
We thank all the reviewers for their insightful comments! All the responses will be incorporated into our revision.1

R1: (1) We designed a variational graph isomorphism network to injectively encode structural information of networks2

in the latent space and accurately remap to original structures after latent space optimization. (2) The observations are3

pretrained embeddings of the selected neural architectures. (3) The searched networks are trained from scratch.4

R2: (1) Details of supervised learning approach: architecture embeddings and search strategies (e.g., BO) are jointly5

optimized in a supervised manner. The supervision signal for embedding learning comes from the accuracies of6

architectures selected by the search strategies. In addition to accuracy, NAO takes the reconstruction loss of Â and X̂7

into account. However, as reported in our submission or Table 1 below, its performance is inferior to our unsupervised8

approach as it cannot necessarily improve embedding learning due to entangling structure reconstruction and accuracy9

prediction together. (2) Superiority of pretrained embeddings: compared to supervised embeddings, the pretrained10

embeddings are able to better capture the structural information (e.g. edit distance measures) of neural networks. This11

is because the optimization objective in pretraining is structure reconstruction only. As we showed in Figure 3 and 412

in the submission, compared to supervised learning, pretraining makes similar architectures clustered better (Figure13

3), and hence the accuracies are clustered and distributed more smoothly in the latent space (Figure 4). Conducting14

architecture search in such smooth performance surface is much easier and is hence more efficient. Note that we only15

use the accuracy of architecture as supervision in the search phase. (3) How pretrained embeddings are used with BO16

and RL for architecture search: for BO, the pretrained embeddings are passed to Bayesian optimization algorithm17

(DNGO) to select the top-K architectures in each round of search. For RL, the pretrained embeddings are passed to the18

Policy LSTM to sample the action and obtain the next state (valid architecture embedding) using nearest-neighborhood19

retrieval to maximize accuracy as reward. We covered some details in Supplementary A. We will add a thorough20

description of how pretrained embeddings are used with search strategies in the revision. (4) Fine-tuning: we did not21

fine-tune the embeddings during search based on the performance of the architectures. This is also because it biases22

the structural clustering obtained from pretraining, which leads to inferior search performance. We will add this result23

in the revised version. (5) Colorscale jumps (red and black) in Figure 4: we overlaid the original colorscale with red24

(>92% accuracy) and black (<82% accuracy) for highlighting purpose. (6) Naming observations: we will name our25

observations to reflect their nature in the revision. (7) Reproducibility: to facilitate fully reproducing our results, we26

attached the source code in our submitted supplementary material.27
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Figure 1: Test regret of GD & others.

R3: (1) We report the result of GD on NAS101 in terms of test regret in Figure28

1 and number of samples in Table 1. We have two observations. First, for29

GD, NAS with pretrained embeddings outperforms supervised embeddings.30

This aligns with our results in RL and BO. Second, GD performs worse than31

RL and BO in both unsupervised and supervised methods. This could be32

attributed to how GD minimizes the prediction error, which could easily enter33

the local minimum. We will add this result in the revised version. (2) Supervised34

embeddings are less capable of preserving the structural information due to the35

learning bias introduced by predicted accuracy, and thus are distributed less36

smoothly in the latent space which results in more overlapped (or blank) areas.37

(3) Thanks for suggesting [1,2]. [1] focuses on network generators that output relational graphs, and the predictive38

performance highly depends on the structure measures of the relational graphs. In contrast, we encode structural39

information of neural networks into compact continuous embeddings, and the predictive performance depends on how40

well the structure is injected into the embeddings. [2] focuses on transforming adjacency matrix-based encoding to41

path-based encoding in the discrete space. In contrast, we focus on encoding adjacency matrix-based architectures to42

low-dimensional embeddings in the continuous space. We will add the discussions on [1,2] in the revised version.43

NAS #Queries Accuracy Encoding Search
Methods (%) Method

NAO 1000 93.74 Supervised GD
GD (ours) 400 93.69 Supervised GD
RL (ours) 400 93.74 Supervised REINFORCE
BO (ours) 400 93.79 Supervised BO

arch2vec-GD 400 93.85 Unsupervised GD
arch2vec-RL 400 94.10 Unsupervised REINFORCE
arch2vec-BO 400 94.05 Unsupervised BO

Table 1: Number of samples of GD & others.

R4: (1) Thanks for suggesting the related work. While the related work44

tackles the generative problems, our work focuses on mapping the finite45

discrete neural architectures into the continuous latent space regularized46

by KL-divergence such that each architecture is encoded into a unique47

area in the latent space. Importantly, we systematically investigate how48

pretraining preserves the structure of neural networks and affects their49

predictive performance in NAS. We will emphasize this distinction in the50

revised version. (2) The KL term is used to regularize the mapping from the discrete space to the continuous latent51

space. It helps to perform a better inference and to preserve the validity performance of the model. We show the52

effectiveness of using KL for pretraining on three search spaces in Table 2 below. We will add this result in the revision.53

Method NAS-Bench-101 NAS-Bench-201 DARTS
Accuracy Validity Uniqueness Accuracy Validity Uniqueness Accuracy Validity Uniqueness

arch2vec (w.o. KL) 100 30.31 99.20 100 77.09 96.57 99.46 16.01 99.51
arch2vec 100 51.33 99.36 100 79.41 98.72 99.79 33.36 100

Table 2: An ablation study on the effectiveness of KL for pretraining.


