Supplementary Material

A Proofs

A.1 Theorem 1’s Proof

Theorem 1. We consider a simplified scenario, where a multinomial random variable y follows a
K-class categorical distribution: y ~ Cal(p), the class probabilities p follow a Dirichlet distribution:

p ~ Dir(a), and a refer to the Dirichlet parameters. Given a total Dirichlet strength S = Zfil o,
for any opinion w on a multinomial random variable y, we have

1. General relations on all prediction scenarios.

(a) uy + Ugiss < 1 (b) uy > Uepis-

2. Special relations on the OOD and the CP.

(a) For an OOD sample with a uniform prediction (i.e., « = [1,...,1]), we have
1= Uy = Uen > Uglea > Uepis > Udiss = 0

(b) For an in-distribution sample with a conflicting prediction (i.e., « = [aq, . .., k] with
o) =g =+ = ag, if S — 00), we have

Uen = 1, iM Ugiss = M Ugleq = 1, lim u, = lim ueps = 0
S—o0 S—o0 S—o0 S—o0
WIth Uen, > Ugleq > Udiss > Uy > Uepis-

Interpretation. Theorem 1.1 (a) implies that increases in both uncertainty types may not happen at
the same time. A higher vacuity leads to a lower dissonance, and vice versa (a higher dissonance
leads to a lower vacuity). This indicates that a high dissonance only occurs only when a large amount
of evidence is available and the vacuity is low. Theorem 1.1 (b) shows relationships between vacuity
and epistemic uncertainty in which vacuity is an upper bound of epistemic uncertainty. Although
some existing approaches [} [17] treat epistemic uncertainty the same as vacuity, it is not necessarily
true except for an extreme case where a sufficiently large amount of evidence available, making
vacuity close to zero. Theorem 1.2 (a) and (b) explain how entropy differs from vacuity and/or
dissonance. We observe that entropy is 1 when either vacuity or dissonance is 0. This implies that
entropy cannot distinguish different types of uncertainty due to different root causes. For example,
a high entropy is observed when an example is an either OOD or misclassified example. Similarly,
a high aleatoric uncertainty value and a low epistemic uncertainty value are observed under both
cases. However, vacuity and dissonance can capture different causes of uncertainty due to lack of
information and knowledge and to conflicting evidence, respectively. For example, an OOD objects
typically show a high vacuity value and a low dissonance value while a conflicting prediction exhibits
a low vacuity and a high dissonance.

Proof. 1. (a) Let the opinion w = [b1, ..., bk, u,], where K is the number of classes, b; is the belief

for class 7, u, is the uncertainty mass (vacuity), and Zfil b; + u, = 1. Dissonance has a upper
bound with

(D

Udiss

Kb S0 s biBal(bi, b))
; ( Zj(:l,j;éi bj >
EK: bi Yy ok bj)

K )
i=1 Zj:l,j;éi bj

K
= Z bia
=1

IA

(since 0 < Bal(b;,b;) < 1)
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where Bal(b;, b;) is the relative mass balance, then we have

K
Uy + Udiss < sz + Uy = 1. (2)

i=1

1. (b) For the multinomial random variable y, we have

y ~ Cal(p), p ~ Dir(a), 3)

where Cal(p) is the categorical distribution and Dir(cx) is Dirichlet distribution. Then we have

Prob(y]a) = / Prob(y|p)Prob(p|)dp, 4

and the epistemic uncertainty is estimated by mutual information,

Zly, pla] = H|Eropia P(y1P)]] ~ Eproniple [HIPwIP)] |- )

Now we consider another measure of ensemble diversity: Expected Pairwise KL-Divergence between
each model in the ensemble. Here the expected pairwise KL-Divergence between two independent
distributions, including P(y|p;) and P(y|p,), where p; and p, are two independent samples from
Prob(p|a), can be computed,

Kly,pla] = EProb(pﬂaPmb(pz\a) KL[P(ylp,)||P(y|p2)] (6)

- Z EProb(p1|a) y|p1 )}EProb(p2|a) [lnP(y|p2)] - EProb(p|a) [H[P(?AP)]}

> [y7pla],

where Z[y, p;|a] = Z[y, py|a]. We consider Dirichlet ensemble, the Expected Pairwise KL Diver-
gence,

Kly-pla] = —iog(zb(az (8)) - S S (W@ - (s +1)
Kzill =1
= 5 "

where S = ZZK:1 a; and () is the digamma Function, which is the derivative of the natural
logarithm of the gamma function. Now we obtain the relations between vacuity and epistemic,

-1
< >Kly,pla] = > Iy, pla]. (8)
S S —
V\/ Epistemic
acuity
2. (a) For an out-of-distribution sample, & = [1, ..., 1], the vacuity can be calculated as
K K
Uy = = — =1, )
Dim1 Qi K
and the belief mass b; = (a; — 1)/ Efil o; = 0, we estimate dissonance,
K K
bi - . .. b;Bal b“b
Udiss = Z( ZH’T sBall J)) =0. (10)
i=1 Zj:l,j;éi bj

Given the expected probability p = [1/K,...,1/K]T, the entropy is calculated based on log ,

K

1 1 1!
=H[p] = Zpl log e pi = ZglogK = log ® = logy K =1, (11)
i=1



where () is the entropy. Based on Dirichlet distribution, the aleatoric uncertainty refers to the
expected entropy,

Ualea = EpNDir(a) [H[PH (12)
K

F(S) / aj—1
= =) — piloggpi | | pi' dp
i=1 Hz‘K:1F(O‘i) Sk zl_Il

1 F(S) / s aj—1
In K Z Ii INGR) st b Hp P

i=1

K

1 i riS+1 ]
_ [0 ( ;’ ) / p;x. lnpi p;)zo 1dp
i Sk 0=1,

where S = Zfil a;,p = [p1,-..,px]",and K > 2 is the number of category. The epistemic
uncertainty can be calculated via the mutual information,

Uepis = H[EpNDir(a) [pH - EpNDir(a)[H[pH (13)
= H[ﬁ} — Uaqlea

K
1 1
- — =<1
In K Z k
k=2
To compare aleatoric uncertainty with epistemic uncertainty, we first prove that aleatoric uncertainty

(Eq. (I3)) is monotonically increasing and converging to 1 as K increases. Based on Lemmal[l] we
have

K
(1n(K+1) an)Z% ;{rlfl
k=2
K 1 K 1 1 K+11
:>1n(K+1)Z%<an(Z%+K7+1):anzf
k=2 k=2 k=2
1 K+11 ”
IK k 1n(K+1)kZ2k' (19

Based on Eq. (T4) and Eq. @]) we prove that aleatoric uncertamty is monotonically increasing with
respect to K. So the minimum aleatoric can be shown to be W 2 2 , when K = 2.

Similarly, for eplstemlc uncertainty, which is monotomcally decreasmg as K increases based on
Lemma , the maximum epistemic can be shown tobe 1 — 2 5 1 when K = 2. Then we have,

11

> —— _—> " 1
Uaglea = n22 > o2 — Uepis (15)

Therefore, we prove that 1 = u, = Uep > Uglea > Uepis > Udiss = 0.



2. (b) For a conflicting prediction, i.e., « = [a1,...,ak], witha; =as =---=axg =C,and S =
Zfil a; = CK, the expected probability p = [1/K,...,1/K]T, the belief mass b; = (a; — 1)/5,
and the vacuity can be calculated as

w, = %ﬁi‘so, (16)

and the dissonance can be calculated as

K K K

bi D i1 ;. biBal(bs, b;)

I )= a7
i=1 Zj:l,j;éi bj i=1

= 1-= 2%,

Given the expected probability p = [1/K,...,1/K]T, the entropy can be calculated based on
Dirichlet distribution,

K
Uen = H[P =D piloggpi =1, (18)
i=1
and the aleatoric uncertainty is estimated as the expected entropy,
Ualea = EpNDir(oz) [H [p]] (19)
K

K
L'(S) / -1
= —_ _— 410 . i d
K Di 108k Pi | I D; P
i1 [lim Dlew) s i=1
K

1 r(s) / S
In K Z HK () SKp p Hp p

i=1 i=1

K
1 «; riS+1 ] o
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k=C+1
The epistemic uncertainty can be calculated via mutual information,

Uepis — 7'[[Emeir(oc) [pH - EpNDir(a) [H Lp]] (20)
= H[ﬁ} — Uglea



Now we compare aleatoric uncertainty with vacuity,
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Based on Eq[(32), whed@ > 3, we have

2 1
Uglea = 5~ < = Uy (22)

w
O

We have already proved tha > U epis , Whenuen, = 1, we haveuaea > U giss Therefore, we prove
thatUen > Ugea > Udiss > Uy > Ugpis With Uen = 1 Ugiss ! LiUaea ! Liuy ! O Ugpis !
0 O

; P N 1 In N
Lemma 1. For all integerN 2, we have | _, &<

2 (N+1)In( Nty »

Proof. We will prove by induction that, for all integéd 2,

X InN
ﬁ<—N+1In NI (23)
n=2 ( )In( =)
Base caseWhenN = 2, we have} < 3'[:12% and Eq.[(2B) is true foN = 2.
Induction stepLet the integeK  2is given and suppose E{. {23) is true for= K, then
L | +X< 1.1, In K (K +1) (24)
v KK+ ko K+l (K +1)In( &) (K +1)In( &)’

Denote thag(x) = ( x + 1) In( 2:L) with x > 2. We get its derivativegqx) = In(L+ %) 1<,
such thag(x) is monotonically decreasing, which resultgjifK ) > g (K + 1). Based on Eq(24)
we have,

K1 (K +1)  In(K +1) In(K +1)
=< < = TR (25)
oo K g(K) gK +1) (K +2)In( 5%
Thus, Eq. (23) holds fol = K + 1, and the proof of the induction step is complete.
Conclusion By the principle of induction, Eq. (23) is true for all integer 2. O



A.2 Proposition 1's Proof

Oy, Oy

! J

whered,, andd,, are vacuity uncertainties estimated of nodesdj based on GKDE.

Interpretation . From the above proposition, if a testing node is too distant (far away) from training
nodes, the vacuity increases, indicating that an OOD node is expected to have a high vacuity value.

hi (i ci ) = %8k, (26)
k(Y di) = g(di) = Hglzjexp( g'liz) yi =k’
and the prior evidence can be estimated based GKDE:
XX
é = hi (5 dir ); (27)

m=1 k=1

whereé; =[€g1;::;; ek ]. Since each training node only contributes the same evidence based on its
label based on Eg. (26), the total evidence is estimated by all the contributing evidence as

X bS 1 dj 2 X x 1 dj| 2
ek = ﬂe?exp( 5 2) ek = ﬂa?exp( 5 2); (28)

k=1 m=1 k=1 m=1

where the vacuity values for nodend nodg based on GKDE are,

K K
Oy, = P ; Oy = P : (29)
k=1 &k + K k=1 Bk + K
Now, we prove Eq. (29) above. & d; for8l 2f1;:::;Lg, we have
X 1 dy 2
€k = ﬂgzjexp( ﬁ) (30)
k=1 m=1
1 d
ﬁzje)(p( ﬁ)
m=1
= €k »
k=1
such that
K K
Oy, = P P =y, : (31)
k=1 &Kk T K k=1 &k t K
O



B Additional Experimental Details

B.1 Source code

The source code and datasets are accessible at https://github.com/zxj32/uncertainty-GNN
B.2 Description of Datasets

Table 1: Description of datasets and their experimental setup for the node classi cation prediction.

Cora Citeseer Pubmed Co. Physics Ama.Computer Ama.Photo

#Nodes 2,708 3,327 19,717 34, 493 13,381 7,487
#Edges 5,429 4,732 44,338 282, 455 259, 159 126, 530
#Classes 7 6 3 5 10 8
#Features 1,433 3,703 500 8,415 767 745
#Training nodes 140 120 60 100 200 160
#Validation nodes 500 500 500 500 500 500
#Test nodes 1,000 1,000 1,000 1000 1,000 1000

Cora, Citeseer, and Pubmed16]: These are citation network datasets, where each network is a
directed network in which a node represents a document and an edge is a citation link, meaning
that there exists an edge whardocument cite8 document, or vice-versa with a direction. Each
node's feature vector contains a bag-of-words representation of a document. For simplicity, we don't
discriminate the direction of links and treat citation links as undirected edges and construct a binary,
symmetric adjacency matrik . Each node is labeled with the class to which it belongs.

Coauthor Physics, Amazon Computers, and Amazon Phot¢18]: Coauthor Physics is the dataset

for co-authorship graphs based on the Microsoft Academic Graph from the KDD Cup 2016 Chal-
lengé. In the graphs, a node is an author and an edge exists when two authors co-author a paper. A
node's features represent the keywords of its papers and the node's class label indicates its most active
eld of study. Amazon Computers and Amazon Photo are the segments of an Amazon co-purchase
graph [L3], where a node is a good (i.e., product), an edge exists when two goods are frequently
bought together. A node's features are bag-of-words representation of product reviews and the node's
class label is the product category.

For all the used datasets, we deal with undirected graphs with 20 training nodes for each category.
We chose the same dataset splits ai} fith an additional validation node set of 500 labeled
examples for the hyperparameter obtained from the citation datasets, and followed the same dataset
splits in [18] for Coauthor Physics, Amazon Computer, and Amazon Photo datasets, for the fair
comparison.

Metric : We used the following metrics for our experiments:

Area Under Receiver Operating Characteristics (AUROAYROC shows the area under the
curve where FPR (false positive rate) iskiraxis and TPR (true positive rate) isyraxis. It can be
interpreted as the probability that a positive example is assigned a higher detection score than a
negative example[1]. A perfect detector corresponds to an AUROC score of 100%.

Area Under Precision-Prediction Curve (AUPR)he PR curve is a graph showing the preci-
sion=TP/(TP+FP) and recall=TP/(TP+FN) against each other,and AUPR denotes the area under
the precision-recall curve. The ideal case is when Precision is 1 and Recall is 1.

B.3 Experimental Setup for Out-of-Distribution (OOD) Detection

For OOD detection on semi-supervised node classi cation, we randomly selected 1-4 categories
as OOD categories and trained the models only based on training nodes of the other categories. In
this setting, we still trained a model for semi-supervised node classi cation task, but only part of
node categories were not used for training. Hence, we suppose that our model only outputs partial
categories (as we don't know the OOD category), see Table 2. For example, Cora dataset, we trained

!KDD Cup 2016 Dataset: Online Available kttps://kddcup2016.azurewebsites.net/
2The source code and datasets are accessible at https://github.com/zxj32/uncertainty-GNN



the model with 80 nodes (20 nodes for each category) with the predictions of 4 categories. Positive
ratio is the ratio of out-of-distribution nodes among on all test nodes.

Table 2: Description of datasets and their experimental setup for the OOD detection.

Dataset Cora Citeseer Pubmed  Co.Physics Ama.Computer  Ama.Photo
Number of training categories 4 3 2 3 5 4
Training nodes 80 60 40 60 100 80
Test nodes 1000 1000 1000 1000 1000 1000
Positive ratio 38% 55% 40.4% 45.1% 48.1% 51.1%

B.4 Baseline Setting

In experiment part, we considered 4 baselines. For GCN, we used the same hyper-paranfters as [
For EDL-GCN, we used the same hyper-parameters as GCN, and replaced softmax layer to activation
layer (Relu) with squares los&q]. For DPN-GCN, we used the same hyper-parameters as GCN,
and changed the softmax layer to activation layer (exponential). Note that as we can not generate
OOD node, we only used in-distribution loss of (see Eq.12#j)[and ignored the OOD part loss.

For Drop-GCN, we used the same hyper-parameters as GCN, and set Monte Carlo sampling times
M = 100, dropout rate equal to 0.5.

B.5 Time Complexity Analysis

S-BGCN has a similar time complexity with GCN while S-BGCN-T has the double complexity of
GCN. For a given network whej¥j is the number of nodefEj is the number of edgef is the
number of dimensions of the input feature vector for every nbdis,the number of features for the
output layer, and/l is Monte Carlo sampling times.

Table 3: Big-O time complexity of our method and baseline GCN.

Dataset GCN S-GCN S-BGCN S-BGCN-T  S-BGCN-T-K

Time Complexity (Train) O(JEJjCF) O(JEJCF) O(2JEjCF) O(2JEjCF) O(2JEjCF)
Time Complexity (Test) O(JEJCF) O(JEJCF) O(MJEJCF) O(MjEJCF) O(M]JEJCF)

B.6 Model Setups for semi-supervised node classi cation

Our models were initialized using Glorot initializatiofi] [and trained to minimize loss using the
Adam SGD optimizer§]. For the S-BGCN-T-K model, we used tkarly stopping strategyl8] on
Coauthor Physics, Amazon Computer and Amazon Photo datasetswhilearly stopping strategy
was used in citation datasets (i.e., Cora, Citeseer and Pubmed). We set bandwidtfior all
datasets in GKDE, and set trade off parametgrs 0:001for misclassi cation detection,; = 0:1
for OOD detection and, = min(1 ; t=200) (wheret is the index of a current training epoch) for
both task; other hyperparameter con gurations are summarized in Table 4.

For semi-supervised node classi cation, we used 50 random weight initialization for our models on
Citation network datasets. For Coauthor Physics, Amazon Computer and Amazon Photo datasets,
we reported the result based on 10 random train/validation/test splits. In both effect of uncertainty
on misclassi cation and the OOD detection, we reported the AUPR and AUROC results in percent
averaged over 50 times of randomly chosen 1000 test nodes in all of test sets (except training or
validation set) for all models tested on the citation datasets. For S-BGCN-T-K model in these tasks,
we used the same hyperparameter con gurations as in Table 4, except S-BGCN-T-K Epistemic using
10,000 epochs to obtain the best result.
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Table 4: Hyperparameter con gurations of S-BGCN-T-K model

Cora Citeseer Pubmed  Co.Physics Ama.Computer  Ama.Photo

Hidden units 16 16 16 64 64 64
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Dropout 0.5 0.5 0.5 0.1 0.2 0.2

L , reg.strength 0.0005 0.0005 0.0005 0.001 0.0001 0.0001
Monte-Carlo samples 100 100 100 100 100 100
Max epoch 200 200 200 100000 100000 100000

B.7 Pseudo code for Our Algorithms

Algorithm 1: S-BGCN-T-K

Input: G =(V;E;r)andy,

Output: Py, UynL

ey

Set hyper-parameters 1; 2;

Initialize the parameters ;

Calculate the prior Dirichlet distribution Oif ) ;

Pretrain the teacher network to get P(yilp);

repeat
Forward pass to compute, Prol{p; jA; r; G) fori 2 V;
Compute joint probability PrdlyjA; r; G);
Backward pass via the chain-rule the calculate the sub-gradient gragfi‘ént. r L()
Update parameters using step sizéda (™9 = O g"’
Tz a1

until convergence

Calculatep,,,, , UynL

return PyvnL» UvnL

B.8 Bayesian Inference with Dropout

The marginalization in Eq.(8) (in main paper) is generally intractable. A dropout technique is used
to obtain an approximate solution and use samples from the posterior distribution of n8jdels [
Hence, we adopted a dropout techniqueZinfgr variational inference in Bayesian convolutional
neural networks where Bernoulli distributions are assumed over the network's weights. This dropout
technique allows us to perform probabilistic inference over our Bayesian DL framework using GNNs.
For Bayesian inference, we identified a posterior distribution over the network’s weights, given the

total number of layers and/; refers to the GNN's weight matrices of dimensidds D; 1, andb
is a bias vector of dimensioi; for layeri =1; ;L.

Since the posterior distribution is intractable, we useddational inference to learng( ), a
distribution over matrices whose columns are randomly set to zero, approximating the intractable
posterior by minimizing the Kullback-Leibler (KL)-divergence between this approximated distribution
and the full posterior, which is given by:

KL(q( )kProk( jD)) (32)
We de neW; inq( ) by:
Wi = M;diad[z; ]J-D:il); zZj Bernoulli(d;) fori =1;:::;L;j =1;:::;D; 1 (33)

The binary variable; = 0 corresponds to unit in layeri 1 being dropped out as an input

to layeri. We can obtain the approximate model of the Gaussian process 2tomHe dropout
probabilities,d;'s, can be optimized or xedf]. For simplicity, we xedd;'s in our experiments, as

it is beyond the scope of our study. 12][the minimization of the cross entropy (or square error) loss
function is proven to minimize the KL-divergence (see B2)). Therefore, training the GNN model

with stochastic gradient descent enables learning of an approximated distribution of weights, which
provides good explainability of data and prevents over tting.



For the dropout inference, we performed training on a DL model with dropout before every weight
layer and dropout at a test time to sample from the approximate posterior (i.e., stochastic forward
passes, a.k.a. Monte Carlo dropout; see(Bf)). At the test stage, we infer the joint probability by:

ZZ

P(yiA; r;D) = Prol(yjp)Prot{(pjA; r; )Prol{( jD)dpd
1 X w Z . :
M mea PrOMYIP)ProbpjA;r; Mdp; ™ q(); (34)
whereM is Monte Carlo sampling times. We can also infer the Dirichlet parametars
ix M f(Ar; My, (m) )
M m=1 v ! q( ) (35)

C Additional Experimental Results

In addition to the uncertainty analysis in Section 5, we also conducted additional experiments.
First, we conducted an ablation experiment for each component (such as GKDE, Teacher network,
Subjective framework and Bayesian framework) we proposgecond we provide additional
uncertainty visualization results in network node classi cations for Citeseer dataset. To clearly
understand the effect of different types of uncertainty in classi cation accuracy and OOD, we used
the AUROC and AUPR curves for all types of models considered in this work.

C.1 Ablation Experiments

We conducted an additional experiments in order to clearly demonstrate the contributions of the
key technical components, including a teacher Network, Graph kernel Dirichlet Estimation (GKDE)
and subjective Bayesian framework. The key ndings obtained from this experiment are: (1) The
teacher Network can further improve node classi cation accuracy (i.e., 0.2% - 1.5% increase, as
shown in Table 5); and (2) GKDE (Graph-Based Kernel Dirichlet Distribution Estimation) using the
uncertainty estimates can enhance OOD detection (i.e., 4% - 30% increase, as shown in Table 6).

Table 5: Ablation experiment on AUROC and AUPR for the Misclassi cation Detection.

Data Model ~ AUROC . AUPR
Va. Dis. Al Ep. En. | Va. Dis. Al Ep. En. | Acc
S-BGCN-T-K | 706 824 753 688 77.4 90.3 954 924 87.8 93.4[ 820
S-BGCN-T 708 825 753 689 77.8| 904 954 926 88.0 93.4| 82.2

Cora S-BGCN 69.8 81.4 739 66.7 769 894 943 923 880 931 812
S-GCN 70.2 81.5 - - 76.9| 90.0 94.6 . - 93.6| 81.5

S-BGCN-T-K | 654 740 672 60.7 70.0] 79.8 856 822 752 835| 710

Citeseer S-BGCN-T 65.4 73.9 67.1 607 70.1 796 855 821 752 835 713
S-BGCN 63.9 72.1 66.1 589 694 784 838 806 756 823 70.6

S-GCN 64.9 71.9 - - 69.4| 795 84.2 - - 82.5| 71.0

S-BGCN-T-K | 63.1 699 665 653 681 856 90.8 888 861 89.7 79.3

Pubmed S-BGCN-T 63.2 699 666 653 648| 8.6 909 889 860 89.3| 79.2

S-BGCN 627 681 66.1 644 68.Q 8.4 905 886 856 89.7 788
S-GCN 62.9 69.5 - = 68.0| 853 90.4 - - 89.2| 79.1
S-BGCN-T-K | 66.0 89.3 83.0 834 837 954 989 984 981 984 92.0
S-BGCN-T 66.1 89.3 831 835 833 956 990 984 982 984 923
S-BGCN 68.6 936 906 836 90.6| 904 981 973 958 97.3 81.0
S-GCN - - - - - - - - - 98.4
S-BGCN-T-K | 65,0 878 833 796 8364 894 963 950 942 95.0 84.0
S-BGCN-T 652 880 834 79.7 834 894 965 950 945 951 84.1
S-BGCN 63.7 891 843 761 844|849 957 939 914 939 76.1
S-GCN - - = - 81.5 - - - - 95.2
S-BGCN-T-K | 80.2 914 875 817 87.4 983 994 99.0 984 989 93.0
S-BGCN-T 804 915 876 817 87.6| 983 994 99.0 986 99.0| 93.2
S-BGCN 796 905 863 812 864 980 992 988 983 98§ 929
S-GCN 89.1  89.0 - - 89.2| 99.0 99.0 - - 99.0 92.9

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, En.: Entropy

Amazon Photo

Amazon Computer

Coauthor Physics

C.2 Experiment based on GAT model

We also conducted the semi-supervised node classi cation based on GAT ra6giéVipdel setup:
The S-BGAT-T-K model has two dropout probabilities, which are a dropout on features and a dropout
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Table 6: Ablation experiment on AUROC and AUPR for the OOD Detection.

AUROC AUPR
Data Model Va. Dis. A. Ep. En| Va Ds. A. Ep. En.
SBGCN-TK | 87.6 755 855 708 848 784 490 753 445 731
SBGCN-T | 845 8L2 835 718 83§ 744 534 758 468 717

Cora SBGCN | 763 793 815 705 804 613 558 689 442 653
S-GCN 750 782 - - 794| 601 545 - - 653

SBGCN-TK | 848 552 784 551 740 868 541 808 558 740

Citeseer S-BGCN-T | 786 59.6 739 561 694 798 574 764 578 69.3
S-BGCN | 727 639 724 614 70§ 730 627 745 608 716

SGCN 720 628 - - 700| 714 613 - - 705

SBGCN-TK | 746 670 718 592 722 696 520 636 440 565

bubmed S-BGCN-T | 71.8 686 700 60.1 708 657 539 618 460 551

S-BGCN 708 682 703 608 680 654 532 628 46.7 554
S-GCN 714 68.8 - - 69.7| 66.3 54.9 - - 57.5
S-BGCN-T-K | 934 76.4 914 322 914 948 680 923 423 925
S-BGCN-T 640 775 799 526 79.4 67.0 753 820 537 819
S-BGCN 63.0 76.6 79.8 527 79.7 66.5 751 821 539 817
S-GCN 64.0 77.1 - - 79.6| 67.0 74.9 - - 81.6
S-BGCN-T-K | 823 76.6 809 554 809 705 528 609 359 606
S-BGCN-T 537 705 704 699 70.1 33.6 439 460 46.8 459
S-BGCN 569 753 741 737 741 337 46.2 483 456 483
S-GCN 56.9 75.3 - - 74.2| 337 46.2 - - 48.3
S-BGCN-T-K | 91.3 876 89.7 618 89.8 722 566 681 259 679
S-BGCN-T 887 860 879 702 874 674 519 646 294 624
S-BGCN 89.1 871 895 783 895 66.1 49.2 646 356 643
S-GCN 89.1 87.0 - - 89.4| -66.2 49.2 - - 64.3

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, D.En.: Differential Entropy, En.: Entropy

Amazon Photo

Amazon Computer

Coauthor Physics

on attention coef cients, as shown in Table 7. We changed the dropout on attention coef cients to
0.4 at the test stage and set trade off parametersnin(1 ; t=50), using the same early stopping
strategy [20]. The result are shown in Table 8.

Table 7: Hyper-parameters of S-BGAT-T-K model
Cora  Citeseer Pubmed

Hidden units 64 64 64
Learning rate 0.01 0.01 0.01
Dropout 0.6/0.6  0.6/0.6 0.6/0.6
L, reg.strength 0.0005 0.0005 0.001
Monte-Carlo samples 100 100 100
Max epoch 100000 100000 100000

Table 8: Semi-supervised node classi cation accuracy based on GAT

Cora Citeseer Pubmed
GAT 83.0 0.7 725 0.7 79.0 0.3
GAT-Drop 828 0.8 726 0.7 79.0 0.3
S-GAT 83.0 0.7 726 06 79.0 0.3
S-BGAT 829 0.7 724 0.7 789 0.3

S-BGAT-T 837 06 732 05 791 02
S-BGAT-T-K 838 0.7 73.0 0.7 79.1 0.2

C.3 Misclassi cation Detection

For Amazon Photo, Amazon Computer and Coauthor Physics dataset, the misclassi cation detection
results are shown in Tabel 9.

C.4 Graph Embedding Representations of Different Uncertainty Types
To better understand different uncertainty types, we tiseNE ¢-Distributed Stochastic Neighbor

Embedding 11]) to represent the computed feature representations of a pre-trained BGCN-T model's
rst hidden layer on the Cora dataset and the Citeseer dataset.

11
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