
Supplementary Material for "GS-WGAN: A
Gradient-Sanitized Approach for Learning

Differentially Private Generators"

These supplementary materials include the privacy analysis (§A), the algorithm pseudocode (§B), the
details of experiment setup (§C), and additional results (§D). Our source code is available on Github:
https://github.com/DingfanChen/GS-WGAN.

A Privacy Analysis

The privacy cost (ε) computation including: (i) bounding the privacy loss for our gradient sanitization
mechanism using RDP; (ii) applying analytical moments accountant of subsampled RDP [11] for a
tighter upper bound on the RDP parameters; (iii) tracking the overall privacy cost: multiplying the
RDP orders by the number of training iterations and converting the resulting RDP orders to an (ε, δ)
pair (Definition 3.2 [7]). We below present the theoretical results.
Theorem 4.1. Each generator update step satisfies (λ, 2Bλ/σ2)-RDP where B is the batch size.

Proof. Let f=clip(gupstream
G , C), i.e., the clipped gradient before being sanitized. The sensitivity can

be derived via the triangle inequality:

∆2f = max
S,S′
‖f(S)− f(S′)‖2 ≤ 2C (1)

with C=1 in our case. Hence, we haveMσ,C is (λ, 2λ/σ2)-RDP.
Each generator update step (which operates on a batch of data) can be expressed as

ĝG =
1

B

B∑
i=1

Mσ,C(∇G(zi)LG(θG)) · JθGG(zi;θG) (2)

This can be seen as a composition of B Gaussian mechanisms. Concretely, we want to bound the
Rényi divergence Dλ(ĝG(S)‖ĝG(S′)) with S, S′ denoting the neighbouring datasets. We use the
following properties of Rényi divergence [10]:
(i) Data-processing inequality : Dλ(PY ‖QY ) ≤ Dλ(PX‖QX) if the transition probabilities A(Y |X)
in the Markov chain X → Y is fixed.
(ii) Additivity : For arbitrary distributions P1, .., PN and Q1, ..., QN let PN =P1× · · · ×PN and
QN =Q1× · · · ×QN . Then Dλ(PN‖QN ) =

∑N
n=1Dλ(Pn‖Qn)

Let u and v denote the output distribution of the sanitization mechanismMσ,C when applied on S
and S′ respectively, and h the post-processing function (i.e., multiplication with the local Jacobian).
We have,

Dλ(ĝG(S), ĝG(S′)) ≤ Dλ

(
h1(u1) ∗ · · · ∗ hB(uB)‖h1(v1) ∗ · · · ∗ hB(vB)

)
(3)

≤ Dλ

((
h1(u1), · · · , hB(uB)

)
‖
(
h1(v1), · · · , hB(vB)

))
(4)

=
∑
b

Dλ((hb(ub)‖hb(vb)) (5)

≤
∑
b

Dλ(ub‖vb) (6)

≤ B ·max
b
Dλ(ub‖vb) (7)

≤ B · 2λ/σ2 (8)

https://github.com/DingfanChen/GS-WGAN


where (3)(4)(6) are based on the data-processing theorem; (5) follows from the additivity; and the
last equation follows from the (λ, 2λ/σ2)-RDP ofMσ,C .

Theorem A.1. (RDP for Subsampled Mechanisms [11]) Given a dataset containing n datapoints
with domain X and a randomized mechanismM that takes an input from Xm for m ≤ n, let the
randomized algorithmM◦subsample be defined as: (i) subsample: subsample without replacement
m datapoints of the dataset (with subsampling rate γ = m/n); (ii) applyM: a randomized algorithm
taking the subsampled dataset as the input. For all integers λ ≥ 2, if M is (λ, ε(λ))-RDP, then
M◦ subsample is (λ, ε′(λ))-RDP where

ε′(λ) ≤ 1

λ− 1
log

(
1 + γ2

(
λ

2

)
min

{
4(eε(2) − 1), eε(2) min {2, (eε(∞) − 1)2}

}
+

λ∑
j=3

γj
(
λ

j

)
e(j−1)ε(j) min{2, (eε(∞) − 1)j}

)

In practice, we adopt the official implementation of [11] 1 for computing the accumulated privacy
cost (i.e., tracking the RDP orders and converting RDP to (ε, δ)-DP).

B Algorithm

We present the pseudocode of our proposed method in Algorithm 1 (Centralized setup) and Algo-
rithm 2 (Federated setup).

Algorithm 1: Centralized GS-WGAN Training
Input: Dataset S, subsampling rate γ, noise scale σ, warm-start iterations Tw, training

iterations T , learning rates ηD and ηG, the number of discriminator iterations per
generator iteration ndis, batch size B

Output: Differentially Private generator G with parameters θG, total privacy cost ε
1 Subsample (without replacement) the dataset S into subsets {Sk}Kk=1 with rate γ (K=1/γ);
2 for k in {1, ...,K} in parallel do
3 Initialize non-private generator θkG, discriminator θkD for step in {1, ..., Tw} do
4 for t in {1, ..., ndis} do
5 Sample batch {xi}Bi=1 ⊆ Sk ;
6 Sample batch {zi}Bi=1 with zi ∼ Pz ;
7 θkD ← θkD − ηD · 1

B

∑
i∇θk

D
LD(θkD; xi, G(zi;θ

k
G)) ;

8 end
9 θkG ← θkG − ηG · 1

B

∑
i∇θk

G
LG(θkG; G(zi;θ

k
G),θkD) ;

10 end
11 Initialize private generator θG ;
12 for step in {1, ..., T} do
13 Sample subset index k ∼ U [1,K] ;
14 for t in {1, ..., ndis} do
15 Sample batch {xi}Bi=1 ⊆ Sk ;
16 Sample batch {zi}Bi=1 with zi ∼ Pz ;
17 θkD ← θkD − ηD · 1

B

∑
i∇θk

D
LD(θkD; xi, G(zi;θG)) ;

18 end
19 θG ← θG − ηG · 1

B

∑
iMσ,C(θG;G(zi;θG),θkD) · JθGG(zi;θG) ;

20 Accumulate privacy cost ε ;
21 end
22 end
23 return Generator G(· ;θG), privacy cost ε

1 https://github.com/yuxiangw/autodp

2

https://github.com/yuxiangw/autodp


Algorithm 2: Federated (Decentralized) GS-WGAN Training
Input: Client index set {1, ...,K}, noise scale σ, warm-start iterations Tw, training iterations

T , learning rates ηD and ηG, the number of discriminator iterations per generator
iteration ndis, batch size B

Output: Differentially Private generator G with parameters θG, total privacy cost ε
1 for each client k in {1, ...,K} in parallel do
2 ClientWarmStart(k)
3 end
4 Initialize private generator θG ;
5 for step in {1, ..., T} do
6 Sample subset index k ∼ U [1,K] ;
7 for t in {1, ..., ndis} do
8 Sample batch {zi}Bi=1 with zi ∼ Pz ;
9 {ĝup

i }Bi=1 ← ClientUpdate(k,G(zi;θG))
10 end
11 θG ← θG − ηG · 1

B

∑
i ĝ

up
i · JθGG(zi;θG) ;

12 Accumulate privacy cost ε ;
13 end
14 return Generator G(· ;θG), privacy cost ε
15
16 Procedure ClientWarmStart(k)
17 Get local dataset Sk ;
18 Initialize local generator θkG, discriminator θkD ;
19 for step in {1, ..., Tw} do
20 for t in {1, ..., ndis} do
21 Sample batch {xi}Bi=1 ⊆ Sk ;
22 Sample batch {zi}Bi=1 with zi ∼ Pz ;
23 θkD ← θkD − ηD · 1

B

∑
i∇θk

D
LD(θkD; xi, G(zi;θ

k
G)) ;

24 end
25 θkG ← θkG − ηG · 1

B

∑
i∇θk

G
LG(θkG; G(zi;θ

k
G),θkD) ;

26 end
27
28 Procedure ClientUpdate(k,G(zi;θG))
29 Get local dataset Sk, local discriminator D(· ;θkD) ;
30 Sample batch {xi}Bi=1 ⊆ Sk ;
31 θkD ← θkD − ηD · 1

B

∑
i∇θk

D
LD(θkD; xi, G(zi;θG)) ;

32 returnMσ,C(θG;G(zi;θG),θkD)

C Experiment Setup

C.1 Hyperparameters

We adopt the hyperparameters setting in [3] for the GAN training, and list below the hyperparameters
relevant for privacy computation.

Centralized Setting. We use by default a subsampling rate of γ=1/1000, noise scale σ=1.07,
pretraining (warm-start) for 2K iterations and subsequently training for 20K iterations.

Federated Setting. We use by default a noise scale σ=1.07, pretraining (warm-start) for 2K
iterations and subsequently training for 30K iterations.

C.2 Datasets

Centralized Setting. MNIST [5] and Fashion-MNIST [12] datasets contain 60K training images
and 10K testing images. Each image has dimension 28× 28 and belongs to one of the 10 classes.

3



Federated Setting. Federated EMNIST [2] dataset contains 28× 28 gray-scale images of hand-
written letters and numbers, grouped by user. The entire dataset contains 3400 users with 671,585
training examples and 77,483 testing examples. Following [1], the users are filtered by the prediction
accuracy of a 36-class (10 numeric digits + 26 letters) CNN classifier. For evaluating the sample
quality, we train GAN models on the users’ data which yields classification accuracy ≥ 93.9% (866
users); For simulating the debugging task, we randomly choose 50% of the users and pre-process
their data by flipping the pixel intensities. To mimic the real-world situation where the server is
blind to the erroneous pre-processing, users with low classification accuracy ≤88.2% are selected
(2136 users) as they are suspected to be affected by erroneous flipping (with bug). Note that only a
fraction of them is indeed affected by the bug (1720 with bug, 416 without bug). This has the realistic
property that the client data is non-IID and poses additional difficulties in the GAN training.

C.3 Evaluation Metrics

In line with previous literature, we use Inception Score (IS) [6, 9] and Frechet Inception Distance
(FID) [4] for measuring sample quality, and classification accuracy for evaluating the usefulness of
generated samples. We present below a detailed explanation of the evaluation metrics we adopted in
the experiments.

Inception Score (IS). Formally, the IS is defined as follows,

IS = exp
(
Ex∼G(z)DKL(P (y|x)‖P (y))

)
which corresponds to exponential of the KL divergence between the conditional class P (y|x) and
the marginal class distribution P (y), where both P (y|x) and P (y) are measured by the output
distribution of a pre-trained classifier when passing the generated samples as input. Intuitively, the
IS should exhibit a high value if P (y|x) has low entropy (i.e., the generated images are sharp and
contain clear objects) and P (y) is of high entropy (i.e., the generated samples have a high diversity
covering all the different classes). In our experiments, we use pre-trained classifiers on the real
datasets (with test accuracy equals to 99.25%, 93.75%, 92.16% on the MNIST, Fashion-MNIST and
Federated EMNIST dataset respectively) 2 for computing the IS.

Frechet Inception Distance (FID). The FID is formularized as follows,

FID = ‖µr − µg‖2 + tr(Σr + Σg − 2(ΣrΣg)
1/2)

where xr ∼ N (µr,Σr) and xg ∼ N (µg,Σg) are the 2048-dimensional activations of the Inception-
v3 pool3 layer for real and generated samples respectively. A lower FID value indicates a smaller
discrepancy between the real and generated samples, which corresponds to a better sample quality
and diversity. Following previous works 3 , we rescale the images and convert them to RGB by
repeating the grayscale channel three times before inputting them to the Inception network.

Classification Accuracy. We consider the following classification models in our experiments: Multi-
layer Perceptron (MLP), Convolutional Neural Network (CNN), AdaBoost (adaboost), Bagging
(bagging), Bernoulli Naive Bayes (bernoulli nb), Decision tree (decision tree), Gaussian Naive
Bayes (gaussian nb), Gradient Boosting (gbm), Linear Discriminant Analysis (lda), Linear Support
Vector Machine (linear svc), Logistic Regression (logistic reg), Random Forest (random forest), and
XGBoost (xgboost). For implementing the CNN model, we use two hidden layers (with dropout)
each containing 32 and 64 kernels and apply ReLU as the activation function. For implementing
the MLP, we use one hidden layer with 100 neurons and set ReLU as the activation function. All
the other classification models are implemented using the default hyperparameters supplied by the
scikit-learn [8] package.

C.4 Baseline Methods

We present more details about the implementation of the baseline methods. In particular, we provide
the default value of the privacy hyperparameters below.

2 https://github.com/ChunyuanLI/MNIST_Inception_Score
3 https://github.com/google/compare_gan

4

https://github.com/ChunyuanLI/MNIST_Inception_Score
https://github.com/google/compare_gan


DP-Merf (AE) 4 We use as default a batch size=500 (γ=1/120), noise scale σ=0.588, training
iteration=600 (epoch=5) for implementing DP-Merf, and batch size=500, noise scale σ=0.686,
training iteration=2040 (epoch=17) for implementing DP-Merf AE.

DP-SGD GAN 5 We set the default hyper-parameters as follows: gradient clipping bound C=1.1,
noise scale σ=2.1, batch size=600, training iterations=30K.

G-PATE We use 2000 teacher discriminators with batch size of 30 and set noise scales σ1=600 and
σ2=100, consensus threshold T=0.5. A random projection with projection dimension=10 is applied.

PATE-GAN 6 When extending PATE-GAN to high-dimensional image datasets, we observe that
after a few iterations, the generated samples are classified as fake by all teacher discriminators and
the learning signals (gradients) for student discriminator and the generator vanish. Consequently, the
training stuck at the early stage where the losses remain unchanged and no progress can be observed.
While this issue is well resolved by careful design of the prior distribution, as reported in the original
paper, we find that this technique has a limited effect when applied to the high-dimensional image
dataset. In addition, we make the following attempts to address this issue: (i) changing the network
initialization (ii) increasing (or decreasing) the network capacity of the student discriminator, the
teacher discriminators, and the generator (iii) increasing the number of iterations for updating the
student discriminator and/or the generator. Despite some progress in preserving the gradients for
larger iterations, none of the above attempts successfully eliminate the issue, as the training inevitably
gets stuck within 1K iterations.

D Additional Results

Effects of gradient clipping. We show in Figure A1 the gradient norm distribution before and after
gradient clipping. The clipping bound is set to be 1.1 for DP-SGD and 1 for our method. In contrast
to DP-SGD, the clipping operation distorts less information in our framework, witnessed by a much
smaller difference in the average gradient norm before and after the clipping. Moreover, the gradients
used in our method exhibit much less variance both before and after the clipping compared with
DP-SGD.

(a) DP-SGD (before) (b) DP-SGD (after) (c) Ours (before) (d) Ours (after)
Figure A1: Effects of gradient clipping.

Comparison to Baselines. We provide the detailed quantitative results in Table A1 and A2, which
are supplementary to Table 1 in the main paper. We show in parentheses the calibrated accuracy,
i.e., the absolute accuracy of each classifier trained on generated data divided by the accuracy when
trained on real data. The results are averaged over five runs.

Privacy-utility Curves. We show in Figure A2 the privacy-utility curves of different methods when
applied to the Fashion-MNIST dataset. We evaluate over three runs and show the corresponding
mean and standard deviation. Similar to the results shown in Figure 4 in the main paper, our method
achieves a consistent improvement over prior methods across a broad range of privacy budget ε.

4 https://github.com/frhrdr/Differentially-Private-Mean-Embeddings-with-Random-F
eatures-for-Synthetic-Data-Generation

5 https://github.com/reihaneh-torkzadehmahani/DP-CGAN
6 https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/2534877d99c8fdf19cbade1605

7990171e249ef3/alg/pategan/

5

https://github.com/frhrdr/Differentially-Private-Mean-Embeddings-with-Random-Features-for-Synthetic-Data-Generation
https://github.com/frhrdr/Differentially-Private-Mean-Embeddings-with-Random-Features-for-Synthetic-Data-Generation
https://github.com/reihaneh-torkzadehmahani/DP-CGAN
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/2534877d99c8fdf19cbade16057990171e249ef3/alg/pategan/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/2534877d99c8fdf19cbade16057990171e249ef3/alg/pategan/


Real GAN (non-private) G-PATE DP-SGD GAN DP-Merf DP-Merf AE Ours

MLP 0.98 0.84 (85%) 0.25 (26%) 0.60 (61%) 0.63 (64%) 0.54 (55%) 0.79 (81%)
CNN 0.99 0.84 (85%) 0.51 (52%) 0.64 (65%) 0.63 (64%) 0.68 (69%) 0.80 (81%)
adaboost 0.73 0.28 (39%) 0.11 (16%) 0.32 (44%) 0.38 (52%) 0.21 (29%) 0.21 (29%)
bagging 0.93 0.46 (49%) 0.36 (38%) 0.44 (47%) 0.43 (46%) 0.33 (35%) 0.45 (48%)
bernoulli nb 0.84 0.80 (95%) 0.71 (84%) 0.62 (74%) 0.76 (90%) 0.50 (60%) 0.77 (92%)
decision tree 0.88 0.40 (45%) 0.13 (14%) 0.36 (41%) 0.29 (33%) 0.27 (31%) 0.35 (40%)
gaussian nb 0.56 0.71 (126%) 0.61 (110%) 0.37 (66%) 0.57 (102%) 0.17 (30%) 0.64 (114%)
gbm 0.91 0.50 (55%) 0.11 (12%) 0.45 (49%) 0.36 (40%) 0.20 (22%) 0.39 (43%)
lda 0.88 0.84 (95%) 0.60 (68%) 0.59 (67%) 0.72 (82%) 0.55 (63%) 0.78 (89%)
linear svc 0.92 0.81 (88%) 0.24 (26%) 0.56 (61%) 0.58 (63%) 0.43 (47%) 0.76 (83%)
logistic reg 0.93 0.83 (90%) 0.26 (28%) 0.60 (65%) 0.66 (71%) 0.55 (59%) 0.79 (85%)
random forest 0.97 0.39 (41%) 0.33 (34%) 0.63 (65%) 0.66 (68%) 0.45 (46%) 0.52 (54%)
xgboost 0.91 0.44 (49%) 0.15 (16%) 0.60 (66%) 0.70 (77%) 0.54 (59%) 0.50 (55%)

Average 0.88 0.63 (71%) 0.34 (40%) 0.52 (59%) 0.57 (66%) 0.42 (47%) 0.60 (69%)

Table A1: Classification accuracy on MNIST (ε=10, δ=10−5).

Real GAN (non-private) G-PATE DP-SGD GAN DP-Merf DP-Merf AE Ours

MLP 0.88 0.77 (88%) 0.30 (34%) 0.50 (57%) 0.56 (64%) 0.56 (64%) 0.65 (74%)
CNN 0.91 0.73 (80%) 0.50 (54%) 0.46 (51%) 0.54 (59%) 0.62 (68%) 0.64 (70%)
adaboost 0.56 0.41 (74%) 0.42 (75%) 0.21 (38%) 0.33 (59%) 0.26 (46%) 0.25 (45%)
bagging 0.84 0.57 (68%) 0.38 (45%) 0.32 (38%) 0.40 (47%) 0.45 (54%) 0.47 (56%)
bernoulli nb 0.65 0.59 (91%) 0.57 (88%) 0.50 (77%) 0.62 (95%) 0.54 (83%) 0.55 (85%)
decision tree 0.79 0.53 (67%) 0.24 (30%) 0.33 (42%) 0.25 (32%) 0.36 (46%) 0.40 (51%)
gaussian nb 0.59 0.55 (93%) 0.57 (97%) 0.28 (47%) 0.59 (100%) 0.12 (20%) 0.48 (81%)
gbm 0.83 0.44 (53%) 0.25 (30%) 0.38 (46%) 0.27 (33%) 0.30 (36%) 0.38 (46%)
lda 0.80 0.77 (96%) 0.55 (69%) 0.55 (69%) 0.67 (84%) 0.65 (81%) 0.67 (84%)
linear svc 0.84 0.77 (91%) 0.30 (36%) 0.39 (46%) 0.46 (55%) 0.40 (48%) 0.65 (77%)
logistic reg 0.84 0.76 (90%) 0.35 (42%) 0.51 (61%) 0.59 (70%) 0.50 (60%) 0.68 (81%)
random forest 0.88 0.69 (78%) 0.33 (37%) 0.51 (58%) 0.61 (69%) 0.55 (63%) 0.54 (61%)
xgboost 0.83 0.65 (78%) 0.49 (59%) 0.52 (63%) 0.62 (75%) 0.55 (66%) 0.47 (57%)

Average 0.79 0.61 (77%) 0.40 (54%) 0.42 (53%) 0.50 (65%) 0.45 (56%) 0.53 (67%)

Table A2: Classification accuracy on Fashion-MNIST (ε=10, δ=10−5).

2 4 6 8 10 12 14 16 18 20

epsilon

0

1

2

3

4

5

6

7

8

IS (↑)

Noise scale

2 4 6 8 10 12 14 16 18 20

epsilon

100

125

150

175

200

225

250

275

300

FID (↓)

0 2 5 7 10 12 15 17 20

epsilon

0

1

2

3

4

5

6

7

8

IS (↑)

Iterations

0 2 5 7 10 12 15 17 20

epsilon

100

150

200

250

300

350

400

450

FID (↓)

DP-Merf DP-Merf AE DP-SGD GAN Ours

Figure A2: Privacy-utility trade-off on Fashion-MNIST with δ=10−5. (Left: Effects of noise scale.
Right: Effects of Iterations.)

6



References
[1] S. Augenstein, H. B. McMahan, D. Ramage, S. Ramaswamy, P. Kairouz, M. Chen, R. Mathews,

and B. A. y Arcas. Generative models for effective ML on private, decentralized datasets. In
International Conference on Learning Representations (ICLR), 2020.

[2] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and A. Talwalkar. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097, 2018.

[3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of
wasserstein gans. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[4] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998.

[6] C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin. Alice: Towards understanding
adversarial learning for joint distribution matching. Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[7] I. Mironov. Rényi differential privacy. In IEEE 30th Computer Security Foundations Symposium
(CSF), 2017.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research (JMLR), 12, 2011.

[9] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training gans. In Advances in Neural Information Processing Systems (NeurIPS),
2016.

[10] T. Van Erven and P. Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7), 2014.

[11] Y.-X. Wang, B. Balle, and S. P. Kasiviswanathan. Subsampled renyi differential privacy and
analytical moments accountant. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2019.

[12] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

7


	Privacy Analysis
	Algorithm
	Experiment Setup
	Hyperparameters
	Datasets
	Evaluation Metrics
	Baseline Methods

	Additional Results

