
A Notation and basic definitions

• H is a separable Hilbert space.
• X is a Polish space (we will require explicitly compactness in some theorems).
• � : X ! H is a continous map. We also assume it to be uniformly bounded i.e.
supx2X

k�(x)k  c for some c 2 (0,1), if not differently stated.

• k(x, x0) := �(x)>�(x0) is the kernel function associated to the feature map � [SS02,
BTA11].

B Proofs and additional discussions

B.1 Proof of Proposition 1

In this section, let us extend the definition in Eq. (4) to any operator A 2 S(H), without the implied
positivity restriction (in Eq. (4), we ask that A ⌫ 0) :

8A 2 S(H), 8x 2 X , fA(x) := �(x)>A�(x). (4bis)

Proof of Proposition 1. To prove linearity, let A,B 2 S(H) and ↵,� 2 R. Since S(H) is a vector
space, ↵A+ �B 2 S(H). Let x 2 X . By definition for the first equality and linearity for the second,

f↵A+�B(x) = �(x)>(↵A+ �B)�(x) = ↵�(x)>A�(x) + ��(x)>B�(x).

Finally, since by definition, fA(x) = �(x)>A�(x) and fB(x) = �(x)>B�(x), it holds :

f↵A+�B(x) = ↵�(x)>A�(x) + ��(x)>B�(x) = ↵fA(x) + �fB(x).

Since this holds for all x 2 X , this shows f↵A+�B = ↵fA + �fB .

To prove the non-negativity, assume now that A ⌫ 0. By definition of of positive semi-definiteness,

8h 2 H, h
>
Ah � 0.

In particular, for any x 2 X , the previous inequality applied to h = �(x) yields

fA(x) = �(x)>A�(x) � 0.

Hence, fA � 0.

B.2 Proof of Proposition 2

Recall the definition of fA for any A 2 S(H) in Eq. (4bis). We have the lemma:
Lemma 1 (Linearity of evaluations). Let x1, . . . , xn 2 X . Then the map

A 2 S(H) 7! (fA(xi))1in 2 Rn

is linear from S(H) to Rn.

Proof. This just follows from the fact that the definition of fA(xi), fA(xi) := �(xi)>A�(xi), is
linear in A.

Proof of Proposition 2. Let L : Rn ! R be a jointly convex function and x1, . . . , xn 2 X . The
function A 2 S(H) 7! L(fA(x1), . . . , fA(xn)) can be written L �R, where

R : A 2 S(H) 7! (fA(xi))1in 2 Rn
.

Since L is convex, and R is linear by Lemma 1, their composition is convex.
Moreover, since S(H)+ is a convex subset of S(H), the restriction of A 2 S(H) 7!
L(fA(x1), . . . , fA(xn)) on S(H)+ is also convex.
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B.3 Proof of Thm. 1

In this section, we prove Thm. 1 for a more general class of spectral regularizers.

B.3.1 Compact operators and spectral functions

In this section, we briefly introduce compact self-adjoint operators and the spectral theory of compact
self-adjoint operators. For more details, see for instance [GGK04]. We start by defining a compact
self-adjoint operator (see Section2.16 of [GGK04]) and stating its main properties:
Definition 1 (compact operators). Let H be a separable Hilbert space. A bounded self-adjoint
operator A 2 S(H) is said to be compact if its range is included in a compact set. We denote with
S1(H) the set of compact self adjoint operators on H. It is a closed subspace of S(H) for the
operator norm and the closure of the set of finite rank operators.
Proposition 6 (Spectral theorem [GGK04]). Let H be a separable Hilbert space and let A be
a compact self adjoint operator on H. Then there exists a spectral decomposition of A, i.e., an
orthonormal system (uk) 2 H of eigenvectors of A and corresponding eigenvalues (�k) such that
for all h 2 H, it holds

Ah =
X

k

�ku
>

k
h uk =:

 
X

k

�kuku
>

k

!
h.

Moreover, if �k is an infinite sequence, it converges to zero.
Furthermore, we say that the orthonormal system (uk) of eigenvectors of A and the corresponding
eigenvalues (�k) is a basic system of eigenvectors of A if all the �k are non zero. In this case, if P0

denotes the orthogonal projection on Ker(A), then it holds

8h 2 H, h = ⇧0 h+
X

k

uku
>

k
h

In what follows, to simplify notations, we will usually write A = U Diag(�)U> in order to denote a
basic system of eigenvectors of A. Moreover, if A is positive semi-definite, we will assume that the
eigenvalues are sorted in decreasing order, i.e., �k+1  �k.
Definition 2 (Spectral function on S1(H) [GGK04]). Let q : R ! R be a lower semi-continuous
function such that q(0) = 0. Let H be any separable Hilbert space. For any A 2 S1(H) and any
basic system A = U Diag(�)U>, we define the spectral function q

q(A) = U Diag(q(�)))UT =
X

k

q(�k)uku
>

k
.

B.3.2 Classes of regularizers

Let us now state our main assumption on regularizers.
Assumption 1 (Assumption on regularizers). ⌦ is of of the form

8A 2 S(H), ⌦(A) =

⇢
Tr(q(A)) =

P
k
q(�k) if A = U Diag(�)U> 2 S1(H),

P
k
q(�k) < 1

+1 otherwise,

where q : R ! R+ is:

• non-decreasing on R+ with q(0) = 0;

• lower semi-continuous;

• q(�) �!
|�|!+1

+1.

Note that in this case, ⌦ is defined on S(H) for any Hilbert space H.

Remark 4. ⌦(A) = �1kAk? + �2
2 kAk2

F
satisfies Assumption 1, with q(�) = �1 |�|+ �2 �

2.
Lemma 2 (Properties of ⌦). Let ⌦ satisfying Assumption 1. Then the following properties hold.
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(i) For any separable Hilbert spaces H1,H2 and any linear isometry O : H1 ! H2, i.e., such
that O⇤

O = IH1 , it holds

8A 2 S(H1), ⌦(OAO
⇤) = ⌦(A).

(ii) For any separable Hilbert space H and any orthogonal projection ⇧ 2 S(H1), i.e., satisfy-
ing ⇧ = ⇧⇤

, ⇧2 = ⇧, it holds

8A ⌫ 0, ⌦(⇧A⇧)  ⌦(A).

(iii) For any finite dimensional Hilbert space Hn,

⌦ is lower semi-continuous (l.s.c), ⌦(A) �!
kAkop!+1

+1

where we denoted by k · kop the operator norm.

Proof. (i) Write A =
P

k
�kuku

>

k
where the (uk) form a basic system of eigen-vectors for A.

The (vk) = (Ouk) form a basic system of eigen-vectors for OAO
⇤, as

OAO
⇤ =

X

k

�kvkv
>

k
, �k 6= 0.

Hence, by definition, q(OAO
⇤) =

P
k
q(�k)vkv>k . By definition of the trace, we have

⌦(OAO
⇤) =

X

k

q(�k) = ⌦(A).

(ii) Let A be a compact self-adjoint semi-definite operator. Let A = U Diag(�)U> be a basic
system of eigenvectors of A, where the �k are positive and in decreasing order. Define
B = U Diag(

p
�)U> and note that in this case, A = B

2 = B
⇤
B. Using Exercise 23

of [GGK04], we have that for any orthogonal projection operator ⇧ and any index k,
�k(⇧B⇤

B⇧)  �k(B⇤
B) and hence �k(⇧A⇧)  �k(A). Since q is non decreasing, it

holds q(�k(⇧A⇧))  q(�k(A)) and hence

⌦(⇧A⇧) =
X

k

q(�k(⇧A⇧)) 
X

k

q(�k(A)) = ⌦(A).

(iii) Let Hn be a finite dimensional Hilbert space and let k · kop be the operator norm on S(Hn).
If q is continuous, then A 2 Hn 7! q(A) is continuous and hence ⌦ is continuous (since
the trace is continuous in finite dimensions). Now assume q is lower semi-continuous,
and define for n 2 N, qn(t) := infs2R q(s) + n|t� s|. We have qn � 0, qn(0) = 0 qn

is uniformly continuous and qn is an increasing sequence of functions such that qn ! q

point-wise. Now it is easy to see that Tr(q(A)) = supn Tr(qn(A)) and hence ⌦ is lower
semi-continuous as a supremum of continuous functions.
The fact that ⌦ goes to infinity is a direct consequence of the fact that q goes to infinity, by
Assumption 1.

Remark 5. The three conditions of the previous lemma are in fact the only conditions needed in the
proof. We could loosen Assumption 1 to satisfy only these three properties.

B.3.3 Finite-dimensional representation and existence of a solution

Fix n 2 N, a loss function L : Rn ! R [ {+1}, a separable Hilbert space H, a regularizer ⌦ on
S(H) a feature map � : X ! H and points (x1, ..., xn) 2 Xn.

Recall the problem in Eq. (5):

infA⌫0 L(fA(x1), . . . , fA(xn)) + ⌦(A). (5)
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Define Hn to be the finite-dimensional subset of H spanned by the �(xi), i.e.,

Hn := span (�(xi))1in =

(
nX

i=1

↵i�(xi) : ↵ 2 Rn

)
.

Define ⇧n is the orthogonal projection on Hn, i.e.,

⇧n 2 S(H), ⇧2
n
= ⇧n, range(⇧n) = Hn.

Define Sn(H)+ to be the following subspace of S(H)+ :

Sn(H)+ := ⇧nS(H)+⇧n = {⇧nA⇧n : A 2 S(H)+} .

Proposition 7. Let L be a lower semi-continuous function which is bounded below, and assume ⌦
satisfies Assumption 1. Then Eq. (5) has a solution A

⇤ which is in Sn(H)+.

Proof. In this proof, denote by J the function defined by

8A 2 S(H), J(A) := L(fA(x1), ..., fA(xn)) + ⌦(A).

Our goal is to prove that the problem infA2S(H)+ J(A) has a solution which is in Sn(H)+, i.e., of
the form ⇧nA⇧n for some A 2 S(H)+.

1. Let us start by fixing A 2 S(H)+.
First note that since ⇧n is the orthogonal projection on span(�(xi))1in, in particular ⇧n�(xi) =
�(xi) for all 1  i  n. Thus, for any 1  i  n,

fA(xi) = �(xi)
>
A�(xi) = �(xi)

>⇧nA⇧n�(xi) = f⇧nA⇧n(xi).

Here, the first and last equalities come from the definition of fA and f⇧nA⇧n . Thus,

J(A) = L(f⇧nA⇧n(x1), ..., f⇧nA⇧n(xn)) + ⌦(A).

Now since ⌦ satisfies Assumption 1, by the second point of Lemma 2, it holds ⌦(⇧nA⇧n)  ⌦(A),
hence

J(⇧nA⇧n)  J(A).

This last inequality combined with the fact that Sn(H)+ = ⇧nS(H)+⇧n ⇢ S(H)+ show that

infA2Sn(H)+ J(A) = infA⌫0 J(A). (16)

2. Let us now show that infA2Sn(H)+ J(A) has a solution. Let us exclude the case where J = +1,
in which case A = 0 can be taken to be a solution.

Let Vn be the injection Vn : Hn ,! H. Note that VnV
⇤

n
= ⇧n and V

⇤

n
Vn = IHn . These simple facts

easily show that

Sn(H)+ = VnS(Hn)+V
⇤

n
=
n
VnÃV

⇤

n
: Ã 2 S(Hn)+

o
.

Thus, our goal is to show that inf
Ã2S(Hn)+

J(VnAV
⇤

n
) has a solution.

By the first point of Lemma 2, since V
⇤

n
Vn = IHn , it holds

8Ã 2 S(Hn), ⌦(VnÃV
⇤

n
) = ⌦(Ã) =) J(VnÃV

⇤

n
) = L(f

VnÃV ⇤
n
(x1), ..., fVnÃV ⇤

n
(xn))+⌦(Ã).

Let Ã0 2 S(Hn)+ be a point such that J0 := J(VnÃ0V
⇤

n
) < 1. Let c0 be a lower bound for L. By

the third point of Lemma 2, there exists a radius R0 such that for all Ã 2 S(Hn),

kÃkF > R0 =) ⌦(Ã) > J0 � c0.
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Since c0 is a lower bound for L, this implies

inf
Ã2S(Hn)+

J(VnÃV
⇤

n
) = inf

Ã2S(Hn)+, kÃkFR0
J(VnÃV

⇤

n
).

Now since L is lower semi-continuous, ⌦ is lower semi-continuous by the last point of Lemma 2,
and Ã 7! (f

VnÃV ⇤
n
(xi))1in is linear hence continuous, the mapping A 7! J(VnÃV

⇤

n
) is lower

semi-continuous. Hence, it reaches its minimum on any non empty compact set. Since Hn is
finite dimensional, the set

n
Ã 2 S(Hn)+ : kÃkF  R0

o
is compact (closed and bounded) and

non empty since it contains Ã0, and hence there exists Ã⇤ 2 S(Hn)+ such that J(VnÃ⇤V
⇤

n
) =

inf
Ã2S(Hn)+, kÃkFR0

J(VnÃV
⇤

n
). Going back up the previous equalities, this shows that A⇤ =

VnÃ⇤V
⇤

n
2 Sn(H)+ and J(A⇤) = infA⌫0 J(A).

B.3.4 Proof of Thm. 1

We will prove the following Thm. 7 whose statement is that of Thm. 1 with more general assumptions.
Theorem 7. Let L be lower semi-continuous and bounded below, and ⌦ satisfying Assumption 1.
Then Eq. (5) has a solution A⇤ which can be written in the form

nX

i,j=1

Bij�(xi)�(xj)
>
, for some matrix B 2 Rn⇥n

, B ⌫ 0.

Moreover, if L is convex, and ⌦ is of the form Eq. (6) with �2 > 0, this solution is unique. By Eq. (4),
A⇤ corresponds to a function of the form

f⇤(x) =
nX

i,j=1

Bijk(x, xi)k(x, xj).

Lemma 3. The set Sn(H)+ can be represented in the following way

Sn(H)+ =

8
<

:
X

1i,jn

Bi,j�(xi)�(xj)
>
, : B 2 Rn⇥n

, B ⌫ 0

9
=

; .

In particular, for any A 2 Sn(H)+, there exists a matrix B 2 Rn⇥n, B ⌫ 0 such that

A =
X

1i,jn

Bi,j�(xi)�(xj)
> =) 8x 2 X , fA(x) =

X

1i,jn

Bi,jk(xi, x)k(xj , x).

Proof. Define Sn : H ! Rn to be the operator such that

8h, Sn(h) =
�
h
>
�(xi)

�
1in

,

with adjoint S⇤

n
: Rn ! H such that

8↵ 2 Rn
, S

⇤

n
↵ =

nX

i=1

↵i�(xi).

Note that for any B 2 Rn⇥n
, S

⇤

n
BSn =

P
i,j

Bi,j�(xi)�(xj)>.

1. Proving Sn(H)+ ⇢
nP

1i,jn
Bi,j�(xi)�(xj)>, : B 2 Rn⇥n

, B ⌫ 0
o

. Let ⇧nA⇧n 2
Sn(H)+. Using the previous equality, we want to show there exists B 2 Rn⇥n

, B ⌫ 0 such
that ⇧nA⇧n = S

⇤

n
BSn. Using Lemma 4, we see that ⇧n can be written in the form S

⇤

n
Tn where

Tn : H ! Rn (write ⇧n = OnO
⇤

n
and note that On is of the form S

⇤

n
Õn). Hence, defining B to be

the matrix associated to the operator TnAT
⇤

n
: Rn ! Rn, it holds ⇧nA⇧n = S

⇤

n
BSn. Moreover,

A ⌫ 0 implies B = TnAT
⇤

n
⌫ 0.
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2. Proving
nP

1i,jn
Bi,j�(xi)�(xj)>, : B 2 Rn⇥n

, B ⌫ 0
o

⇢ Sn(H)+. Let
B 2 Rn⇥n

, B ⌫ 0. Since B ⌫ 0, A := S
⇤

n
BSn ⌫ 0. Since S

⇤

n
has its range included

in Hn, ⇧nS
⇤

n
= S

⇤

n
. Thus, ⇧nA⇧n = A and hence A 2 Sn(H)+.

The second statement comes from the definition of fA(x). Indeed assume A 2 Sn(H)+. By
definition, fA(x) = �(x)>A�(x). Moreover, by the previous point, there exists B 2 Rn⇥n

, B ⌫ 0
such that A =

P
1i,jn

Bi,j�(xi)�(xj)>. Combining these two facts yields:

8x 2 X , fA(x) =
X

1i,jn

Bi,j�(x)
>
�(xi) �(xj)

>
�(x) =

X

1i,jn

Bi,jk(x, xi) k(x, xj).

The last equality comes from the definition k(x, x̃) = �(x)>�(x̃).

Proof of Thm. 7. Under the assumptions of Thm. 7, one satisfies the assumptions of Proposition 7.
Thus, Eq. (5) has a solution A⇤ which is in Sn(H)+. Now applying Lemma 3, A⇤ can be written in
the form A⇤ =

P
i,j

Bi,j�(xi)�(xj)> for B 2 Rn⇥n, B ⌫ 0, and hence

8x 2 X , fA⇤(x) =
X

i,j

Bi,jk(x, xi)k(x, xj).

Uniqueness in the case where ⌦ is of the form Eq. (6) with �2 > 0 comes from the fact that the loss
function is strongly convex in this case, and thus the minimizer is unique.

B.4 Proof of Proposition 3

Recall the definitions of Sn : H ! Rn and its adjoint S⇤

n
: Rn ! H :

8h, Sn(h) =
�
h
>
�(xi)

�
1in

, 8↵ 2 Rn
, S

⇤

n
↵ =

nX

i=1

↵i�(xi).

Note that the kernel matrix K = (k(xi, xj))1i,jn
can also be written as K = SnS

⇤

n
.

Let r be the rank of K and V 2 Rr⇥n be a matrix such that

V>V = K.

Note that V is of rank r and hence VV> is invertible, making the following definition of On : Rr !
H valid:

On = S
⇤

n
V>(VV>)�1

.

The following result holds :
Lemma 4. OnO

⇤

n
= ⇧n and O

⇤

n
On = Ir.

Proof. Using the fact that V>V = K = SnS
⇤

n
, we have

O
⇤

n
On = (VV>)�1VSnS

⇤

n
V>(VV>)�1 = (VV>)�1VV>VV>(VV>)�1 = Ir.

Now let us show that OnO
⇤

n
= ⇧n. First of all, ⇧̃n := OnO

⇤

n
is self adjoint and is a projec-

tion operator since ⇧̃2
n
= On(O⇤

n
On)O⇤

n
= OnO

⇤

n
= ⇧̃n by the previous point. Moreover, its

range is included in span(�(xi))1in since On = S
⇤

n
Õn for a certain Õn and the range of S⇤

n
is

span(�(xi))1in. Finally since the rank of S⇤

n
is also the rank of SnS

⇤

n
which is r, we deduce that

the range of span(�(xi))1in is of dimension r and hence, since O
⇤

n
On = Ir implies that OnO

⇤

n

is of rank r, putting things together, ⇧̃n = ⇧n.

Remark 6 (Constructing V). In the case where the kernel matrix K is full rank, V 2 Rn⇥n and is
invertible, and On can be simply written S

⇤

n
V�1.

In the case where the kernel matrix K is not full-rank, we build V as V = ⌃1/2U>, where ⌃ 2 Rr⇥r

is diagonal and U 2 Rn⇥r is unitary and correspond to the economy eigendecomposition of K
where r is the rank of K, i.e., K = U⌃U>.
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Consider the following generalization of the finite dimensional model proposed in Eq. (8) in the case
where K is not necessarily full rank :

f̃A(x) = �(x)>A�(x), A 2 Rr⇥r
, A ⌫ 0, (8)

where � : X 7! Rr is defined as �(x) = O
⇤

n
�(x) = (VV>)�1Vv(x), where v(x) =

(k(xi, x))1in 2 Rn.

We are now ready to prove Proposition 3.

Proof of Proposition 3. Recall

minA⌫0 L(f̃A(x1), . . . , f̃A(xn)) + ⌦(A). (9)

The fact that Eq. (9) has a solution, and that this solution is unique if �2 > 0 and L is convex can
be seen as a simple consequence of Thm. 7 in the case where the model considered is the finite
dimensional model defined in Eq. (8). Let us now prove the other part of the proposition.

Start by noting that with our definition of On, for all A 2 Rr⇥r
, A ⌫ 0,

fOnAO⇤
n
= f̃A. (a)

Moreover,
�
OnAO

⇤

n
: A 2 Rr⇥r

, A ⌫ 0
 
= Sn(H)+. (b)

Finally, since On is an isometry which implies ⌦(OnAO
⇤

n
) = ⌦(A) and by Eq. (a), for any

A 2 S(Rn)+, it holds :

L(fOnAO⇤
n
(x1), ..., fOnAO⇤

n
(xn)) + ⌦(OnAO

⇤

n
) = L(f̃A(x1), ..., f̃A(xn)) + ⌦(A). (c)

Now combining Eq. (c) and Eq. (b), any solution A⇤ to Eq. (9) corresponds to a solution A⇤ 2
argminA2Sn(H)+ L(fA(x1), ..., fA(xn)) + ⌦(A), where A⇤ = OnA⇤O

⇤

n
. Now using Eq. (16) in

the proof of Proposition 7, we see that A⇤ is also a minimizer of Eq. (5) hence the result.

Note that the fact that the condition number of the problem, if it exists, is preserved because On is an
isometry.

B.5 Proof of Thm. 2 and algorithmic consequence.

In this section, we prove Thm. 2 and explain how to derive an efficient algorithm to solve it in certain
cases.

Let us start by proving the following lemma.
Lemma 5. Let �1,�2 � 0 and assume �2 > 0. Let ⌦+ be defined on S(Rr) as follows :

⌦+(A) =

⇢
�1kAk? + �2

2 kAk2
F

if A ⌫ 0;
+1 otherwise .

Then ⌦+ is a closed convex function, and its Fenchel conjugate is given for any B 2 S(Rr) by the
formula:

⌦⇤

+(B) =
1

2�2

��[B � �1I]+
��2
F
.

Moreover, ⌦+ is differentiable at every point, and is 1/�2 smooth. Its gradient is given by:

r⌦⇤

+(B) =
1

�2
[B � �1I]+ .

Proof. Write

⌦+(A) = ◆S(Rr)+ + �1kAk? +
�2

2
kAk2

F
.

18



Here, ◆C stands for the characteristic function of the convex set C, i.e. ◆C(x) = 0 if x 2 C and +1
otherwise. Since k · k2

F
and k · k? are both convex, continuous, and real valued, and since ◆S(Rr)+ is

closed since S(Rr)+ is a closed non-empty convex subset of S(Rr), this shows that ⌦+ is indeed
convex and closed. Note that it is continuous on its domain S(Rr)+. Moreover, it is strongly convex
since �2 > 0. Fix B 2 S(Rr) and consider the problem

sup
A2S(Rr)

Tr(AB)� ⌦+(A) = sup
A⌫0

Tr(A(B � �1I))�
�2

2
kAk2

F

Since ⌦+ is strongly convex, we know there exists a unique solution to this problem.

Note that A⇤ = argmaxTr(AB)� ⌦+(A) if and only if

A⇤ = argminA2S(Rr)+

1

2

����

✓
A� 1

�2
(B � �1I)

◆����
2

.

That is A⇤ is the orthogonal projection of B��1I

�2
on S(Rr)+ for the Frobenius scalar product. Hence,

A⇤ =
h
B��1I

�2

i

+
.

Here, for any symetric matrix C, we denote with [C]+ resp [C]� its positive resp negative part. Given
an eigendecomposition C = U⌃UT with ⌃ diagonal, they are defined by [C]+ = U max(0,⌃)UT

and [C]� = U max(0,�⌃)UT . Hence, the Fenchel conjugate of ⌦+ is given by

⌦⇤

+(B) =
1

2�2

��[B � �1I]+
��2
F
.

Consider !⇤

+ : � 2 R 7! max(0,�2) 2 R. !⇤

+ is 1-smooth and differentiable, and (!⇤

+)
0(�) =

max(0,�). Hence, the function

B 7! Tr(!⇤

+(B)) = k[B]+k2F
is differentiable and 1-smooth, with differential given by the spectral function (!⇤

+)
0(B) = [B]+.

Hence, ⌦+ is differentiable and r⌦⇤

+(B) = 1
�2
[B � �1I]+, and is 1/�2 smooth.

Theorem 8 (Convex dual problem). Let L : Rn ! R [ {+1} be convex closed function and L
⇤

be the Fenchel conjugate of L (see [BV04] for the definition of closed and of the dual conjugate).
Assume ⌦ is of the form Eq. (6). Assume there exists A 2 Rr⇥r, A ⌫ 0 such that L is continuous in
(f̃A(xi))1in.

Then the problem in Eq. (9) has the following dual formulation,

sup
↵2Rn

�L
⇤(↵)� 1

2�2
k[VDiag(↵)V> + �1I]�k2F , (10)

and this supremum is atteined. Let ↵⇤ 2 Rn be a solution of (10). Then, the solution of (5) is
obtained via (7), with B 2 Rr⇥r

,B ⌫ 0 as

B = V>(VV>)�1

✓
1

�2

⇥
VDiag(↵⇤)V

> + �1I
⇤
�

◆
(VV>)�1V. (11)

Proof of Thm. 8. We apply theorem 3.3.1 of [BL10] with the following parameters (on le left, the
ones in theorem 3.3.1 of [BL10] and on the right the ones by which we replace them).

E S(Rr)
Y Rn

A : E ! Y R : A 2 S(Rr) 7! (f̃A(x1), ..., f̃A(xn)) 2 Rn

f : E !]�1,+1] ⌦+ : S(Rr) !]�1,+1]
g : Y !]�1,+1] L : Rn !]�1,+1]

p = infx2E g(Ax) + f(x) p = infA2S(Rr) L(f̃A(x1), ..., f̃A(xn)) + ⌦+(A)
d = sup�2Y �g

⇤(�)� f
⇤(�A

⇤
�) d = sup↵2Rn �L

⇤(↵)� ⌦⇤

+(�R
⇤(↵))
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Indeed, for all 1  i  n, if � is defined in Eq. (8), �(xi) = Vei and thus f̃A(xi) =

�(xi)>A�(xi) = e
>

i
(V>AV)ei. Thus, for any A 2 S(Rr), R(A) :=

⇣
f̃A(xi)

⌘

1in

=

Diag(V>AV). The following properties are satisfied :

• L is lower semi-continuous, convex and bounded below hence closed (see [BL10]);

• similarly, ⌦+ is a non negative closed convex function, with dual ⌦⇤

+ given in Lemma 5
which is differentiable and smooth;

• dom(⌦+) = S(Rn)+ ;

• R is linear, and for any ↵ 2 Rn, it holds R⇤
↵ = VDiag(↵)V>;

• The dual d can therefore be re-expressed as Eq. (10), using the expressions for ⌦⇤

+ and R
⇤ :

sup
↵2Rn

�L
⇤(↵)� 1

2�2

���
⇥
VDiag(↵)V> + �1I

⇤
�

���
2

F

(10)

• Assume there exists A 2 Rr⇥r, A ⌫ 0 such that L is continuous in (f̃A(xi))1in. Then
there exists a point of continuity of g such which is also in R dom f , hence the assumption
of theorem 3.3.1 of [BL10] is satisfied.

Applying theorem 3.3.1 of [BL10], the following properties hold:

• d = p,

• d is atteined for a certain ↵⇤ 2 Rn. Indeed, there exists A 2 dom⌦+ such that R(A) 2
dom(L). Thus , L(R(A)) + ⌦+(A) < +1 and hence d < +1. Moreover, since L and
⌦+ are lower bounded, this shows that d is lower bounded and hence d > �1. Hence d is
finite and thus is atteined by theorem 3.3.1.

Now using Exercise 4.2.17 of [BL10] since L and⌦+ are closed convex and since⌦⇤

+ is differentiable,
we see that the optimal solution of the primal problem A⇤ is given by the following formula:

A⇤ = r⌦⇤

+(�R
⇤
↵
⇤) =

1

�2

⇥
VDiag(↵⇤)V

> + �1I
⇤
�
.

Thus, for any x 2 X , using the definition of �(x), it holds

f̃A(x) = �(x)>A⇤�(x) = v(x)>V>(VV>)�1

✓
1

�2

⇥
VDiag(↵⇤)V

> + �1I
⇤
�

◆
(VV>)�1Vv(x).

Thus, setting

B = V>(VV>)�1

✓
1

�2

⇥
VDiag(↵⇤)V

> + �1I
⇤
�

◆
(VV>)�1V,

it holds f̃A(x) = v(x)>Bv(x). Since v(x) = (k(x, xi))1in 2 Rn, this shows the result. In
particular, note that when V is invertible (i.e. when K is full rank) then the equation above is exactly
Eq. (11), since V>(VV>)�1 = V�1.

Proof of Thm. 2. It is a direct consequence of the previous theorem.

Note that the conditions of theorem Thm. 2 are satisfied in many interesting cases, such as the ones
described in the following proposition.
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Proposition 8. Assume one of the following conditions is satisfied :

(i) dom(L) = Rn;

(ii) Rn
++ ⇢ dom(L) and k(xi, xi) > 0 for all 1  i  n

(iii) K is full rank and there exists a continuity point ↵0 of L such that ↵0 2 Rn
+.

Then there exists A 2 S(Rn)+ such that L is continuous in (f̃A(x1), ..., f̃A(xn)).

Proof. Let us prove these points.

• if dom(L) = Rn, since L is convex, L is continuous everywhere. Taking A = 0, the result
holds.

• if k(xi, xi) > 0 for all i > 0, then taking A = Ir, we have (f̃A(xi))1in =
(k(xi, xi))1in 2 Rn

++. Since Rn
++ ⇢ dom(L) and Rn

++ is open, L is continuous
on Rn

++ and hence, A satisfies the desired property.

• Let ↵0 be a continuity point of L in Rn
+. If we assume K is full rank, then in particular,

V 2 Rn⇥n is of rank n and invertible. Thus, there exists A 2 S(Rr)+ such that
V>AV = Diag(↵0) =) (f̃A(xi))1in = ↵0.

Discussion on how to solve Eq. (10) Proximal splitting methods can be applied to solve Eq. (10)
such as FISTA [BT09], provided the proximal operator of L⇤ can be computed (see [PB14] for the
definition of the proximal operator). Indeed, Eq. (10) can be written as

min
↵2Rn

F (↵) = f(↵) + g(↵), f(↵) = ⌦⇤

+(�VDiag(↵)V>), g(↵) = L
⇤(↵).

where ⌦⇤

+ has been defined in Lemma 5 and has been shown to be smooth and differentiable. Thus,
since ↵ 7! VDiag(↵)V> is linear, f is smooth and differentiable. Moreover, one can have access to
the gradient of f by performing an eigenvalue decomposition of VDiag(↵)V> whose complexity is
bounded above by O(r3). Thus, one can apply one of the algorithms in section 4 of [BT09] in order
to compute an optimal solution to Eq. (10). Moreover, a bound on the performance of the algorithm is
given in theorem 4.4 of this same work. Note that if L is of the form L(↵) =

P
n

i=1 `i(↵i), it suffices
to be able to compute the proximal operator of the `i to get a proximal operator for L⇤ (see [PB14]).

B.6 Proof and additional discussion of Thm. 3

We recall the notion of universality [MXZ06], in particular cc-universality [SFL11], here explicited in
the context of non-negative functions. A set F is a universal approximator for non-negative functions
on X if, for any compact subset Z of X , we have that the set F|Z of restrictions on Z , defined as
F|Z = {f |Z | f 2 F}, is dense in the set C+(Z) of non-negative continuous functions over Z in
the maximum norm. In the following theorem we prove the cc-universality of the proposed model
Theorem 9. Let X be a locally compact Hausdorff space, H a separable Hilbert space and � : X !
H a cc-universal feature map. Let k · k� be a norm for S(H) such that k · k? D k · k�. Then F�

�
is a

cc-universal approximator for the non-negative functions on X .

Proof. Proving that the proposed model is a cc-universal approximator for non-negative functions, is
equivalent to require that given a compact set Z ✓ X , a non-negative function g : Z ! R+ and ✏ > 0,
there exists fAg,Z,✏ 2 F�

�
such that kg � fAg,Z,✏kC(Z)  ✏. In particular, let Q = 2kgk1/2

C(Z) + ✏
1/2,

since � is cc-universal, given Z, g, ✏, there exists wp
g,Z,

✏

Q

such that kpg� �(·)>wp
g,Z,

✏

Q

kC(Z) 
✏

Q
. Define Ag,Z,✏ = wp

g,Z,
✏

Q

⌦ wp
g,Z,

✏

Q

. Note that for any x 2 X ,

fAg,Z,✏(x) = �(x)>Ag,Z,✏�(x) = �(x)>
✓
wp

g,Z,
✏

Q

⌦ wp
g,Z,

✏

Q

◆
�(x) = (�(x)>wp

g,Z,
✏

Q

)2.

(17)
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Then, by denoting with h(x) =
p
g(x)� �(x)>wp

g,Z,
✏

Q

, we have

kg � fAg,Z,✏kC(Z) = sup
x2Z

|g(x)� (�(x)>wp
g,Z,

✏

Q

)2| (18)

= sup
x2Z

����

✓p
g(x)� �(x)>wp

g,Z,
✏

Q

◆✓p
g(x) + �(x)>wp

g,Z,
✏

Q

◆���� (19)

= sup
x2Z

|h(x)(2
p

g(x)� h(x))| (20)

 khkC(Z)(2k
p
gkC(Z) + khkC(Z)) (21)

 ✏

Q

✓
2kgk1/2

C(Z) +
✏

Q

◆
 ✏. (22)

The last step is due to the fact that ✏/Q 
p
✏, then 2kgk1/2

C(Z) +
✏

Q
 Q.

B.7 Proof and additional discussion of Thm. 4

In Thm. 10, stated below, we prove that E� ✓ F� under the very general assumption that G� is a
multiplication algebra, i.e.. if G� is closed under pointwise product of the functions. In Thm. 11 we
specify this result when G� is a Sobolev space, proving that E� ( F�

�
. Thm. 4 is a direct consequence

of the latter theorem.

General result when G� is a multiplication algebra. First we endow G� with a Hilbertian norm.
Define k · kG� as kfwkG� = kwkH, for any w 2 H.
Definition 3. G� is a multiplication algebra, when there exists a constant C such that the unit
function u : X ! R that maps x 7! 1 for any x 2 X is in G� and

kf · gkG�  CkfkG�kgkG� , 8 f, g 2 G�, (23)

where we denote by f · g the pointwise multiplication, i.e., (f · g)(x) = f(x)g(x) for all x 2 X .
Remark 7 (Renormalizing the constant). Note that when G� is a multiplication algebra for a constant
C, it is always possible to define an equivalent norm k · k0

G�
as k · k0

G�
= Ck · kG� for which G� is a

multiplication algebra with constant 1.
Theorem 10 (General version when G� is an algebra). Let k · k? D k · k�. Let X be a compact space
and � be a bounded continuous map such that G� is a multiplication algebra, then E� ✓ F�

�
.

Proof. Let g 2 E� and take f 2 G� such that g(x) = e
f(x) for all x 2 X . First we prove that

E� ✓ F�

�
. With this goal, first we prove that pg 2 G� and then we construct a rank one positive

operator such that fAg (x) = g(x) for every x 2 X . We start noting that, given f 2 G� and t 2 N, f t

defined by f · f t�1 for t 2 N satisfies f t 2 G�, with kf tkG�  C
tkfkt

G�
, by repeated application of

the Eq. (23). Moreover note that the function s =
P

t2N
1

2tt!f
t
, satisfies s 2 G�, indeed

kskG� 
X

t2N

1

2tt!
kf tkG� 

X

t2N

1

2tt!
C

tkfkt
G�

 e
CkfkG�

/2
.

Moreover s satisfies s(x) =
p
g(x) for all x 2 X , indeed for x 2 X we have

s(x) = �(x)>s =
X

t2N

1

2tt!
�(x)>f t =

X

t2N

1

2tt!
f
t(x) = e

f(x)/2 =
p
g(x).

Now let Ag = s ⌦ s, we have that kAgk�  kAgk? by assumption, and kAgk? = ksk2
G�

< 1, so
the function fAg 2 F�

�
and for any x 2 X

fAg (x) = �(x)>Ag�(x) = �(x)>(s⌦ s)�(x) = (�(x)>s)2 = g(x).

Since for any g 2 E� there exists fAg 2 F�

�
that is equal to g on their domain of definition, we have

that E� ✓ F�

�
.

Now we are going to specialize the result above for Sobolev spaces.
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Result for Sobolev spaces The result below is based on the general result in Thm. 10, however it
is possible to do a proof based only on norm inequalities for compositions of functions in Sobolev
space (see for example [BM01]). While more technical, this second approach would allow to derive
also a more quantitative analysis on the norms of the functions in G� and F�

�
. We will leave this for a

longer version of this work.
Theorem 11. Let k · k? D k · k�. Let X ✓ Rd and X compact with locally Lipschitz boundary and
let G� = W

m
2 (X ). Let x0 2 X . Then the following holds:

(a) E� ( F�

�
. (b) The function fx0(x) = e

�kx�x0k
�2 2 C

1(X ) satisfies fx0 2 F�

�
and fx0 /2 E�.

Proof. First we prove that E� ✓ F�

�
, via Thm. 10, then we show an example of function that is in

F�

�
, but not in E�, obtaining E� ( F�

�
. To apply this result we need first to prove that G� = W

m
2 (X )

is a multiplication algebra when W
m
2 (X ) is a RKHS as in our case.

Step 1, m > d/2. First note that G� satisfies m > d/2 since W
m
2 (X ) admits a representation in

terms of a separable Hilbert space H and a feature map � : X ! H, i.e., it is a reproducing Kernel
Hilbert space and for the same reason k · kG� is equivalent to k · kWm

2 (X ) [Wen04].

Step 2. G� is a multiplication algebra. Applying Thm. 10. Since G� = W
m
2 (X ) with m > d/2,

then it is a multiplication algebra. This result is standard (e.g. see pag. 106 of [AF03] for m 2 N and
X = Rd) and we report it in Lemma 8 in Appendix C. Then we apply Thm. 10 obtaining E� ✓ F�

�
.

Step 3. Proving that fx0 2 F�

�
and not in E�. By construction the function v(x) = e

�1/(2kx�x0k
2)

is in C
1(X ) and so in W

m
2 (X ) for any m � 0. Since G� = W

m
2 (X ), then v 2 G�, i.e., there exists

w 2 H such that w>
�(·) = v(·). Define Av = w ⌦ w, then

fAv (x) = �(x)>Av�(x) = (w>
�(x))2 = v

2(x) = fx0(x), 8x 2 X .

Then fx0 = fAv on X , i.e., fx0 2 F�

�
. To conclude note that, fx0 does not belong to E�, since x0 2 X

and fx0(x0) = 0, while for any g 2 E� we have infx2X g(x) > 0. Indeed, we have that for any
f 2 G�, kfkC(X ) = supx2X

|f(x)| < 1, since G� = W
m
2 (X ) ⇢ C(X ). Moreover, given g 2 G�,

and denoting by f 2 G� the function such that g = e
f , we have that infx2X g(x) � e

�kfkC(X) > 0.
Finally, since E� ✓ F�

�
, but there exists fx0 2 F�

�
and not in E�, then E� ( F�

�
.

Proof of Thm. 4. This result is a direct application of Thm. 11, since X = [�R,R]d, with
R 2 (0,1) is a compact set with Lipschitz boundary.

B.8 Proof of Thm. 5

We recall here the Rademacher complexity and prove Thm. 5. This latter theorem is obtained from
the following Thm. 12 that bounds the empirical Rademacher complexity introduced below. First we
recall that the function class F�

�,L
is defined as

F�

�,L
= {fA | A ⌫ 0, kAk�  L},

for a given norm k · k� on operators, a feature map � : X ! H and L > 0. Now we define the
empirical Rademacher complexity and the Rademacher complexity [BM02]. Given x1, . . . , xn 2 X ,
the empirical Rademacher complexity for a class F of functions mapping X to R, is defined as

bRn(F) = 2E sup
f2F

�����
1

n

nX

i=1

�if(xi)

����� ,

where �i independent Rademacher random variables, i.e., �i = �1 with probability 1/2 and +1 with
probability 1/2 and the expectation is on �1, . . . ,�n. Let ⇢ be a probability distribution on X and
x1, . . . , xn sampled independently according to ⇢. The Rademacher complexity Rn(F) is defined as

Rn(F) = E bRn(F),

where the last expectation is on x1, . . . , xn. In the following theorem we bound bRn.
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Theorem 12. Let k · k� D k · kF . Let x1, . . . , xn 2 X , L � 0.

bRn(F�

�,L
)  2L

n

vuut
nX

i=1

k�(xi)k4.

Proof. Given fA 2 F�

�,L
, since k · k� is stronger or equivalent to Hilbert-Schmidt norm, we have

that kAkF  kAk�  L. Since A is bounded and �(·) 2 H, by linearity of the trace we have
fA(x) = �(x)>A�(x) = Tr(A �(x)⌦ �(x)) for any x 2 X . Then, by linearity of the trace

R̂n(F�

�,L
) = 2E sup

f2F
�
�,L

�����
1

n

nX

i=1

�if(xi)

����� = 2E sup
A⌫0,kAk�L

�����
1

n

nX

i=1

�i�(xi)
>
A�(xi)

����� (24)

= 2E sup
A⌫0,kAk�L

�����
1

n

nX

i=1

�i Tr(A (�(xi)⌦ �(xi)))

����� (25)

= 2E sup
A⌫0,kAk�L

�����Tr
 
A

 
1

n

nX

i=1

�i�(xi)⌦ �(xi)

!!����� (26)

Now since k · k� is stronger or equivalent to k · kF this means that {A 2 S(H) | kAk�  L} ✓ {A 2
S(H) | kAkF  L}, then

2E sup
A⌫0,kAk�L

�����Tr
 
A

 
1

n

nX

i=1

�i�(xi)⌦ �(xi)

!!����� (27)

 2E sup
A⌫0,kAkFL

�����Tr
 
A

 
1

n

nX

i=1

�i�(xi)⌦ �(xi)

!!����� (28)

 2E sup
A⌫0,kAkFL

kAkF
���
1

n

nX

i=1

�i�(xi)⌦ �(xi)
���
F

(29)

 2L E
���
1

n

nX

i=1

�i�(xi)⌦ �(xi)
���
F

. (30)

To conclude denote by ⇣i the random variable �i�(xi)⌦ �(xi). Then

E
��� 1
n

nX

i=1

�i�(xi)⌦ �(xi)
���
2

F

= E k 1
n

nX

i=1

⇣ikF

= E

vuutTr

 ⇣
1
n

nX

i=1

⇣i

⌘⇤⇣
1
n

nX

i=1

⇣i

⌘!
= E

vuutTr
⇣

1
n2

nX

i,j=1

⇣i⇣j

⌘
.

By Jensen inequality, the concavity of the square root, and the linearity of the trace

E

vuutTr
⇣

1
n2

nX

i,j=1

⇣i⇣j

⌘


vuutE Tr
⇣

1
n2

nX

i,j=1

⇣i⇣j

⌘
=

vuut 1
n2

nX

i,j=1

Tr(E⇣i⇣j).

Now note that for i 2 {1, . . . , n}, we have E�i⇣i = 0, moreover E�2
i
= k�(xi)k2�(xi) ⌦ �(xi).

Finally, given x1, . . . , xn, we have that ⇣i is independent from ⇣j , when i 6= j. Then when i 6= j

we have Tr(E⇣i⇣j) = Tr((E�i⇣i)(E�j⇣j)) = 0. When i = j we have Tr(E⇣i⇣j) = Tr(E⇣2
i
) =

k�(xi)k4. So

1

n2

nX

i,j=1

Tr(E⇣i⇣j) =
1

n2

nX

i=1

k�(xi)k4.

From which we obtain the desired result.

Now we are ready to bound Rn as follows
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Proof Thm. 5. The proof is obtained by applying Thm. 12 and considering that k�(x)k is uniformly
bounded by c on X . Then

Rn(F) = Ex1,...,xn
bRn(F)  Ex1,...,xn

2L

n

vuut
nX

i=1

k�(xi)k4  2Lc2p
n

.

B.9 Learning rates

By using a standard argument based on the Rademacher complexity (see [SSBD14] Chapter 26, or
[Bac17] paragraph 4.5 and in particular Eq. (13) we can derive the following learning rates for the
proposed model. Let the population risk be defined as R(f) = Ex,y`(y, f(x)) for some G-Lipschitz
loss function ` and bRD be the empirical version bRD(f) = 1

n

P
n

i=1 `(yi, f(xi)) for a given dataset
D of n examples. Recall we are given a norm k · k� (e.g., Frobenius or nuclear), a feature map �
and a radius L, and that we define the class of estimators F�

�,L
:= {fA | kAk�  L}. Denote by

bfD,L = argminf2F
�
�,L

bRD(f) the empirical risk minimization solution over the set F�

�,L
, so

EDR( bfD,L)� inf
f2F

�
�,L

R(f)  2ED

h
sup

f2F
�
�,L

|R(f)� bRD(f)|
i
 2GRn(F�

�,L
),

where Rn(F�

�,L
) is the Rademacher complexity of the set F�

�,L
and is bounded by 2Lc

2
p
n

by Thm. 12.
(c is the bounding constant of the kernel, i.e., c = supx2X

k�(x)k).
Remark 8. Note that assuming there exists an operator A? with kA?k� finite (in particular it
could be rank-1, i.e. A? = w?w

>

?
for some w?), such that the learning problem is well posed, i.e.

inff2C(X) R(f) = R(fA?), and choosing L = kA?k�, we obtain the learning rate EDR( bfD,L)�
R(fA?) = O(c2G kA?k�/

p
n), which is the standard rate for linear models (see [SSBD14] for more

details).

B.10 Proof of Proposition 4

See Appendix A for the basic technical assumptions on X , H and �. In particular X is Polish and �
is continuous and uniformly bounded by a constant c.

Proof of Proposition 4. In the following we will consider integrability and measurability with respect
to a measure dx on X . In particular p : X ! R is an integrable function on X with respect to the
measure dx. Now define  (x) = p(x)�(x)�(x)>. We have that  is measurable, since � and p are
measurable. Since p is integrable, p is finite almost everywhere, and hence  (x) = p(x)�(x)�(x)>

is defined and trace class almost everywhere, and satisfies

k (x)k? = |p(x)| k�(x)k2
H

 |p(x)|c2 almost everywhere.

Since the space of trace class operators is separable, this shows that  is Bochner integrable and
thus that the operator Wp =

R
x2X

�(x)�(x)>p(x)dx is well defined and trace class, with trace norm
bounded by 2kpkL1(X ). Moreover, by linearity of the integral, for any A 2 S(H),

Tr(AWp) =

Z

X

Tr(A�(x)�(x)>)p(x)dx =

Z

X

fA(x)p(x)dx,

where the last equality follows from the definition of fA and the fact that

Tr(A�(x)�(x)>) = Tr(�(x)>A�(x)) = �(x)>A�(x) = fA(x).

Remark 9 (Extension to more general linear functionals.). Note that the linearity of the model in
A allows to generalize very easily the construction above to any linear functional that we want to
apply to the model. This is especially true when the model has a finite dimensional representation as
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Eq. (7), i.e. fB =
P

n

ij=1 Bi,jk(x, xi)k(x, xj) with B ⌫ 0. In this case, given a linear functional
L : C(X ) ! R, we have

L(fB) =
nX

i,j=1

Bi,jL(k(x, xi)k(x, xj)) = Tr(BWL),

where (WL)i,j = L(k(x, xi)k(x, xj)) for i, j = 1, . . . , n.

B.11 Proof of Proposition 5

In Appendix B.11 and Appendix B.12, we will use the following notations.

Let h, p 2 N and H,H1,H2 be separable Hilbert spaces.

• A = (As)1sp 2 S(H)p will denote a family of self-adjoint operators;
• Given a feature map � : X ! H and A = (As)1sp 2 S(H)p we will define the function
fA as follows

8x 2 X , fA(x) = (fAs(x))1sp =
�
�(x)>As�(x)

�
1sp

2 Rp
, fA : X ! Rp

• Given a matrix C 2 Rp⇥h which corresponds to a list of column vectors (ct)1th 2 (Rp)h,
we define

K
C(H) :=

(
A = (As)1sp 2 S(H)p :

pX

s=1

c
t

s
As ⌫ 0, 1  t  h

)

• For any A = (As)1sp 2 S(H1)p and any bounded linear operator L : H1 ! H2, LAL
⇤

will be a slight abuse of notation to denote the family (LAsL
⇤)1sp 2 S(H2)p.

Proof of Proposition 5. Let p, h 2 N and let C 2 Rp⇥h be a matrix representing the column vectors
c
1
...c

h.
Let Y be the polyhedral cone defined by C, i.e. Y =

�
y 2 Rp : C

>
y � 0

 
.

Let H be a separable Hilbert space and � : X ! H be a fixed feature map.
With our previous notations, our goal is to prove that for any A = (As)1sp 2 S(H)p,

A 2 K
C(H) =) 8x 2 X , fA(x) 2 Y.

Assume A 2 K
C(H) and let x 2 X . By definition, fA(x) = (�(x)>As�(x))1sp 2 Rp. Hence,

C
>
fA(x) =

 
pX

s=1

c
t

s
�(x)>As�(x)

!

1th

=

 
�(x)>

 
pX

s=1

c
t

s
As

!
�(x)

!

1th

.

Since A 2 K
C(H), for all 1  t  h, it holds

P
p

s=1 c
t
s
As ⌫ 0. In particular, this implies

�(x)>
P

p

s=1 c
t
s
As�(x) � 0 for all 1  t  h. Hence

C
>
fA(x) � 0 =) fA(x) 2 Y.

B.12 Proof of Thm. 6

Using the notations of the previous section, the goal of this section is to solve a problem of the form

inf
A2KC(H)

L(fA(x1), ..., fA(xn)) + ⌦(A), (15)

for given p, h 2 N, C 2 Rp⇥h, separable Hilbert space H, feature map � : X ! H, regularizer ⌦,
loss function L : Rn ! R [+1 and x1, ..., xn 2 X .

We start by stating the form of the regularizers we will be using.
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Assumption 2. Let p 2 N. For any separable Hilbert space H and any A = (As)1sp 2 S(H)p,
⌦ is of the form

⌦(A) =
pX

s=1

⌦s(As), ⌦s(As) = �s,1kAsk? +
�s,2

2
kAsk2F ,

where �s,1,�s,2 � 0 and �s,1 + �s,2 > 0.
Lemma 6 (Properties of ⌦). Let ⌦ be a regularizer such that ⌦ satisfies Assumption 2. Then ⌦
satisfies the following properties.

(i) For any separable Hilbert spaces H1,H2 and any linear isometry O : H1 ! H2, i.e., such
that O⇤

O = IH1 , it holds

8A 2 S(H1)
p
, ⌦(OAO

⇤) = ⌦(A).

(ii) For any separable Hilbert space H and any orthogonal projection⇧ 2 S(H1), i.e. satisfying
⇧ = ⇧⇤

, ⇧2 = ⇧, it holds

8A 2 S(H)p, ⌦(⇧A⇧)  ⌦(A).

(iii) For any finite dimensional Hilbert space Hn, taking ||As||op to be the operator norm on
Hn,

⌦ is continuous, ⌦(A) �!
sups ||As||op!+1

+1

Proof. Note that since

⌦(A) =
pX

s=1

⌦s(As), ⌦s(As) = �s,1kAsk? +
�s,2

2
kAsk2F ,

where �s,1,�s,2 � 0 and �s,1 + �s,2 > 0, it is actually sufficient to prove the following result.
Let �1,�2 � 0 and assume �1+�2 > 0. Let for any A 2 S(H), ⌦(A) = �1kAk?+ �2

2 kAk2
F

. Then
the following hold:

(i) For any separable Hilbert spaces H1,H2 and any linear isometry O : H1 ! H2, i.e., such
that O⇤

O = IH1 , it holds

8A 2 S(H1)
p
, ⌦(OAO

⇤) = ⌦(A).

(ii) For any separable Hilbert space H and any orthogonal projection ⇧ 2 S(H1), i.e. satisfying
⇧ = ⇧⇤

, ⇧2 = ⇧, it holds

8A 2 S(H)p, ⌦(⇧A⇧)  ⌦(A).

(iii) For any finite dimensional Hilbert space Hn,

⌦ is continuous, ⌦(A) �!
kAkop!+1

+1,

where we denote by k · kop the operatorial norm.

1. (i) has already been proven in Lemma 2.

2. Let us prove (ii). Let H be a separable Hilbert space, ⇧ an orthogonal projection on H and
A 2 S(H).

Using the fact that kBk? = sup
kCkop1 Tr(BC), where kCkop denotes the operator norm on S(H),

we have by property of the trace

k⇧A⇧k? = sup
kCkop1

Tr(⇧A⇧C) = sup
kCkop1

Tr(A(⇧C⇧)).
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Now since k⇧C⇧kop  kCkop  1, it holds sup
kCkop1 Tr(A(⇧C⇧))  sup

kCkop1 Tr(AC) =
kAk?. Thus:

k⇧A⇧k?  kAk?.

Moreover, since ⇧ � I , it holds ⇧A⇧A⇧ � ⇧A2⇧. Hence,

k⇧A⇧k2
F
= Tr(⇧A⇧⇧A⇧)  Tr(⇧A2⇧)

Now using the fact that Tr(⇧A2⇧) = Tr(A⇧A), we can once again use the fact that ⇧ � I to show
that A⇧A � A

2 and hence Tr(A⇧A)  Tr(A2). Putting things together, we have shown

Tr(⇧A⇧⇧A⇧)  Tr(A2) =) k⇧A⇧k2
F
 kAk2

F
.

Thus, by summing the inequalities, ⌦(⇧A⇧)  ⌦(A).

3. The proof of (iii) is straightforward. The continuity of ⌦ comes from the fact that it is a norm on
any finite dimensional Hilbert space. Moreover, since �1 > 0 or �2 > 0 , ⌦ goes to infinity.

Remark 10. As in the previous sections, the fact that ⌦ satisfies these three properties is actually
sufficient to complete the proof.

Recall that Hn is the finite dimensional subset of H spanned by the �(xi). Recall that ⇧n is the
orthogonal projection on Hn, i.e.

⇧n 2 S(H), ⇧2
n
= ⇧n, range(⇧n) = Hn.

Define K
C
n
(H) to be the following subspace of KC(H) :

K
C

n
(H) :=

�
⇧nA⇧n : A 2 K

C(H)
 
.

It is straightforward to show that KC
n
(H) ⇢ K

C(H) since projecting left and right preserves the
linear inequalities.
Proposition 9. Let L be a lower semi-continuous function which is bounded below, and assume ⌦
satisfies Assumption 2. Then Eq. (15) has a solution A

⇤ which is in K
C
n
(H).

Proof. In this proof, denote with J the function defined by

8A 2 S(H)p, J(A) := L(fA(x1), ..., fA(xn)) + ⌦(A).

Our goal is to prove that the problem infA2KC(H) J(A) has a solution which is in K
C
n
(H), i.e. of

the form ⇧nA⇧n for some A 2 K
C
n
(H).

1. Let us start by fixing A 2 K
C(H).

First note that since ⇧n is the orthogonal projection on span(�(xi))1in, in particular ⇧n�(xi) =
�(xi) for all 1  i  n. Thus, for any 1  i  n,

fA(xi) = (�(xi)
>
As�(xi))1sp = (�(xi)

>⇧nAs⇧n�(xi))1sp = f⇧nA⇧n(xi).

Here, the first and last equalities come from the definition of fA and f⇧nA⇧n . Thus,

J(A) = L(f⇧nA⇧n(x1), ..., f⇧nA⇧n(xn)) + ⌦(A).

Now since ⌦ satisfies Assumption 2, by the second point of Lemma 6, it holds ⌦(⇧nA⇧n)  ⌦(A),
hence

J(⇧nA⇧n)  J(A).

This last inequality combined with the fact that KC
n
(H) =

�
⇧nA⇧n : A 2 K

C(H)
 
⇢ K

C(H)
show that

infA2KC
n (H) J(A) = infKC(H) J(A).
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2. Let us now show that infA2KC
n (H) J(A) has a solution. Let us exclude the case where J = +1,

in which case A = 0 can be taken to be a solution.

Let Vn be the injection Vn : Hn ,! H. Note that VnV
⇤

n
= ⇧n and V

⇤

n
Vn = IHn . These simple facts

easily show that

K
C

n
(H) = VnK

C(Hn)V
⇤

n
=
n
VnÃV

⇤

n
: Ã 2 K

C

n
(Hn)

o
.

Thus, our goal is to show that inf
Ã2KC

n (Hn)
J(VnAV

⇤

n
) has a solution.

By the first point of Lemma 6, since V
⇤

n
Vn = IHn , it holds

8Ã 2 S(Hn), ⌦(VnÃV
⇤

n
) = ⌦(Ã) =) J(VnÃV

⇤

n
) = L(f

VnÃV ⇤
n
(x1), ..., fVnÃV ⇤

n
(xn))+⌦(Ã).

Let Ã0 2 K
C(Hn) be a point such that J0 := J(VnÃ0V

⇤

n
) < 1. Let c0 be a lower bound for L. By

the third point of Lemma 6, there exists a radius R0 such that for all Ã 2 S(Hn),

kÃkF > R0 =) ⌦(Ã) > J0 � c0.

Since c0 is a lower bound for L, this implies

inf
Ã2KC(Hn)

J(VnÃV
⇤

n
) = inf

Ã2KC(Hn), kÃkFR0
J(VnÃV

⇤

n
).

Now since L is lower semi-continuous, ⌦ is continuous by the last point of Lemma 6, and
Ã 7! (f

VnÃV ⇤
n
(xi))1in is linear hence continuous, the mapping A 7! J(VnÃV

⇤

n
) is lower

semi-continuous. Hence, it reaches its minimum on any non empty compact set. Since Hn

is finite dimensional, the set
n
Ã 2 K

C(Hn) : kÃkF  R0

o
is compact (closed and bounded)

and non empty (it contains Ã0), and hence there exists Ã⇤ 2 K
C
n
(H) such that J(VnÃ⇤V

⇤

n
) =

inf
Ã2KC(Hn), kÃkFR0

J(VnÃV
⇤

n
). Going back up the previous equalities, this shows that A⇤ :=

VnÃ⇤V
⇤

n
2 K

C
n
(H) and J(A⇤) = infA⌫0 J(A).

Lemma 7. The set KC
n
(H) can be represented in the following way

K
C

n
(H) =

n
(S⇤

n
BsSn)1sp

2 S(H)p : B = (Bs)1sp 2 K
C(Rn)

o

In particular, for any A 2 K
C
n
(H), there exists p symmetric matrices B = (Bs)1sp 2 K

C(Rn)
such that

8x 2 X , fA(x) =

0

@
X

1i,jn

[Bs]i,jk(xi, x)k(xj , x)

1

A

1sp

.

Proof. The proof is exactly analoguous to the proof of Lemma 3.

We will prove the following Thm. 13 which statement is that of Thm. 6 with more precise assumptions.
Theorem 13. Let L be lower semi-continuous and bounded below, and ⌦ satisfying Assumption 2.
Then Eq. (5) has a solution of the form

f⇤(x) =
⇣P

n

i,j=1[Bs]i,jk(x, xi)k(x, xj)
⌘

1sp

, for some family B = (Bs)1sp 2 K
C(Rn).

Moreover, if L is convex, this solution is unique.

Proof of Thm. 13. The proof is completely analoguous to that of Thm. 7, combining Lemma 7 and
Proposition 9.
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C Additional proofs

Lemma 8. Let X ⇢ Rd, d 2 N, be a compact set with Lipschitz boundary. Let m > d/2. Then
W

m
2 (X ) is a multiplication algebra (see Definition 3).

Proof. When m 2 N and m > d/2, then W
m
2 (Rd) is a multiplication algebra [AF03]. When

m /2 N, by Eq. 2.69 pag. 138 of [Tri06] we have that Fm
2,2(Rd) is a multiplication algebra when

m > d/2, where F
m
2,2 is the Triebel-Lizorkin space of smoothness m and order 2, 2 and corresponds

to W
m
2 (Rd), i.e., Fm

2,2(Rd) = W
m
2 (Rd) [Tri06].

So far we have that m > d/2 implies that Wm
2 (Rd) is a multiplication algebra, now we extend this

result to W
m
2 (X ). Note that since X is compact and with Lipschitz boundary, for any f 2 W

m
2 (X )

there exists an extension f̃ 2 W
m
2 (Rd) such that f̃ |X = f and kf̃kWm

2 (Rd)  C1kfkWm
2 (X ) with

C1 depending only on m, d,X (see Thm. 5.24 pag. 154 for m 2 N and 7.69 when m /2 N pag 256
[AF03]). Then, since for any f : Rd ! R, by construction we have kf |XkWm(X )  kfkWm(Rd)

[AF03]. Then, for any f, g 2 W
m
2 (X ), denoting by f̃ , g̃ the extensions of f, g, we have

kf · gkWm
2 (X ) = kf̃ |X · g̃|X kWm

2 (X )  kf̃ · g̃kWm
2 (Rd) (31)

 Ckf̃kWm
2 (Rd)kg̃kWm

2 (Rd)  CC
2
1kfkWm

2 (X )kgkWm
2 (X ). (32)

To conclude u : X ! R that maps x 7! 1 has bounded norm corresponding to kuk2
Wm

2 (X ) =R
X
dx. So W

m
2 (X ) when m > d/2 and X is compact with Lipschitz boundary is a multiplication

algebra.

D Additional details on the other models

Recall that the goal is to solve a problem of the form Eq. (1), i.e.

min
f2F

L(f(x1), ..., f(xn)) + ⌦(f).

In this section, � : X ! H will always denote a feature map, k : X ⇥ X ! R a positive semi
definite kernel on X (k(x, x0) = �(x)>�(x0) if k is the positive semi-definite kernel associated to
�). Given a kernel k, K 2 Rn⇥n will always denote the positive semi-definite kernel matrix with
coefficients Ki,j = k(xi, xj), 1  i, j  n.

Generalized linear models (GLM). Consider generalized linear models of the form, fw(x) =
 (w>

�(x)). Assume the regularizer is of the form ⌦(fw) = �

2 kwk
2. Using the representer theorem

[CL09], any solution to Eq. (1) is of the form w =
P

n

i=1 ↵i�(xi) and thus Eq. (1) becomes the
following finite dimensional problem in ↵:

min
↵2Rn

L( (K↵)) +
�

2
↵
>K↵. (33)

In the case where one wishes to learn a density function with respect to a basis measure ⌫, a common
choice of model is functions of the form

p↵(x) =
exp(g(x))R

x̃2X
exp(g(x̃))d⌫(x̃)

, g(x) =
nX

i=1

↵ik(xi, x).

where k is a positive semi-definite kernel on X . The prototypical problem one solves to find the best
p↵ is

min
↵2Rn

L(p↵(x1), ..., p↵(xn)) +
�

2
↵
>K↵. (34)
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In the specific case where the loss function is the negative log likelihood L(z1, ..., zn) =
1
n

P
n

i=1 � log(zi), it can be shown that Eq. (34) is convex in ↵.

In practice, we solve Eq. (33) by applying standard gradient descent with restarts, as the problem is
non convex.

To solve Eq. (34), since the problem is convex, the algorithm is guaranteed to converge. However,
since we can only estimate the quantity

R
x̃2X

exp(g(x̃))d⌫(x̃); we do so by taking a measure ⌫ from
which we can sample. However, this becomes intractable as the dimension grows, as the experiments
on density estimation will put into light.

Non-negative coefficients models (NCM). Recall the definition of an NCM. It represent non-
negative functions as f↵(x) =

P
n

i=1 ↵ik(x, xi), with ↵1, . . .↵n � 0, given a kernel k(x, x0) � 0
for any x, x

0 2 X . In this case, the prototypical problem is of the form :

min
↵�0

L(K↵) +
�

2
↵
>K↵. (35)

If we are performing density estimation with respect to the measure ⌫, one wishes to imposeR
X
f↵(x)d⌫(x) = 1, which can be seen as an affine constraint over ↵, since

Z

X

f↵(x)d⌫(x) = u>
↵, u =

✓Z

X

k(x, xi)d⌫(x)

◆

1in

2 Rn
.

In this case, the prototypical problem will be of the form

min
↵�0

u>
↵=1

L(K↵) +
�

2
↵
>K↵. (36)

If L is a convex smooth function, both problems Eq. (35) and Eq. (36) can be solved us-
ing projected gradient descent, since the projections on the set ↵ � 0 and the simplex�
↵ 2 Rn : ↵ � 0, u>

↵ = 1
 

can be computed in closed form.

In the main paper, we mention that NCM models do not satisfy P2 i.e. that they cannot approximate
any function arbitrarily well. We implement Example 2 in the following way. Let g(x) = e

�kxk
2
/2.

Take k(x, x0) = e
�kx�x

0
k
2

, n points (x1, ..., xn) taken uniformly in the interval [�5, 5]. To find
the function f↵ which best approximates g, we perform least squares regression, i.e. solve the
prototypical problem Eq. (35) with the square loss function

L(y) =
1

2n

nX

i=1

|yi � g(xi)|2.

We perform cross validation to select the value of � for each value of n. In Fig. 2, we show the
obtained function f↵ for n = 100, 1000, 10000. This clearly illustrates that with this model, we
cannot approximate g in a good way, no matter how many points n we have.

Partially non-negative linear models (PNM). Consider partially non negative models of the form
fw(x) = w

>
�(x), with w 2 {w 2 H | w>

�(x1) � 0, . . . , w>
�(xn) � 0} (that is we impose

fw(xi) � 0). Take ⌦ to be of the form �

2 kwk
2 in Eq. (1). Using the representer theorem in [CL09],

we can show that there is a solution of this problem of the form f↵ =
P

n

i=1 ↵ik(x, xi), leading to
the following optimization problem in ↵ to recover the optimal solution:

min
K↵�0

L(K↵) +
�

2
↵
>K↵ (37)

If we want to impose that the resulting f↵ sums to one for a given measure ⌫ on X , we proceed as in
Eq. (36) and solve

min
K↵�0
u>

↵=1

L(K↵) +
�

2
↵
>K↵. (38)
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Figure 2: Best approximation of g using NCM with (left) n = 100 (center) n = 1000 (right)
n = 10000 points.

However, there is no guarantee that the resulting f↵ will be a density, as will be made clear in the
next section on density estimation.

In the experiments, we solve Eq. (37) and Eq. (38) in the following way. We first compute a cholesky
factor of K : K = V>V. Changing variables by setting V� = ↵, the objective functions become
strongly convex in �. We then compute the dual of these problems and apply a proximal algorithm
like FISTA, since the proximal operator of L is always known in our experiments.

E Additional details on the experiments

In this section, we provide additional details on the experiments. The code will be available online.
Recall that we consider four different models for functions with non-negative outputs : GLM, PNM,
NCM and our model.

Kernels. All the models we consider depend on certain positive semi definite kernels k. In all the
experiments, we have taken the kernels to be Gaussian kernels with width �:

8x, x0 2 Rd
, k(x, x0) = exp

✓
�kx� x

0k2
2�2

◆
.

Regularizers. For GLM, PNM and NCM, the regularizer for the underlying linear models are
always of the form �

2 kwk
2 where w is the parameter of the linear model, which translates to �

2↵
>K↵

where the ↵ are the coefficients of the finite dimensional representation. For our model, we always
take the regularizer to be of the form �1kAk? + �2

2 kAk2
F

.

Parameter selection. In all experiments except for the one on density estimation in the main paper
(in which we fix � = 1 and select �), we select the parameters � of the kernels involved as well as
the parameters � for the regularizers using K fold cross validation with K = 5. This means that once
the data set has been generated, we randomly divide it into five sets, and train our model on 4 out of
the 5 sets and test it on the remaining set, five times. We then train our model for the given �,� or
�1,�2, and report the performance on the test set, taking the mean of the K performances to be the
final performance. We also keep track of the standard deviation on these K sets to avoid parameters
which induce too big a variance. We then select the best parameters by doing a grid search. The code
for this cross-validation is available online.

Formulations and algorithms. The formulations of our three problems : density estimation,
regression with Gaussian heteroscedastic errors, and multiple quantile regression, have been expressed
in the main paper in a generic way involving functions with unconstrained outputs, and functions with
outputs constrained to be non negative and sometimes summing to one. We always model functions
with unconstrained outputs with a linear model with gaussian kernel, and model the functions with
constrained outputs with the four models for non-negative functions we consider: ours, PNM, GLM
and NCM.

In practice, we implement the methods PNM, GLM and NCM as explained in Appendix D. In
particular, we use FISTA for PNM, and our model, dualizing the equality constraints for density
estimation. This relies on the fact that the proximal operators of the log likelihood, the objective

32



PNM Our model NCM GLM

Figure 3: Representation of the densities learned by the different models.

function for heteroscedastic regression as well as the pinball loss can be computed in closed form,
and that the regularization is smooth in the right coordinates.

Details on the experiments of the main text. Here, we add a few precisions on the toy distributions
we have used to sample data and the number of sampled used when not specified in the main text.

• For heteroscedastic regression, the data was generated as the toy data in section 5 of [LSC05],
with n = 80 points.

• For quantile regression, the data points (xi, yi) were generated according to the following
distribution for (X,Y ) : X ⇠ 1

2U(0, 1/3) + 1
2U(2/3, 1) and Y |x ⇠ N (0,�(x)) where

�(x) =

8
<

:

�x+ 1/3 for 0  x  1/3
x� 2/3 for 2/3  x  1
0 otherwise .

.

Here, U stands for the uniform distribution. Moreover, in order to perform the experiments
in the main paper, we have used 500 sample points.

Density estimation in dimension 10 with n = 1000. In this paragraph, we consider the following
experiment. Let d = 10, X 2 Rd be a random variable distributed as a mixture of Gaussians :

X ⇠ 1

2
N (�2e1, 1/

p
2⇡Id) +

1

2
N (2e1, 1/

p
2⇡Id)

where e1 is the first vector of the canonical basis of Rd.

Let n = 1000 and let (x1, ..., xn) be n iid samples of X . We perform the four different methods,
cross validating both the regularization parameter � and the kernel parameter � at each time. We
learn the density in the form

p(x) = f(x)⌫(x), ⌫ is the density associated with N (0, 5Id).

We then use our models for densities to compute the best f in its class using the negative log-
likelihood as a loss function. It is crucial that we can sample from ⌫ in order to approximate the
integral in the case of GLMs.

In order to visualize the results of the different algorithms in Fig. 3, we compute the learnt distribution
p, and then sample randomly n0 = 500 points from a uniform distribution on the box centered at 0
and of width 5 in order to explore regions where the density is close to zero, n0 points sampled from
the true distribution of the data, in order to explore points where the density is representative, and n0

points on the line [�4, 4]⇥ {0}d�1 where the density is at its highest. We then project onto the first
coordinate, i.e. given a point x = (xi)1id and the associated predicted density p(x), we plot the
point (x1, p(x)). Note that for readability, we have used the same scale for our model and the PNM,
and a smaller scale for the two others since the learnt density is much flatter.

Let us now analyse the results in Fig. 3. Note that in terms of performance, i.e. log likelihood on the
test set, the first two models (PNM and our model) are quite close and are better than the two others.

• PNM. As in d = 1 we see that for d = 10 the problems of non-negativity for PNM are
exacerbated, making it not suitable to learn a probability distribution. Indeed there are low
density regions where the optimization problem pushes the model to be negative. Since by
constraint we have

R
fd⌫ = 1, the volume of the negative regions is used to push up the

function in the regions with high density. So
R
|f |d⌫ � 1, while it should be

R
|f |d⌫ = 1.

This is confirmed by the behavior of the cross validation.
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• Our model Our model seems to perform reasonably well.
• NCM. This problem is rather difficult for NCM. Indeed, as the width of the kernel decreases,

the model is unable to learn since it overfits in the direction e1 and it would require way
more points than n = 1000. However, as soon as the width of the kernel is good for e1, the
learnt distribution becomes too heavy tailed in the direction orthogonal to e1.

• GLM. It is interesting to note that GLM completely fails, because the measure ⌫ which we
take as a reference measure has a support which has only double variance compared to p,
but in 10 dimensions it corresponds to a support with way larger volume compared to the
one of the target distribution. In particular, the estimation of the integral, which was possible
in d = 1 with 10000 i.i.d. points from ⌫, in 10 dimensions becomes almost impossible
(it would require way more sampling points). Note that we sample the points from ⌫ to
simulate the real-world situation where p is a measure from which it is difficult to sample
from, while ⌫ is an simple measure to sample from which contains the support of p. Further
experiments show that if one takes the target distribution to sample, one obtains a good
model, which reassures us in the fact that this is not a coding error but a real phenomenon.

F Relationship to [4]

As mentioned in the main paper, the model in Eq. (4) has already been considered in [4] with a similar
goal as ours. This paper is a workshop publication that has only be lightly peer-reviewed and contains
fundamental flaws. In particular, they provide an incorrect characterization of the solution of Eq. (5),
that limits the representation power of the model to the one of non-negative coefficients models, that,
as we have seen in Sec. 2.1 and in Example 2, has poor approximation properties and cannot be
universal. This severe limitation affects also the optimization framework (which also only relies on
general-purpose toolboxes such as CVX (http://cvxr.com/cvx/), which are not scalable to
large n).

Indeed, in their main result, the representer theorem incorrectly characterizes A
⇤ the solution of

Eq. (5) as

A
⇤ 2 Rn \ S(H)+, Rn =

(
nX

i=1

↵i�(xi)⌦ �(xi) | ↵ 2 Rn

)
,

and S(H)+ = {A 2 S(H) | A ⌫ 0}. Note, however that Rn ✓ S(Hn) ⇢ S(H) by construction,
where Hn = span{�(x1), . . . ,�(xn)}. So their characterization corresponds to

A
⇤ 2

(
A =

nX

i=1

↵i�(xi)⌦ �(xi) | ↵ 2 Rn
, A ⌫ 0

)
.

Now, for simplicity, consider the interesting case where � is universal and x1, . . . , xn are distinct
points. Then (�(xi))ni=1 forms a basis for Hn and the only ↵1, . . . ,↵n 2 R that guarantee A ⌫ 0
are ↵1 � 0, . . . ,↵n � 0, i.e.,

Rn =

(
A =

nX

i=1

↵i�(xi)⌦ �(xi) | ↵1 � 0, . . . ,↵n � 0

)
.

Note that this class of operators leads only to non-negative coefficients models. Indeed, let A 2 Rn

and denote by k(x, x0) the function k(x, x0) = (�(x)>�(x0))2, then

fA(x) = �(x)>A�(x) =
nX

i=1

↵i(�(x)
>
�(xi))

2 =
nX

i=1

↵ik(x, xi), 8 x 2 X .

Since k is a kernel (it is an integer power of �(x)>�(x0) that is a kernel [SS02]) and ↵1 �
0, . . . ,↵n � 0, then fA belongs to the non-negative coefficients models.

Instead, we know by our Thm. 1 that A⇤ 2 S(Hn)+ and more explicitly, by Thm. 2 that A⇤, the
solution of Eq. (5) is characterized by the non-positive part operator of a symmetric matrix [·]+. By
Thm. 3 we already know that our model is universal while NCM and thus the characterization in [4]
cannot be universal.
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