
Supplementary Material for
“Generative Neurosymbolic Machines”

1 Additional qualitative Results

1.1 Generation

In Figure 1 - 4, we show additional generation results for GNM and the baseline models. For
ConvDRAW and ConvDRAW-8, we show the results for β value 1 and 10.

1.2 Generation with zs resampling

In Figure 5 and 6 we show the generation results with different zs samples while the zg are fixed.
In the arrow room dataset, we see the image variation is small for different zs samples though we
can occasionally see some object color changes. And in the two MNIST datasets, we see some
variation on the digit styles in different zs samples while the overall scene structure remains the same.
Comparing the variation in Figure 5 and 6, we find the same level of certainty on the zs on both
the posterior zg samples and the prior zg samples. This implies that the global representation zg is
flexible enough to capture most of the information in the scene.

Figure 1: Additional generations results of GNM. MNIST-4 (left), MNIST-10 (middle), Arrow room (right).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 2: Additional generations results of GENESIS. MNIST-4 (left), MNIST-10 (middle), Arrow room (right).

�
=

1
0

<latexit sha1_base64="kY2vSrJKY7BiWxOygJwcxWMojiM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9OKxgv2ANpTNdtIu3Wzi7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5YMYJ+hEdSB5yRo2V2t0ADb323F654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns3gk5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR50ucKmRFjSyhT3N5K2JAqyoyNqGRD8BZfXibNs6p3Xr24P6/UbvI4inAEx3AKHlxCDe6gDg1gIOAZXuHNeXRenHfnY95acPKZQ/gD5/MHK2GPaA==</latexit>

�
=

1

<latexit sha1_base64="f3VkFj7CZy/jUksg3vrouaE1UlA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoheh6MVjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfy0UwS9CM6lDzkjBortXsBGnrj9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+bnTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZr+TAVfIjJhYQpni9lbCRlRRZmxCJRuCt/zyKmldVL1a9fKhVqnf5nEU4QRO4Rw8uII63EMDmsBgDM/wCm9O4rw4787HorXg5DPH8AfO5w+7PI8u</latexit>

Figure 3: Additional generations results of ConvDRAW with draw steps 4 on two β value. MNIST-4 (left),
MNIST-10 (middle), Arrow room (right).

2

�
=

1
0

<latexit sha1_base64="kY2vSrJKY7BiWxOygJwcxWMojiM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0YtQ9OKxgv2ANpTNdtIu3Wzi7kYooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5YMYJ+hEdSB5yRo2V2t0ADb323F654lbdGcgy8XJSgRz1Xvmr249ZGqE0TFCtO56bGD+jynAmcFLqphoTykZ0gB1LJY1Q+9ns3gk5sUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzyMy6T1KBk80VhKoiJyfR50ucKmRFjSyhT3N5K2JAqyoyNqGRD8BZfXibNs6p3Xr24P6/UbvI4inAEx3AKHlxCDe6gDg1gIOAZXuHNeXRenHfnY95acPKZQ/gD5/MHK2GPaA==</latexit>

�
=

1

<latexit sha1_base64="f3VkFj7CZy/jUksg3vrouaE1UlA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoheh6MVjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvpv57SdUmsfy0UwS9CM6lDzkjBortXsBGnrj9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+bnTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZr+TAVfIjJhYQpni9lbCRlRRZmxCJRuCt/zyKmldVL1a9fKhVqnf5nEU4QRO4Rw8uII63EMDmsBgDM/wCm9O4rw4787HorXg5DPH8AfO5w+7PI8u</latexit>

Figure 4: Additional generations results of ConvDRAW with draw steps 8 two different β value. MNIST-4
(left), MNIST-10 (middle), Arrow room (right).

3

Inputs sampleszs

<latexit sha1_base64="uoZ/vVeD2fNEJJCUWuokNdoeGAQ=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRKp6LLoxmUF+4Amlsl00g6dTMLMjVhD/BU3LhRx64e482+ctFlo64GBwzn3cs8cP+ZMgW1/G6WV1bX1jfJmZWt7Z3fP3D/oqCiRhLZJxCPZ87GinAnaBgac9mJJcehz2vUnV7nfvadSsUjcwjSmXohHggWMYNDSwKy6IYaxH6SP2Z0L9AFSlQ3Mml23Z7CWiVOQGirQGphf7jAiSUgFEI6V6jt2DF6KJTDCaVZxE0VjTCZ4RPuaChxS5aWz8Jl1rJWhFURSPwHWTP29keJQqWno68k8qlr0cvE/r59AcOGlTMQJUEHmh4KEWxBZeRPWkElKgE81wUQyndUiYywxAd1XRZfgLH55mXRO606jfnbTqDUvizrK6BAdoRPkoHPURNeohdqIoCl6Rq/ozXgyXox342M+WjKKnSr6A+PzB+wklZs=</latexit>

Figure 5: Results showing different zs sampling while fixing zg where zg is inferred from the image.

4

sa
m
pl
es

z
g

<latexit sha1_base64="Gimi1ymtwnVEeGNuaw37NMqzdGY=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRKp6LLoxmUF+4Cmlsl00g6dTMLMjRhD/BU3LhRx64e482+ctFlo64GBwzn3cs8cL+JMgW1/G6WV1bX1jfJmZWt7Z3fP3D/oqDCWhLZJyEPZ87CinAnaBgac9iJJceBx2vWmV7nfvadSsVDcQhLRQYDHgvmMYNDS0Ky6AYaJ56eP2Z0L9AHScTY0a3bdnsFaJk5BaqhAa2h+uaOQxAEVQDhWqu/YEQxSLIERTrOKGysaYTLFY9rXVOCAqkE6C59Zx1oZWX4o9RNgzdTfGykOlEoCT0/mUdWil4v/ef0Y/ItBykQUAxVkfsiPuQWhlTdhjZikBHiiCSaS6awWmWCJCei+KroEZ/HLy6RzWnca9bObRq15WdRRRofoCJ0gB52jJrpGLdRGBCXoGb2iN+PJeDHejY/5aMkodqroD4zPH9nolY8=</latexit>

sampleszs

<latexit sha1_base64="uoZ/vVeD2fNEJJCUWuokNdoeGAQ=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRKp6LLoxmUF+4Amlsl00g6dTMLMjVhD/BU3LhRx64e482+ctFlo64GBwzn3cs8cP+ZMgW1/G6WV1bX1jfJmZWt7Z3fP3D/oqCiRhLZJxCPZ87GinAnaBgac9mJJcehz2vUnV7nfvadSsUjcwjSmXohHggWMYNDSwKy6IYaxH6SP2Z0L9AFSlQ3Mml23Z7CWiVOQGirQGphf7jAiSUgFEI6V6jt2DF6KJTDCaVZxE0VjTCZ4RPuaChxS5aWz8Jl1rJWhFURSPwHWTP29keJQqWno68k8qlr0cvE/r59AcOGlTMQJUEHmh4KEWxBZeRPWkElKgE81wUQyndUiYywxAd1XRZfgLH55mXRO606jfnbTqDUvizrK6BAdoRPkoHPURNeohdqIoCl6Rq/ozXgyXox342M+WjKKnSr6A+PzB+wklZs=</latexit>

Figure 6: Results showing different zs sampling while fixing zg where zg is generated from the prior.

5

2 Additional experiment

2.1 MNIST-4-10

To evaluate GNM’s ability to model more complex data variations, we generate a new task by
combining datasets MNIST-4 and MNIST-10. In this setting, the model is required to model the
correlation between the number of objects and the corresponding scene structure. As we can see
in Figure 7, GNM can generate new scenes that reflect the ground-truth design while all baseline
models fail to achieve it. This also reflects on the quantitative result shown in Table 1. We see that
the generation from GNM is more difficult to distinguish from the real images and has a higher scene
structure accuracy. In this task, the default GNM model with draw steps 4 has relatively lower scene
accuracy than those on MNIST-4 and MNIST-10. Increasing the number of draw steps to 8 (GNM-8)
significantly improves the scene accuracy. This shows that, in this task, more interaction steps are
needed to model the scene structure correctly. We also test GNM and ConvDRAW with different β.
Similar to the result on MNIST-4 and MNIST-10, a larger β term brings a higher scene accuracy and
a lower likelihood value. Note that GNM and GNM-8 with β 2 still outperform ConvDRAW and
ConvDRAW-8 with β 10 in terms of scene accuracy.

2.2 Representation Learning

The goal of this experiment is to measure the quality of the learned structured representation. Here
we use SPACE as the baseline. The results are shown in Table 2. First, we test the model’s ability
to infer the object position by measuring the inferred bounding boxes’ average precision with the
ground-truth boxes on different IoU thresholds. Second, we measure the quality of the inferred zwhat

representation by an object-wise classification task. More specifically, we train a two-layer MLP to
classify the inferred zwhat representation into 10 digit classes. The digit label of the nearest object in
the dataset is used as the ground-truth lable. Both metrics are computed using the test set. As we can

(a) (b) (c)

(d) (e) (f)

Figure 7: Generations results for MNIST-4-10. (a) GNM, (b) GNM-8, (c) GENESIS, (d) ConvDRAW, (e)
ConvDRAW-8, (f) VAE.

6

Table 1: Quantitative result on MNIST-4-10 dataset.

Dataset MNIST-4-10
Metrics S-Acc D-Steps LL
GNM 0.692 5279 10693
GNM-8 0.852 6639 10692
GNM-β-2 0.916 1719 10684
GNM-8-β-2 0.960 3599 10693
GENESIS 0.016 199 10084
ConvDRAW 0.000 959 10756
ConvDRAW-8 0.004 1759 10775
ConvDRAW-β-10 0.560 2399 10429
ConvDRAW-8-β-10 0.880 1759 10479

Table 2: Quantitative results for representation learning.

Model Dataset Avg. Precision IoU
Threshold = 0.5

Avg. Precision IoU
Threshold ∈ [0.5 : 0.05 : 0.95]

Classification
Accuracy

GNM MNIST-10 0.905 0.459 0.984
GNM MNIST-4 0.905 0.487 0.983
SPACE MNIST-10 0.905 0.453 0.980
SPACE MNIST-4 0.906 0.464 0.979

see, GNM and SPACE have the similar performance on the two tasks, this showcase GNM’s ability
to obtain good structured representations.

7

3 Auxiliary Losses and Curriculum Learning

Auxiliary Losses

GNM is trained by maximizing the Evidence Lower Bound (ELBO) with additional KL terms. The
ELBO is shown in the following

L =Eqφ(zs,zb|x)
[
log pθ(x | zs, zb)

]
− βgDKL [qφ(z

g | x) ‖ pθ(zg)] (1)

−DKL
[
qφ(z

b | x) ‖ pθ(zb | zg)
]
−DKL [qφ(z

s | x) ‖ pθ(zs | zg)] . (2)

Here, the structure representation is split into the latent structure map zs and background represen-
tation zb. The coefficient βg for the KL of global representation is used in the curriculum training
period and will be 1 in the remaining training stage.

Unlike the prior distribution in SPACE [6] that serve as the regularization on the posterior distributions,
the structure prior of p(zb|zg) and p(zo|zg) in GNM are both conditional and learned from the
posterior distributions. This causes the problem that by optimizing the ELBO, we cannot provide any
prior knowledge to the posterior distribution to guide the inference process. To solve this problem,
we introduce the following additional KL terms in the optimization objective.

Lb = −DKL
[
q(zb | x) ‖ N (0, 1)

]
(3)

Lo = −DKL [q(z
pres | x) ‖ Ber(ρ)]−KL

[
q(zwhere, zwhat | x) ‖ N (µ,σ2)

]
(4)

The µ and σ is further split into µwhat, σwhat, and µwhere and σwhere. Here, the N (µwhat,σ
2
what)

is chosen to be a standard normal distribution. The N (µwhere,σ
2
where) is chosen to encourage the

bounding boxes to be tighter and closer to each grid center. The parameter ρ for Bernoulli distribution
is set to have a small value to encourage the model to explain the scene with as few objects as possible.
With these additional KL terms, the objective function becomes the following

L̃ = L+ βbLb + Lo (5)

Here βb is used for curriculum training which will be described in detail in the following section.

Curriculum Training

For a neural network module, modeling an individual component is usually a much simpler task
than modeling a full multi-object scene. Thus, when provided multiple modules, the model should
be encouraged to utilize different modules to model the individual components, e.g., modeling the
foreground objects with foreground bounding boxes and the background with the background module.

However, when training GNM, we observed a different learning pattern. The model tends to explain
the full scene only using the background module. We found that this is the result of the learning
behavior in the early training iterations. At the initial training stage, the background module is
provided more signals to optimize because, by design, it is always an activated module (zpres = 1).
This allows the background model to learn an accurate full scene reconstruction quickly. On the
other hand, the foreground model is usually turned off (zpres = 0) at the early training stage since it is
under-optimized and provides rather bad object reconstructions. This again encourages the model to
bias more on the background module, and, as a result, the background module dominates.

To solve this problem, we employ a curriculum learning procedure to provide more learning signal
for the foreground modules in the early training iteration. First, we set its object mask for each object
bounding box to occupy the full box and assign a non-zero value, e.g., 0.9, for each pixel. This forces
the foreground module to be responsible for 90% of the pixel value in the boxed area. Second, βb is
set to be 50 at the beginning and gradually annealed to 1 in 50000 steps. This limits the background
capacity and thus encourages the background module to learn a simpler and more static component.

Apart from the curriculum training on the foreground module, we also perform a warm-up on the KL
term of global representation. This is done by gradually increasing the value of βg from 0 to 1 in the
first 100k steps. It allows the model to first learn a meaningful structure representation for zs before
optimizing the global representation that generates them.

8

Figure 8: StructDRAW Architecture. StructDRAW constructs the abstract feature map fL via multiple
autoregressive steps. The output feature map fL is then used to generate the entity-based representation zs to
render the final generation.

4 Implementation Details

In this section, we describe the details of the model design. The detailed architecture is shown in
Table 4 - 9. In these tables, Layer denotes the layer normalization [1] and Subconv denotes the
sub-pixel convolutional layers [7].

4.1 GNM

Inference Model

The inputs to GNM are images with 128 × 128 resolutions. It is first provided to a convolutional
neural network (CNN) to obtain a 4× 4 encoding fx. The architecture of the image encoder is shown
in Table 4. The 4 × 4 feature map is then used to infer the representations zg, zb, and zs. Here,
zs = {zshw} and zshw = [zpres

hw , z
what
hw , z

where
hw , zdepth

hw]. We first use an MLP layer on top of the image
encoding to infer the background representation. For the structure representations q(zs | fx), we
apply additional CNN layers to infer each of the representations zpres

hw , zwhat
hw , zwhere

hw , and zdepth
hw .For the

global representation, the encoding fx is provided to the StructDRAW module.

StructDRAW

The overall architecture of StructDRAW, shown in Figure 8, is similar to ConvDRAW [3] but with
two major differences: (1) it has an interaction layer that allows information mixing among the scene
components, and (2) it draws on the feature level instead of the image pixel. It has 2 convolutional
LSTMs (ConvLSTM) [9] for encoding and decoding. The input to the encoder ConvLSTM is a
concatenation of 3 components, the image encoding fx, the hidden state previous-step decoder
hdec,`−1, and the element-wise difference between the accumulated decoding and the image encoding
fx − f`−1. Finally, a 3-layer MLP is used as the interaction layer to compute the posterior parameter
of q(zg` | x) on the current step.

9

When generating an image, the StructDRAW module draws a structure feature map f by sampling the
zg` auto-regressively. This is done as the following. On each step of the drawing, the ConvLSTM takes
the previous feature map f`−1 and the current global representation zg` as input and update its hidden
state hdec,`. Here, an MLP decoder is used to decode the zg` into a feature map. The output feature
map for the current time step is obtained by f` =

∑`
l=1 CNN(hdec,l). Here the function CNN is a

single-layer convolutional network. Given the global representation, the background representation is
obtained using an MLP layer that takes the concatenation of zg` at every step as input. The overall
algorithm of StructDRAW is illustrated in Algorithm 1.

Rendering

The output feature map from StructDRAW is used to generation the symbolic representation map
p(zs | f). For all of our generation samples, we directly take the mode of zs instead of sampling from
the prior distribution. Note that we share the parameter of the network q(zs | fx) and p(zs | f). This
encourages the model to generate the structure feature map that is consistent with the input feature
during training.

Given the symbolic representation map zs, the rendering process is similar to that in SPACE [6]
and SCALOR [4]. For each object in the foreground, we first obtain its RGB appearance ohw and
segmentation mask mhw by decoding from the zwhat representation using a CNN decoder, which is
shown in Table 5. The full foreground mask M is then obtained by summing all object masks into a
full image using the spatial transformer network (STN) using zwhere. Similarly, each object image
oi is mapped into the full-image size and gives xi. To determine which object should be drawn in a
foreground pixel position (when multiple objects occupy the pixel), we first compute the responsibility
γi using zpres, zdepth, and zwhere and then the full foreground image xfg is obtained by multiplying
the object images with the normalized responsibilities. The background image xb is generated by a
background decoder shown in Table 6. The final image is then computed by x = xfg +(1−M)�xb.
The full rendering process is illustrated in Algorithm 2.

Table 7 describes the rest of the network structures that are not specified by Table 4 - 6. Note that in
Table 7, all convolutional and MLP layers except the output layers are followed by a CELU activation
function [2] and a layer normalization [1].

4.2 Baseline models

Our implementation of GENESIS is based on the official PyTorch implementation. We found that
with the default setting in official code, we are unable to make GENESIS decompose the scene into
components. Instead, the model tends to cluster the objects into components base on their colors
or locations. Thus, to encourage a correct decomposition and generation, we make the following
modifications on the official code: (a) we design a learning rate schedule where it starts with a higher
value and reset to a lower one in a few thousand steps. (b) instead of optimizing the Constrained
Optimisation objective (GECO) [5], we optimize the evidence lower bound with a β value of 15 for
arrow room dataset and 10 for MNIST dataset. (3) we reduce the number of layers for the spatial
broadcast decoder [8] from 4 to 3. We found that the modifications allow GENESIS to decompose
the scene correctly while also improve its generation quality on three datasets.

For VAE and ConvDRAW, we use our own implementation. We first use an image encoder to obtain
an image encoding for both models. Its architecture is designed to have the same structure as the
image encoder in GNM, shown in Table 4. Then for VAE, we use a 2-layer CNN with filter sizes of
[128, 128], and kernel sizes of [3, 4] on top of the image encoding to compute the parameter for the
latent representation. For ConvDRAW, we apply a similar architecture of StructDRAW on top of the
image encoding shown in Table 7, while the interaction MLP is replaced with a 2-layer CNN with
filter sizes of [128, 64], and kernel sizes of 3. The architecture of the image decoders for the two
models are shown in Table 8 and 9.

Table 3 shows the model size each model used for the three datasets

10

Table 3: Model size comparison.

Dataset ARROW MNIST-10 MNIST-4
GNM 8.6M 2.9M 2.9M
GENESIS 13.9M 13.9M 13.9M
ConvDRAW 4.7M 1.5M 1.5M
VAE 1.5M 1.5M 1.5M

Algorithm 1 StructDRAW
Input: Image encoding fx

Output: Global representation zg , structure feature map f ,
Prior distribution {p(zg`)}`, Posterior distribution {q(zg`)}`

// Initialize hidden state and feature map
henc,0,hdec,0, f0 = init_zeros()
// StructDRAW
for `← 1 to L do

µp,`, σp,` = MLPint
dec(hdec,`−1)

p(zg`) = N (µp,`, σp,`)
if is_inference then

henc,` = ConvLSTMenc(henc,`−1, CAT[hdec,`−1, f
x, fx − f`−1])

µq,`, σq,` = MLPint
enc(henc,`)

q(zg`) = N (µq,`, σq,`)
zg` ∼ q(z

g
`)

else
zg` ∼ p(z

g
`)

end
d` = MLPgdec(z

g
`)

hdec,` = ConvLSTMdec(hdec,`−1, d`)
f` = f`−1 + CNNout(hdec,`)

end
zg = CAT[{zg`}l]
if is_inference then

Output: zg , f , {p(zg`)}`, {q(z
g
`)}`

else
Output: zg , f , {p(zg`)}`

end

Table 4: Image Encoder

Layer Size/Ch. Stride Norm./Act.
Input 128(3d)

Conv 4× 4 16 2 Layer/CELU
Conv 3× 3 16 1 Layer/CELU
Conv 4× 4 32 2 Layer/CELU
Conv 3× 3 32 1 Layer/CELU
Conv 4× 4 64 2 Layer/CELU
Conv 3× 3 64 1 Layer/CELU
Conv 4× 4 128 2 Layer/CELU
Conv 3× 3 128 1 Layer/CELU
Conv 4× 4 128 2

11

Algorithm 2 Rendering

Input: Structure representation {zpres
hw , z

what
hw , z

where
hw , zdepth

hw }, background representation zb

Output: Image reconstruction x̃
// Obtain the object appearance ohw and segmentation mask mhw

ohw,mhw = GlimpseDecoder(zwhat
hw)

// Obtain the background xb

xb = BgDecoder(zb)
// Foreground object rendering
for i← 1 to HW do

xfg
i = STN−1(oi, zwhere

i)

γi = STN−1(mi · zpres
i · σ(−zdepth

i), zwhere
i)

γi = normalize(γi,∀i)
end
xfg =

∑
i x

fg
i γi

// Foreground mask rendering
for i← 1 to HW do

Mi = STN−1(mi, z
where
i)

end
M = min(

∑
iMi, 1)

// Foreground background combination
x̃ = xfg + (1−M)� xb

Output: x̃

Table 5: Object patches decoder

Layer Size/Ch. Stride Norm./Act.
Input 1(64d)

Subconv 3× 3 128 2 Layer/CELU
Subconv 3× 3 64 2 Layer/CELU
Subconv 3× 3 32 2 Layer/CELU
Subconv 3× 3 16 2 Layer/CELU
Subconv 3× 3 8 2 Layer/CELU
Subconv 3× 3 4 2

Sigmoid

Table 6: Background decoder

Layer Size/Ch. Stride Norm./Act.
Input 1(10d)

Subconv 1× 1 128 4 Layer/CELU
Subconv 1× 1 64 2 Layer/CELU
Subconv 1× 1 32 4 Layer/CELU
Subconv 1× 1 16 2 Layer/CELU
Subconv 1× 1 8 2 Layer/CELU
Subconv 3× 3 4 1

Sigmoid

12

Table 7: Additional network architecture

Description Symbol Structure
Encoder ConvLSTM ConvLSTMenc ConvLSTM(128, kernel_size=3, stride=1)
Decoder ConvLSTM ConvLSTMdec ConvLSTM(128, kernel_size=3, stride=1)
Compute zs from fx q(zs | fx) StackConv([128, 128, 70])
Structure interaction network MLPint

enc, MLPint
dec MLP([512, 512, 64])

StructDRAW output CNN CNNout Conv(128, kernel_size=3, stride=1)
zg` decoder MLPgdec MLP([512, 1024, 2048])
Background inference network q(zb | fx) MLP([512, 256, 20])
Background generation network p(zb | zg) MLP([128, 64, 20])

Table 8: Architecture of VAE decoder

Layer Size/Ch. Stride Norm./Act.
Input 1(128d)

Subconv 1× 1 128 4 Layer/ReLU
Subconv 3× 3 128 1 Layer/ReLU
Subconv 1× 1 64 2 Layer/ReLU
Subconv 3× 3 64 1 Layer/ReLU
Subconv 1× 1 32 2 Layer/ReLU
Subconv 3× 3 32 1 Layer/ReLU
Subconv 1× 1 16 2 Layer/ReLU
Subconv 3× 3 16 1 Layer/ReLU
Subconv 1× 1 16 2 Layer/ReLU
Subconv 3× 3 16 1 Layer/ReLU
Subconv 1× 1 8 2 Layer/ReLU
Subconv 3× 3 3 1

Sigmoid

13

Table 9: Architecture of ConvDRAW decoder

Layer Size/Ch. Stride Norm./Act.
Input 4(128d)

Subconv 3× 3 128 1 Layer/ReLU
Subconv 1× 1 64 2 Layer/ReLU
Subconv 3× 3 64 1 Layer/ReLU
Subconv 1× 1 32 2 Layer/ReLU
Subconv 3× 3 32 1 Layer/ReLU
Subconv 1× 1 16 2 Layer/ReLU
Subconv 3× 3 16 1 Layer/ReLU
Subconv 1× 1 16 2 Layer/ReLU
Subconv 3× 3 16 1 Layer/ReLU
Subconv 1× 1 8 2 Layer/ReLU
Subconv 3× 3 3 1

Sigmoid

14

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint
arXiv:1704.07483, 2017.

[3] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wierstra.
Towards conceptual compression. In Advances In Neural Information Processing Systems, pages
3549–3557, 2016.

[4] Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative
world models with scalable object representations. In International Conference on Learning
Representations, 2019.

[5] Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv preprint arXiv:1810.00597, 2018.

[6] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In International Conference on Learning Representations, 2020.

[7] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop,
Daniel Rueckert, and Zehan Wang. Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1874–1883, 2016.

[8] Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial
broadcast decoder: A simple architecture for learning disentangled representations in vaes. arXiv
preprint arXiv:1901.07017, 2019.

[9] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun
Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In
Advances in neural information processing systems, pages 802–810, 2015.

15

	Additional qualitative Results
	Generation
	Generation with zs resampling

	Additional experiment
	MNIST-4-10
	Representation Learning

	Auxiliary Losses and Curriculum Learning
	Implementation Details
	GNM
	Baseline models

