=

K − 1

S
, (7)

where S =
∑K
i=1 αi and ψ(·) is the digamma Function, which is the derivative of the natural

logarithm of the gamma function. Now we obtain the relations between vacuity and epistemic,

K

S︸︷︷︸
Vacuity

> K[y,p|α] =
K − 1

S
≥ I[y,p|α]︸ ︷︷ ︸

Epistemic

. (8)

2. (a) For an out-of-distribution sample, α = [1, . . . , 1], the vacuity can be calculated as

uv =
K∑K
i=1 αi

=
K

K
= 1, (9)

and the belief mass bi = (αi − 1)/
∑K
i=1 αi = 0, we estimate dissonance,

udiss =

K∑
i=1

(bi∑K
j=1,j 6=i bjBal(bi, bj)∑K

j=1,j 6=i bj

)
= 0. (10)

Given the expected probability p̂ = [1/K, . . . , 1/K]>, the entropy is calculated based on logK ,

uen = H[p̂] = −
K∑
i=1

p̂i logK p̂i = −
K∑
i=1

1

K
logK

1

K
= logK

1

K

−1
= logK K = 1, (11)
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where H(·) is the entropy. Based on Dirichlet distribution, the aleatoric uncertainty refers to the
expected entropy,

ualea = Ep∼Dir(α)[H[p]] (12)

= −
K∑
i=1

Γ(S)∏K
i=1 Γ(αi)

∫
SK

pi logK pi

K∏
i=1

pαi−1
i dp

= − 1

lnK

K∑
i=1

Γ(S)∏K
i=1 Γ(αi)

∫
SK

pi ln pi

K∏
i=1

pαi−1
i dp

= − 1

lnK

K∑
i=1

αi
S

Γ(S + 1)

Γ(αi + 1)
∏K
i0=1, 6=i Γ(αi0)

∫
SK

pαi
i ln pi

K∏
i0=1,6=i

p
αi0−1
i0 dp

=
1

lnK

K∑
i=1

αi
S

(
ψ(S + 1)− ψ(αi + 1)

)
=

1

lnK

K∑
i=1

1

K
(ψ(K + 1)− ψ(2))

=
1

lnK
(ψ(K + 1)− ψ(2))

=
1

lnK
(ψ(2) +

K∑
k=2

1

k
− ψ(2))

=
1

lnK

K∑
k=2

1

k
<

1

lnK
lnK = 1,

where S =
∑K
i=1 αi, p = [p1, . . . , pK ]>, and K ≥ 2 is the number of category. The epistemic

uncertainty can be calculated via the mutual information,

uepis = H[Ep∼Dir(α)[p]]− Ep∼Dir(α)[H[p]] (13)
= H[p̂]− ualea

= 1− 1

lnK

K∑
k=2

1

k
< 1.

To compare aleatoric uncertainty with epistemic uncertainty, we first prove that aleatoric uncertainty
(Eq. (13)) is monotonically increasing and converging to 1 as K increases. Based on Lemma 1, we
have (

ln(K + 1)− lnK
) K∑
k=2

1

k
<

lnK

K + 1

⇒ ln(K + 1)

K∑
k=2

1

k
< lnK

( K∑
k=2

1

k
+

1

K + 1

)
= lnK

K+1∑
k=2

1

k

⇒ 1

lnK

K∑
k=2

1

k
<

1

ln(K + 1)

K+1∑
k=2

1

k
. (14)

Based on Eq. (14) and Eq. (13), we prove that aleatoric uncertainty is monotonically increasing with
respect to K. So the minimum aleatoric can be shown to be 1

ln 2
1
2 , when K = 2.

Similarly, for epistemic uncertainty, which is monotonically decreasing as K increases based on
Lemma 1, the maximum epistemic can be shown to be 1− 1

ln 2
1
2 when K = 2. Then we have,

ualea ≥
1

ln 2

1

2
> 1− 1

2 ln 2
≥ uepis (15)

Therefore, we prove that 1 = uv = uen > ualea > uepis > udiss = 0.
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2. (b) For a conflicting prediction, i.e., α = [α1, . . . , αK ], with α1 = α2 = · · · = αK = C, and S =∑K
i=1 αi = CK, the expected probability p̂ = [1/K, . . . , 1/K]>, the belief mass bi = (αi − 1)/S,

and the vacuity can be calculated as

uv =
K

S

S→∞−−−−→ 0, (16)

and the dissonance can be calculated as

udiss =

K∑
i=1

(bi∑K
j=1,j 6=i bjBal(bi, bj)∑K

j=1,j 6=i bj

)
=

K∑
i=1

bi (17)

=

K∑
i=1

(
ai − 1∑K
i=1 ai

)

=

∑K
i=1 ai − k∑K
i=1 ai

= 1− K

S

S→∞−−−−→ 1.

Given the expected probability p̂ = [1/K, . . . , 1/K]>, the entropy can be calculated based on
Dirichlet distribution,

uen = H[p̂] =

K∑
i=1

p̂i logK p̂i = 1, (18)

and the aleatoric uncertainty is estimated as the expected entropy,

ualea = Ep∼Dir(α)[H[p]] (19)

= −
K∑
i=1

Γ(S)∏K
i=1 Γ(αi)

∫
SK

pi logK pi

K∏
i=1

pαi−1
i dp

= − 1

lnK

K∑
i=1

Γ(S)∏K
i=1 Γ(αi)

∫
SK

pi ln pi

K∏
i=1

pαi−1
i dp

= − 1

lnK

K∑
i=1

αi
S

Γ(S + 1)

Γ(αi + 1)
∏K
i0=1, 6=i Γ(αi0)

∫
SK

pαi
i ln pi

K∏
i0=1,6=i

p
αi0−1
i0 dp

=
1

lnK

K∑
i=1

αi
S

(
ψ(S + 1)− ψ(αi + 1)

)
=

1

lnK

K∑
i=1

1

K
(ψ(S + 1)− ψ(C + 1))

=
1

lnK
(ψ(S + 1)− ψ(C + 1))

=
1

lnK
(ψ(C + 1) +

S∑
k=C+1

1

k
− ψ(C + 1))

=
1

lnK

S∑
k=C+1

1

k

S→∞−−−−→ 1.

The epistemic uncertainty can be calculated via mutual information,

uepis = H[Ep∼Dir(α)[p]]− Ep∼Dir(α)[H[p]] (20)
= H[p̂]− ualea

= 1− 1

lnK

S∑
k=C+1

1

k

S→∞−−−−→ 0.

4



Now we compare aleatoric uncertainty with vacuity,

ualea =
1

ln K

SX

k= C +1

1
k

(21)

=
1

ln K

CKX

k= C +1

1
k

=
ln(CK + 1) � ln(C + 1)

ln K

=
ln(K � K � 1

C +1 )

ln K

>
ln(K � K � 1

2 )
ln K

=
ln(4=K + 4=K + 1=2)

ln K

�
ln[3(4=K + 4=K + 1=2)

1
3 ]

ln K

=
ln 3 + 1

3 ln( K 2

32 )
ln K

=
ln 3 + 2

3 ln K � 1
3 ln 32

ln K
>

2
3

:

Based on Eq. (22), whenC > 3
2 , we have

ualea >
2
3

>
1
C

= uv (22)

We have already proved thatuv > u epis , whenuen = 1 , we haveualea > u diss Therefore, we prove
thatuen > u alea > u diss > u v > u epis with uen = 1 ; udiss ! 1; ualea ! 1; uv ! 0; uepis !
0

Lemma 1. For all integerN � 2, we have
P N

n =2
1
n < ln N

(N +1) ln( N +1
N )

.

Proof. We will prove by induction that, for all integerN � 2,

NX

n =2

1
n

<
ln N

(N + 1) ln( N +1
N )

: (23)

Base case: WhenN = 2 , we have1
2 < ln 2

3 ln 3
2

and Eq. (23) is true forN = 2 .

Induction step: Let the integerK � 2 is given and suppose Eq. (23) is true forN = K , then

K +1X

k=2

1
k

=
1

K + 1
+

KX

k=2

1
k

<
1

K + 1
+

ln K
(K + 1) ln( K +1

K )
=

ln(K + 1)
(K + 1) ln( K +1

K )
: (24)

Denote thatg(x) = ( x + 1) ln( x +1
x ) with x > 2. We get its derivative,g0(x) = ln(1 + 1

x ) � 1
x < 0,

such thatg(x) is monotonically decreasing, which results ing(K ) > g (K + 1) . Based on Eq.(24)
we have,

K +1X

k=2

1
k

<
ln(K + 1)

g(K )
<

ln(K + 1)
g(K + 1)

=
ln(K + 1)

(K + 2) ln( K +2
K +1 )

: (25)

Thus, Eq. (23) holds forN = K + 1 , and the proof of the induction step is complete.

Conclusion: By the principle of induction, Eq. (23) is true for all integerN � 2.
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A.2 Proposition 1's Proof

Proposition 1. GivenL training nodes, for any testing nodesi and j , let d i = [ di 1; : : : ; diL ] is
the graph distances from nodesi to training nodes, andd j = [ dj 1; : : : ; djL ] is the graph distances
from nodesj to training nodes, wheredil is the node-level distance between nodesi andl. If for all
l 2 f 1; : : : ; Lg, dil � djl , then we have

ûv i � ûv j

whereûv i andûv j are vacuity uncertainties estimated of nodesi andj based on GKDE.

Interpretation . From the above proposition, if a testing node is too distant (far away) from training
nodes, the vacuity increases, indicating that an OOD node is expected to have a high vacuity value.

Proof. Let y = [ y1; : : : ; yL ] be the label vector for training nodes. Based on GKDE, the
evidence contribution for the nodei and a training nodel 2 f 1; : : : ; L jg is h(yl ; dil ) =
[h1(yl ; dil ); : : : ; hK (yl ; dil )], where

hk (yl ; dil ) =

(
0 yl 6= k
g(dil ) = 1

�
p

2�
exp(� dil

2

2� 2 ) yl = k
; (26)

and the prior evidence can be estimated based GKDE:

êi =
LX

m =1

KX

k=1

hk (yl ; dil ); (27)

whereêi = [ ei 1; :::; eiK ]. Since each training node only contributes the same evidence based on its
label based on Eq. (26), the total evidence is estimated by all the contributing evidence as

KX

k=1

eik =
LX

m =1

1

�
p

2�
exp(�

dil
2

2� 2 );
KX

k=1

ejk =
LX

m =1

1

�
p

2�
exp(�

djl
2

2� 2 ); (28)

where the vacuity values for nodei and nodej based on GKDE are,

ûv i =
K

P K
k=1 eik + K

; ûv j =
K

P K
k=1 ejk + K

: (29)

Now, we prove Eq. (29) above. Ifdil � djl for 8l 2 f 1; : : : ; Lg, we have

KX

k=1

eik =
LX

m =1

1

�
p

2�
exp(�

dil
2

2� 2 ) (30)

�
LX

m =1

1

�
p

2�
exp(�

djl
2

2� 2 )

=
KX

k=1

ejk ;

such that

ûv i =
K

P K
k=1 eik + K

�
K

P K
k=1 ejk + K

= ûv j : (31)
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B Additional Experimental Details

B.1 Source code

The source code and datasets are accessible at https://github.com/zxj32/uncertainty-GNN

B.2 Description of Datasets

Table 1: Description of datasets and their experimental setup for the node classi�cation prediction.

Cora Citeseer Pubmed Co. Physics Ama.Computer Ama.Photo

#Nodes 2,708 3,327 19,717 34, 493 13, 381 7, 487
#Edges 5,429 4,732 44,338 282, 455 259, 159 126, 530
#Classes 7 6 3 5 10 8
#Features 1,433 3,703 500 8,415 767 745
#Training nodes 140 120 60 100 200 160
#Validation nodes 500 500 500 500 500 500
#Test nodes 1,000 1,000 1,000 1000 1,000 1000

Cora, Citeseer, and Pubmed[16]: These are citation network datasets, where each network is a
directed network in which a node represents a document and an edge is a citation link, meaning
that there exists an edge whenA document citesB document, or vice-versa with a direction. Each
node's feature vector contains a bag-of-words representation of a document. For simplicity, we don't
discriminate the direction of links and treat citation links as undirected edges and construct a binary,
symmetric adjacency matrixA . Each node is labeled with the class to which it belongs.

Coauthor Physics, Amazon Computers, and Amazon Photo[18]: Coauthor Physics is the dataset
for co-authorship graphs based on the Microsoft Academic Graph from the KDD Cup 2016 Chal-
lenge1. In the graphs, a node is an author and an edge exists when two authors co-author a paper. A
node's features represent the keywords of its papers and the node's class label indicates its most active
�eld of study. Amazon Computers and Amazon Photo are the segments of an Amazon co-purchase
graph [13], where a node is a good (i.e., product), an edge exists when two goods are frequently
bought together. A node's features are bag-of-words representation of product reviews and the node's
class label is the product category.

For all the used datasets, we deal with undirected graphs with 20 training nodes for each category.
We chose the same dataset splits as in [21] with an additional validation node set of 500 labeled
examples for the hyperparameter obtained from the citation datasets, and followed the same dataset
splits in [18] for Coauthor Physics, Amazon Computer, and Amazon Photo datasets, for the fair
comparison2.

Metric : We used the following metrics for our experiments:

� Area Under Receiver Operating Characteristics (AUROC): AUROC shows the area under the
curve where FPR (false positive rate) is inx-axis and TPR (true positive rate) is iny-axis. It can be
interpreted as the probability that a positive example is assigned a higher detection score than a
negative example[1]. A perfect detector corresponds to an AUROC score of 100%.

� Area Under Precision-Prediction Curve (AUPR): The PR curve is a graph showing the preci-
sion=TP/(TP+FP) and recall=TP/(TP+FN) against each other,and AUPR denotes the area under
the precision-recall curve. The ideal case is when Precision is 1 and Recall is 1.

B.3 Experimental Setup for Out-of-Distribution (OOD) Detection

For OOD detection on semi-supervised node classi�cation, we randomly selected 1-4 categories
as OOD categories and trained the models only based on training nodes of the other categories. In
this setting, we still trained a model for semi-supervised node classi�cation task, but only part of
node categories were not used for training. Hence, we suppose that our model only outputs partial
categories (as we don't know the OOD category), see Table 2. For example, Cora dataset, we trained

1KDD Cup 2016 Dataset: Online Available athttps://kddcup2016.azurewebsites.net/
2The source code and datasets are accessible at https://github.com/zxj32/uncertainty-GNN
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the model with 80 nodes (20 nodes for each category) with the predictions of 4 categories. Positive
ratio is the ratio of out-of-distribution nodes among on all test nodes.

Table 2: Description of datasets and their experimental setup for the OOD detection.

Dataset Cora Citeseer Pubmed Co.Physics Ama.Computer Ama.Photo

Number of training categories 4 3 2 3 5 4
Training nodes 80 60 40 60 100 80
Test nodes 1000 1000 1000 1000 1000 1000
Positive ratio 38% 55% 40.4% 45.1% 48.1% 51.1%

B.4 Baseline Setting

In experiment part, we considered 4 baselines. For GCN, we used the same hyper-parameters as [9].
For EDL-GCN, we used the same hyper-parameters as GCN, and replaced softmax layer to activation
layer (Relu) with squares loss [17]. For DPN-GCN, we used the same hyper-parameters as GCN,
and changed the softmax layer to activation layer (exponential). Note that as we can not generate
OOD node, we only used in-distribution loss of (see Eq.12 in [12]) and ignored the OOD part loss.
For Drop-GCN, we used the same hyper-parameters as GCN, and set Monte Carlo sampling times
M = 100, dropout rate equal to 0.5.

B.5 Time Complexity Analysis

S-BGCN has a similar time complexity with GCN while S-BGCN-T has the double complexity of
GCN. For a given network wherejVj is the number of nodes,jEj is the number of edges,C is the
number of dimensions of the input feature vector for every node,F is the number of features for the
output layer, andM is Monte Carlo sampling times.

Table 3: Big-O time complexity of our method and baseline GCN.

Dataset GCN S-GCN S-BGCN S-BGCN-T S-BGCN-T-K

Time Complexity (Train) O(jEjCF ) O(jEjCF ) O(2jEjCF ) O(2jEjCF ) O(2jEjCF )
Time Complexity (Test) O(jEjCF ) O(jEjCF ) O(M jEjCF ) O(M jEjCF ) O(M jEjCF )

B.6 Model Setups for semi-supervised node classi�cation

Our models were initialized using Glorot initialization [4] and trained to minimize loss using the
Adam SGD optimizer [8]. For the S-BGCN-T-K model, we used theearly stopping strategy[18] on
Coauthor Physics, Amazon Computer and Amazon Photo datasets whilenon-early stopping strategy
was used in citation datasets (i.e., Cora, Citeseer and Pubmed). We set bandwidth� = 1 for all
datasets in GKDE, and set trade off parameters� 1 = 0 :001for misclassi�cation detection,� 1 = 0 :1
for OOD detection and� 2 = min(1 ; t=200) (wheret is the index of a current training epoch) for
both task; other hyperparameter con�gurations are summarized in Table 4.

For semi-supervised node classi�cation, we used 50 random weight initialization for our models on
Citation network datasets. For Coauthor Physics, Amazon Computer and Amazon Photo datasets,
we reported the result based on 10 random train/validation/test splits. In both effect of uncertainty
on misclassi�cation and the OOD detection, we reported the AUPR and AUROC results in percent
averaged over 50 times of randomly chosen 1000 test nodes in all of test sets (except training or
validation set) for all models tested on the citation datasets. For S-BGCN-T-K model in these tasks,
we used the same hyperparameter con�gurations as in Table 4, except S-BGCN-T-K Epistemic using
10,000 epochs to obtain the best result.
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Table 4: Hyperparameter con�gurations of S-BGCN-T-K model
Cora Citeseer Pubmed Co.Physics Ama.Computer Ama.Photo

Hidden units 16 16 16 64 64 64
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Dropout 0.5 0.5 0.5 0.1 0.2 0.2
L 2 reg.strength 0.0005 0.0005 0.0005 0.001 0.0001 0.0001
Monte-Carlo samples 100 100 100 100 100 100
Max epoch 200 200 200 100000 100000 100000

B.7 Pseudo code for Our Algorithms

Algorithm 1: S-BGCN-T-K
Input: G = ( V; E; r ) andyL
Output: p VnL , uVnL

1 ` = 0 ;
2 Set hyper-parameters�; � 1 ; � 2 ;
3 Initialize the parameters
; � ;
4 Calculate the prior Dirichlet distribution Dir(�̂ );
5 Pretrain the teacher network to get Prob(yjp̂);
6 repeat
7 Forward pass to compute� , Prob(pi jA; r ; G) for i 2 V;
8 Compute joint probability Prob(yjA; r ; G);
9 Backward pass via the chain-rule the calculate the sub-gradient gradient:g( ` ) = r � L (�)

10 Update parameters using step size� via � ( ` +1) = � ( ` ) � � � g( ` )

11 ` = ` + 1 ;
12 until convergence
13 CalculatepVnL , uVnL

14 return pVnL , uVnL

B.8 Bayesian Inference with Dropout
The marginalization in Eq.(8) (in main paper) is generally intractable. A dropout technique is used
to obtain an approximate solution and use samples from the posterior distribution of models [3].
Hence, we adopted a dropout technique in [2] for variational inference in Bayesian convolutional
neural networks where Bernoulli distributions are assumed over the network's weights. This dropout
technique allows us to perform probabilistic inference over our Bayesian DL framework using GNNs.
For Bayesian inference, we identified a posterior distribution over the network's weights, given the
input graphD and observed labelsyL by Prob(� jD ), where� = f W1; : : : ; WL ; b1; :::; bL g, L is the
total number of layers andWi refers to the GNN's weight matrices of dimensionsD i � D i � 1, andbi
is a bias vector of dimensionsD i for layeri = 1 ; � � � ; L .
Since the posterior distribution is intractable, we used avariational inference to learnq(� ), a
distribution over matrices whose columns are randomly set to zero, approximating the intractable
posterior by minimizing the Kullback-Leibler (KL)-divergence between this approximated distribution
and the full posterior, which is given by:

KL(q(� )kProb(� jD )) (32)

We de�neW i in q(� ) by:

W i = M i diag([zij ]D i
j =1 ); zij � Bernoulli(di ) for i = 1 ; : : : ; L; j = 1 ; : : : ; D i � 1 (33)

where
 = f M1; : : : ; ML ; m1; : : : ; mL g are the variational parameters,M i 2 RD i � D i � 1 , mi 2 RD i ,
andd = f d1; : : : ; dL g is the dropout probabilities withzij of Bernoulli distributed random variables.
The binary variablezij = 0 corresponds to unitj in layer i � 1 being dropped out as an input
to layeri . We can obtain the approximate model of the Gaussian process from [2]. The dropout
probabilities,di 's, can be optimized or �xed [6]. For simplicity, we �xeddi 's in our experiments, as
it is beyond the scope of our study. In [2], the minimization of the cross entropy (or square error) loss
function is proven to minimize the KL-divergence (see Eq.(32)). Therefore, training the GNN model
with stochastic gradient descent enables learning of an approximated distribution of weights, which
provides good explainability of data and prevents over�tting.
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For the dropout inference, we performed training on a DL model with dropout before every weight
layer and dropout at a test time to sample from the approximate posterior (i.e., stochastic forward
passes, a.k.a. Monte Carlo dropout; see Eq.(36)). At the test stage, we infer the joint probability by:

p(yjA; r ; D) =
Z Z

Prob(yjp)Prob(pjA; r ; � )Prob(� jD )dpd�

�
1

M

X M

m =1

Z
Prob(yjp)Prob(pjA; r ; � (m ) )dp; � (m ) � q(� ); (34)

whereM is Monte Carlo sampling times. We can also infer the Dirichlet parameters� as:

� �
1

M

X M

m =1
f (A; r ; � (m ) ); � (m ) � q(� ): (35)

C Additional Experimental Results

In addition to the uncertainty analysis in Section 5, we also conducted additional experiments.
First , we conducted an ablation experiment for each component (such as GKDE, Teacher network,
Subjective framework and Bayesian framework) we proposed.Second, we provide additional
uncertainty visualization results in network node classi�cations for Citeseer dataset. To clearly
understand the effect of different types of uncertainty in classi�cation accuracy and OOD, we used
the AUROC and AUPR curves for all types of models considered in this work.

C.1 Ablation Experiments

We conducted an additional experiments in order to clearly demonstrate the contributions of the
key technical components, including a teacher Network, Graph kernel Dirichlet Estimation (GKDE)
and subjective Bayesian framework. The key �ndings obtained from this experiment are: (1) The
teacher Network can further improve node classi�cation accuracy (i.e., 0.2% - 1.5% increase, as
shown in Table 5); and (2) GKDE (Graph-Based Kernel Dirichlet Distribution Estimation) using the
uncertainty estimates can enhance OOD detection (i.e., 4% - 30% increase, as shown in Table 6).

Table 5: Ablation experiment on AUROC and AUPR for the Misclassi�cation Detection.

Data Model AUROC AUPR
Va. Dis. Al. Ep. En. Va. Dis. Al. Ep. En. Acc

Cora

S-BGCN-T-K 70.6 82.4 75.3 68.8 77.7 90.3 95.4 92.4 87.8 93.4 82.0
S-BGCN-T 70.8 82.5 75.3 68.9 77.8 90.4 95.4 92.6 88.0 93.4 82.2
S-BGCN 69.8 81.4 73.9 66.7 76.9 89.4 94.3 92.3 88.0 93.1 81.2
S-GCN 70.2 81.5 - - 76.9 90.0 94.6 - - 93.6 81.5

Citeseer

S-BGCN-T-K 65.4 74.0 67.2 60.7 70.0 79.8 85.6 82.2 75.2 83.5 71.0
S-BGCN-T 65.4 73.9 67.1 60.7 70.1 79.6 85.5 82.1 75.2 83.5 71.3
S-BGCN 63.9 72.1 66.1 58.9 69.2 78.4 83.8 80.6 75.6 82.3 70.6
S-GCN 64.9 71.9 - - 69.4 79.5 84.2 - - 82.5 71.0

Pubmed

S-BGCN-T-K 63.1 69.9 66.5 65.3 68.1 85.6 90.8 88.8 86.1 89.2 79.3
S-BGCN-T 63.2 69.9 66.6 65.3 64.8 85.6 90.9 88.9 86.0 89.3 79.2
S-BGCN 62.7 68.1 66.1 64.4 68.0 85.4 90.5 88.6 85.6 89.2 78.8
S-GCN 62.9 69.5 - - 68.0 85.3 90.4 - - 89.2 79.1

Amazon Photo

S-BGCN-T-K 66.0 89.3 83.0 83.4 83.2 95.4 98.9 98.4 98.1 98.4 92.0
S-BGCN-T 66.1 89.3 83.1 83.5 83.3 95.6 99.0 98.4 98.2 98.4 92.3
S-BGCN 68.6 93.6 90.6 83.6 90.6 90.4 98.1 97.3 95.8 97.3 81.0
S-GCN - - - - 86.7 - - - - - 98.4

Amazon Computer

S-BGCN-T-K 65.0 87.8 83.3 79.6 83.6 89.4 96.3 95.0 94.2 95.0 84.0
S-BGCN-T 65.2 88.0 83.4 79.7 83.6 89.4 96.5 95.0 94.5 95.1 84.1
S-BGCN 63.7 89.1 84.3 76.1 84.4 84.9 95.7 93.9 91.4 93.9 76.1
S-GCN - - - - 81.5 - - - - - 95.2

Coauthor Physics

S-BGCN-T-K 80.2 91.4 87.5 81.7 87.6 98.3 99.4 99.0 98.4 98.9 93.0
S-BGCN-T 80.4 91.5 87.6 81.7 87.6 98.3 99.4 99.0 98.6 99.0 93.2
S-BGCN 79.6 90.5 86.3 81.2 86.4 98.0 99.2 98.8 98.3 98.8 92.9
S-GCN 89.1 89.0 - - 89.2 99.0 99.0 - - 99.0 92.9

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, En.: Entropy

C.2 Experiment based on GAT model

We also conducted the semi-supervised node classi�cation based on GAT model [20]).Model setup:
The S-BGAT-T-K model has two dropout probabilities, which are a dropout on features and a dropout
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Table 6: Ablation experiment on AUROC and AUPR for the OOD Detection.

Data Model AUROC AUPR
Va. Dis. Al. Ep. En. Va. Dis. Al. Ep. En.

Cora

S-BGCN-T-K 87.6 75.5 85.5 70.8 84.8 78.4 49.0 75.3 44.5 73.1
S-BGCN-T 84.5 81.2 83.5 71.8 83.5 74.4 53.4 75.8 46.8 71.7
S-BGCN 76.3 79.3 81.5 70.5 80.6 61.3 55.8 68.9 44.2 65.3
S-GCN 75.0 78.2 - - 79.4 60.1 54.5 - - 65.3

Citeseer

S-BGCN-T-K 84.8 55.2 78.4 55.1 74.0 86.8 54.1 80.8 55.8 74.0
S-BGCN-T 78.6 59.6 73.9 56.1 69.3 79.8 57.4 76.4 57.8 69.3
S-BGCN 72.7 63.9 72.4 61.4 70.5 73.0 62.7 74.5 60.8 71.6
SGCN 72.0 62.8 - - 70.0 71.4 61.3 - - 70.5

Pubmed

S-BGCN-T-K 74.6 67.9 71.8 59.2 72.2 69.6 52.9 63.6 44.0 56.5
S-BGCN-T 71.8 68.6 70.0 60.1 70.8 65.7 53.9 61.8 46.0 55.1
S-BGCN 70.8 68.2 70.3 60.8 68.0 65.4 53.2 62.8 46.7 55.4
S-GCN 71.4 68.8 - - 69.7 66.3 54.9 - - 57.5

Amazon Photo

S-BGCN-T-K 93.4 76.4 91.4 32.2 91.4 94.8 68.0 92.3 42.3 92.5
S-BGCN-T 64.0 77.5 79.9 52.6 79.8 67.0 75.3 82.0 53.7 81.9
S-BGCN 63.0 76.6 79.8 52.7 79.7 66.5 75.1 82.1 53.9 81.7
S-GCN 64.0 77.1 - - 79.6 67.0 74.9 - - 81.6

Amazon Computer

S-BGCN-T-K 82.3 76.6 80.9 55.4 80.9 70.5 52.8 60.9 35.9 60.6
S-BGCN-T 53.7 70.5 70.4 69.9 70.1 33.6 43.9 46.0 46.8 45.9
S-BGCN 56.9 75.3 74.1 73.7 74.1 33.7 46.2 48.3 45.6 48.3
S-GCN 56.9 75.3 - - 74.2 33.7 46.2 - - 48.3

Coauthor Physics

S-BGCN-T-K 91.3 87.6 89.7 61.8 89.8 72.2 56.6 68.1 25.9 67.9
S-BGCN-T 88.7 86.0 87.9 70.2 87.8 67.4 51.9 64.6 29.4 62.4
S-BGCN 89.1 87.1 89.5 78.3 89.5 66.1 49.2 64.6 35.6 64.3
S-GCN 89.1 87.0 - - 89.4 -66.2 49.2 - - 64.3

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, D.En.: Differential Entropy, En.: Entropy

on attention coef�cients, as shown in Table 7. We changed the dropout on attention coef�cients to
0.4 at the test stage and set trade off parameters� = min(1 ; t=50), using the same early stopping
strategy [20]. The result are shown in Table 8.

Table 7: Hyper-parameters of S-BGAT-T-K model
Cora Citeseer Pubmed

Hidden units 64 64 64
Learning rate 0.01 0.01 0.01
Dropout 0.6/0.6 0.6/0.6 0.6/0.6
L 2 reg.strength 0.0005 0.0005 0.001
Monte-Carlo samples 100 100 100
Max epoch 100000 100000 100000

Table 8: Semi-supervised node classi�cation accuracy based on GAT
Cora Citeseer Pubmed

GAT 83.0� 0.7 72.5� 0.7 79.0� 0.3
GAT-Drop 82.8� 0.8 72.6� 0.7 79.0� 0.3
S-GAT 83.0� 0.7 72.6� 0.6 79.0� 0.3
S-BGAT 82.9� 0.7 72.4� 0.7 78.9� 0.3
S-BGAT-T 83.7� 0.6 73.2� 0.5 79.1� 0.2
S-BGAT-T-K 83.8 � 0.7 73.0� 0.7 79.1� 0.2

C.3 Misclassi�cation Detection

For Amazon Photo, Amazon Computer and Coauthor Physics dataset, the misclassi�cation detection
results are shown in Tabel 9.

C.4 Graph Embedding Representations of Different Uncertainty Types

To better understand different uncertainty types, we usedt-SNE (t-Distributed Stochastic Neighbor
Embedding [11]) to represent the computed feature representations of a pre-trained BGCN-T model's
�rst hidden layer on the Cora dataset and the Citeseer dataset.
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