
Appendix

A The Overall Architecture of GROVER Model

Input Graph

Multi-Head Attention

LayerNorm

Feed Forward

Node Embed

Aggregate2Node

Concat

LayerNorm

Feed Forward

Edge Embed

Aggregate2Edge

Concat

LayerNorm

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Q K V
Node

DyMPN
Node

DyMPN

Multi-Head Attention

LayerNorm

Feed Forward

Node Embed

Aggregate2Node

Concat

LayerNorm

Feed Forward

Edge Embed

Aggregate2Edge

Concat

LayerNorm

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Edge
DyMPN

Q K V
Edge

DyMPN
Edge

DyMPN

Edge-view GTransformer

Node-view GTransformer

Linear Linear

Input Graph

Multi-Head Attention

LayerNorm

Feed Forward

Node Embed

Aggregate2Node

Concat

LayerNorm

Feed Forward

Edge Embed

Aggregate2Edge

Concat

LayerNorm

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Q K V
Node

DyMPN
Node

DyMPN

Multi-Head Attention

LayerNorm

Feed Forward

Node Embed

Aggregate2Node

Concat

LayerNorm

Feed Forward

Edge Embed

Aggregate2Edge

Concat

LayerNorm

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Node
DyMPN

Edge
DyMPN

Q K V
Edge

DyMPN
Edge

DyMPN

Edge-view GTransformer

Node-view GTransformer

Linear Linear

Figure 6: Overview of the whole GROVER architecture with both node-view GTransformer (in pink
background) and edge-view GTransformer (in green background)

Figure 6 illustrates the complete architecture of GROVER models, which contains a node-view
GTransformer (in pink background) and an edge-view GTransformer (in green background). Brief
presentations of the node-view GTransformer have been introduced in the main text, and the edge-
view GTransformer is in a similar structure. Here we elaborate more details of the GROVER model
and its associated four sets of output embeddings.

As shown in Figure 6, node-view GTransformer contains node dyMPN, which maintains hidden
states of nodes hv, v ∈ V and performs the message passing over nodes. Meanwhile, edge-view
GTransformer contains edge dyMPN, that maintains hidden states of edges hvw,hwv, (v, w) ∈ E and
conducts message passing over edges. The edge message passing is viewed as an ordinary message
passing over the line graph of the original graph, where the line graph describes the neighboring of
edges in the original graph and enables an appropriate way to define message passing over edges [6].
Note that edge hidden states have directions, i.e., hvw is not identical to hwv in general.

Then, after the multi-head attention, we denote the transformed node and edge hidden states by h̄v
and h̄vw, respectively.

Given the above setup, we can explain why GROVER will output four sets of embeddings in Figure 6.
Let us focus on the information flow in the pink panel of Figure 6, first. Here the node hidden
states h̄v encounter the two components, Aggregate2Node and Aggregate2Edge, which are used to
aggregate the node hidden states to node messages and edge messages, respectively. Specifically,
the Aggregate2Node and Aggregate2Edge components in node-view GTransformer is formulated
as follows:

mnode-embedding-from-node-states
v =

∑
u∈Nv

h̄u (5)

medge-embedding-from-node-states
vw =

∑
u∈Nv\w

h̄u. (6)

Then the node-view GTransformer transforms the node messages mnode-embedding-from-node-states
v

and edge messages medge-embedding-from-node-states
vw through Pointwise Feed Forward layers [53] and

Add&LayerNorm to produce the final node embeddings and edge embeddings, respectively.

14

4

Key: DOUBLE_C-SINGLE1_N-SINGLE1

C

C

C

O

N
C CC

ON

𝑘 = 1

Figure 7: Examples of constructing contextual properties for edges

Similarly, for the information flow in the green panel, the edge hidden states h̄vw encounter the
two components Aggregate2Node and Aggregate2Edge as well. Their operations are formulated as
follows,

mnode-embedding-from-edge-states
v =

∑
u∈Nv

h̄uv, (7)

medge-embedding-from-edge-states
vw =

∑
u∈Nv\w

h̄uv. (8)

Then, the edge-view GTransformer transforms the node messages and edge messages through
Pointwise Feed Forward layers and Add&LayerNorm to produce the final node embeddings and edge
embeddings, respectively.

In summary, the GROVER model outputs four sets of embeddings from two information flows. The
node information flow (node GTransformer) maintains node hidden states and finally transform
them into another node embeddings and edge embeddings, while the edge information flow (edge
GTransformer) maintains edge hidden states and also transforms them into node and edge embeddings.
The four sets of embeddings reflect structural information extracted from the two distinct views, and
they are flexible to conduct downstream tasks, such as node-level prediction, edge-level prediction
and graph-level prediction (via an extra READOUT component).

A.1 Fine-tuning Model for Molecular Property Prediction

As explained above, given a molecular graph Gi and the corresponding label yi, GROVER produces
two node embeddings, Hi,node-view and Hi,edge-view, from node-view GTransformer and edge-view
GTransformer, respectively. We feed these two node embeddings into a shared self-attentive READ-
OUT function to generate the graph-level embedding [54, 28]:

S = softmax
(
W2 tanh

(
W1H

>)) ,
g = Flatten(SH), (9)

where W1 ∈ Rdattn_hidden×dhidden_size and W2 ∈ Rdattn_out×dattn_hidden are two weight matrix and g is the final
graph embedding. After the READOUT, we employ two distinct MLPs to generate two predictions:
pi,node-view and pi,edge-view. Besides the supervised loss L(pi,node-view,yi) + L(pi,edge-view,yi), the
final loss function also includes a disagreement loss [28] Ldiss = ||pi,node-view − pi,edge-view||2 to
retrain the consensus of two predictions.

A.2 Constructing Contextual Properties for Edges

In Section 4.2 we describe an example of constructing contextual properties of nodes, here we present
an instance of cooking edge contextual properties in order to complete the picture.

Similar to the process of node contextual property construction, we define recurrent statistical
properties of local subgraph in a two-step manner. Let us take the graphs in Figure 7 for instance and
consider the double chemical bond in red color in the left graph.

Step I: We extract its local subgraph as its k-hop neighboring nodes and edges. When k=1, it involves
the Nitrogen atom, Carbon atom and the two single bonds. Step II: We extract statistical properties

15

of this subgraph, specifically, we count the number of occurrence of (node, edge) pairs around the
center edge, which makes the term of node-edge-counts. Then we list all the node-edge counts
terms in alphabetical order, which makes the final property: e.g., DOUBLE_C_SINGLE1_N-SINGLE1
in the example.

Note that there are two graphs and two double bonds in red color in Figure 7, since their subgraphs
have the same statistical property, the resulted contextual properties of the two bonds would be the
same. For a different point of view, this step can be viewed as a clustering process: the subgraphs are
clustered according to the extracted properties, one property corresponds to a cluster of subgraphs
with the same statistical property.

B Details about Experimental Setup

B.1 Dataset Description

Table 3: Dataset information
Type Category Dataset # Tasks # Compounds Metric

Classification

Biophysics BBBP 1 2039 ROC-AUC

Physiology

SIDER 27 1427 ROC-AUC
ClinTox 2 1478 ROC-AUC
BACE 1 1513 ROC-AUC
Tox21 12 7831 ROC-AUC
ToxCast 617 8575 ROC-AUC

Regression

Physical chemistry

FreeSolv 1 642 RMSE
ESOL 1 1128 RMSE
Lipophilicity 1 4200 RMSE

Quantum mechanics
QM7 1 6830 MAE
QM8 12 21786 MAE

Table 3 summaries information of benchmark datasets, including task type, dataset size, and evaluation
metrics. The details of each dataset are listed bellow [60]:

Molecular Classification Datasets.

- BBBP [32] involves records of whether a compound carries the permeability property of
penetrating the blood-brain barrier.

- SIDER [26] records marketed drugs along with its adverse drug reactions, also known as the
Side Effect Resource .

- ClinTox [12] compares drugs approved through FDA and drugs eliminated due to the
toxicity during clinical trials.

- BACE [49] is collected for recording compounds which could act as the inhibitors of human
β-secretase 1 (BACE-1) in the past few years.

- Tox21 [1] is a public database measuring the toxicity of compounds, which has been used
in the 2014 Tox21 Data Challenge.

- ToxCast [41] contains multiple toxicity labels over thousands of compounds by running
high-throughput screening tests on thousands of chemicals.

Molecular Regression Datasets.

- QM7 [4] is a subset of GDB-13, which records the computed atomization energies of stable
and synthetically accessible organic molecules, such as HOMO/LUMO, atomization energy,
etc. It contains various molecular structures such as triple bonds, cycles, amide, epoxy, etc .

- QM8 [39] contains computer-generated quantum mechanical properties, e.g., electronic
spectra and excited state energy of small molecules.

- ESOL is a small dataset documenting the solubility of compounds [8].

16

- Lipophilicity [11] is selected from the ChEMBL database, which is an important prop-
erty that affects the molecular membrane permeability and solubility. The data is obtained
via octanol/water distribution coefficient experiments .

- FreeSolv [33] is selected from the Free Solvation Database, which contains the hydration
free energy of small molecules in water from both experiments and alchemical free energy
calculations .

Dataset Splitting. We apply the scaffold splitting [2] for all tasks on all datasets. It splits the
molecules with distinct two-dimensional structural frameworks into different subsets. It is a more
challenging but practical setting since the test molecular can be structurally different from training
set. Here we apply the scaffold splitting to construct the train/validation/test sets.

B.2 Feature Extraction Processes for Molecules

The feature extraction contains two parts: 1) Node / edge feature extraction. We use RDKit to
extract the atom and bond features as the input of dyMPN. Table 4 and Tabel 5 show the atom
and bond feature we used in GROVER. 2) Molecule-level feature extraction. Following the same
protocol of [63, 60], we extract additional 200 molecule-level features by RDKit for each molecule
and concatenate these features to the output of self-attentive READOUT, to go through MLP for the
final prediction.

Table 4: Atom features.
features size description

atom type 100 type of atom (e.g., C, N, O), by atomic number
formal charge 5 integer electronic charge assigned to atom

number of bonds 6 number of bonds the atom is involved in
chirality 5 number of bonded hydrogen atoms

number of H 5 number of bonded hydrogen atoms
atomic mass 1 mass of the atom, divided by 100
aromaticity 1 whether this atom is part of an aromatic system

hybridization 5 sp, sp2, sp3, sp3d, or sp3d2

Table 5: Bond features.

features size description

bond type 4 single, double, triple, or aromatic
stereo 6 none, any, E/Z or cis/trans
in ring 1 whether the bond is part of a ring

conjugated 1 whether the bond is conjugated

C Implementation and Pre-training Details

We use Pytorch to implement GROVER and horovod [47] for the distributed training. We use the
Adam optimizer with learning rate 0.00015 and L2 weight decay for 10−7. We train the model for
500 epochs. The learning rate warmup over the first two epochs and decreases exponentially from
0.00015 to 0.00001. We use PReLU [16] as the activation function and the dropout rate is 0.1 for
all layers. Both GROVERbase and GROVERlarge contain 4 heads. We set the iteration L = 1 and
sample Kl ∼ φ(µ = 6, σ = 1, a = 3, b = 9) for the embedded dyMPN in GROVER. φ(µ, σ, a, b) is
a truncated normal distribution with a truncation range (a, b). The hidden size for GROVERbase and
GROVERbase are 800 and 1200 respectively.

17

D Fine-tuning Details

For each task, we try 300 different hyper-parameter combinations via random search to find the best
results. Table 6 demonstrates all the hyper-parameters of fine-tuning model. All fine-tuning tasks are
run on a single P40 GPU.

Table 6: The fine-tuning hyper-parameters
hyper-parameter Description Range

batch_size the input batch_size. 32
init_lr initial learning rate ratio of Noam learning rate scheduler. The real initial learning rate is max_lr / init_lr. 10
max_lr maximum learning rate of Noam learning rate scheduler. 0.0001 ∼ 0.001
final_lr final learning rate ratio of Noam learning rate scheduler. The real final learning rate is max_lr / final_lr. 2 ∼ 10
dropout dropout ratio. 0, 0.05, 0.1,0.2
attn_hidden hidden size for the self-attentive readout. 128
attn_out the number of output heads for the self-attentive readout. 4,8
dist_coff coefficient of the disagreement loss 0.05, 0.1,0.15
bond_drop_rate drop edge ratio [43] 0, 0.2,0.4,0.6
ffn_num_layer The number of MLP layers. 2,3
ffn_hidden_size The hidden size of MLP layers. 5,7,13

E Additional Experimental Results

E.1 Effect of Self-supervised Pre-training on Regression Tasks

Table 7 depicts the additional results of the comparison of the performance of pre-trained GROVER
and GROVER without pre-training on regression tasks.

Table 7: Comparison between GROVER with and without pre-training on regression tasks
GROVER No Pre-training Absolute Improvement

RMSE
FreeSolv 1.544 1.987 0.443

ESOL 0.831 0.911 0.080
Lipo 0.560 0.643 0.083

MAE
QM7 72.600 89.408 16.808
QM8 0.013 0.017 0.004

E.2 GROVER Fine-tuning Tasks with Other Backbones

In order to verify the effectiveness of the proposed self-supervised tasks, we report the fine-tuning
results by Hu et al. with and without pre-training in Table 8. As a comparison, we also involve the
performance of GROVER with the backbone GIN and MPNN trained in Section 5.2. We find that
without pre-training, our GROVER-GIN is consistent with Hu et al. on average, thus verifying the
reliability of our implementations. However, after pre-training, GROVER-GIN achieves nearly 2%
higher number than Hu et al., which supports the advantage of our proposed self-supervised loss.

Table 8: Comparison between different methods. The metric is AUC-ROC. The numbers in brackets
are the standard deviation.

Hu. et al. GROVER-GIN GROVER-MPNN
w pre-train w/o pre-train w pre-train w/o pre-train w pre-train w/o pre-train

BBBP 0.915(0.040) 0.899(0.035) 0.925(0.036) 0.901(0.051) 0.929(0.029) 0.917(0.027)

SIDER 0.614(0.006) 0.615(0.007) 0.648(0.015) 0.627(0.016) 0.650(0.003) 0.637(0.030)

BACE 0.851(0.027) 0.837(0.028) 0.862(0.020) 0.823(0.050) 0.872(0.031) 0.852(0.034)

Average 0.793 0.784 0.812 0.784 0.817 0.802

18

