
A Off-policy evaluation dual objective

We formulate the estimation of the stationary state distribution µ⇡(s) given a policy ⇡(a|s) as a
maximum-entropy problem subject to matching feature expectations under the linearity assumption:

min
µ

X

s

µ(s) ln µ(s) (18)

s.t.
X

s,a

µ(s)⇡(a|s)�(s, a)>(I � M⇡) = b>⇡ (19)

X

s

µ(s) = 1 (20)

Let �(s, ⇡) =
P

a ⇡(a|s)�(s, a) be the expected state features under the target policy. For a fixed /
given M⇡ , the Lagrangian of the above objective is:

L(µ, ✓, �) =
X

s

µ(s) ln µ(s) + b>⇡ ✓ �

X

s

µ(s)�(s, ⇡)>(I � M⇡)✓ � �(
X

s

µ(s) � 1)

Setting the gradient of L(µ, ✓) w.r.t. µ(s) to zero, we get

0 = lnµ(s) + 1 � �(s, ⇡)>(I � M⇡)✓ � �

µ(s) = exp(�(s, ⇡)>(I � M⇡)✓ + � � 1)

Because
P

s µ(s) = 1, we get

1 � � = ln
X

s

exp(�(s, ⇡)>(I � M⇡)✓) := F (✓|M⇡),

where F (✓|M⇡) is the log-normalizer. By plugging this expression for µ into the Lagrangian, we get
the following dual maximization objective in ✓:

D(✓) :=
X

s

µ(s)(�(s, ⇡)>(I � M⇡)✓ � F (✓|M⇡)) + b>⇡ ✓ �

X

s

µ(s)�(s, ⇡)>(I � M⇡)✓

= b>⇡ ✓ � F (✓|M⇡) .

B Model error

B.1 Preliminaries

Our error analysis relies on similar techniques as the finite-sample analysis in Abbasi-Yadkori et al.
[2019a]. We first state some useful results.
Lemma B.1 (Lemma A.1 in [Abbasi-Yadkori et al., 2019a]). Let Assumption A1 hold, and let

{(st, at)}Tt=1 be the state-action sequence obtained when following the behavior policy � from an

initial distribution d0. For t 2 [T ], let Xt be a binary indicator vector with a non-zero at the linear

index of the state-action pair (st, at). Define for i 2 [T ],

Bi = E

"
TX

t=1

Xt|X1, ..., Xi

#
, and B0 = E

"
TX

t=1

Xt

#
.

Then, (Bi)Ti=0 is a vector-valued martingale: E[Bi � Bi�1|B0, . . . , Bi�1] = 0 for i = 1, . . . , T ,

and kBi � Bi�1k1  4 holds for i 2 [T ].

The constructed martingale is known as the Doob martingale underlying the sum
PT

t=1 Xt. Let
⇧� be the transition matrix for state-action pairs when following �. Then, for t = 0, . . . , m � 1,
E[Xt+1|Xt] = ⇧>

� Xt and by the Markov property, for any i 2 [T ],

Bi =
iX

t=1

Xt +
TX

t=i+1

E[Xt|Xi] =
iX

t=1

Xt +
T�iX

t=1

(⇧t
�)>Xi and B0 =

TX

t=1

(⇧t
�)>X0 .
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It will be useful to define another Doob martingale as follows:

Yi =
iX

t=2

Xt�1X
>
t +

TX

t=i+1

E[Xt�1X
>
t |Xi] =

iX

t=2

Xt�1X
>
t +

T�iX

t=i+1

diag(X>
i ⇧t�1

� )⇧� (21)

Y0 =
TX

t=1

E[Xt�1X
>
t ] =

TX

t=1

diag(d>0 ⇧t�1
� )⇧� (22)

where d0 is the initial state-action distribution. The difference sequence can again be bounded as
kYi � Yi�1k1,1  4 under the mixing assumption (see Appendix D.2.2 of Abbasi-Yadkori et al.
[2019a] for more details).

Let (Fk)k be a filtration and define Ek[·] := E[·|Fk].
Theorem B.2 (Matrix Azuma [Tropp, 2012]). Consider a finite (F)k-adapted sequence {Xk} of

Hermitian matrices of dimension m, and a fixed sequence {Ak} of Hermitian matrices that satisfy

Ek�1Xk = 0 and X2
k � A2

k almost surely. Let v =
��P

k A2
k

��. Then for all t � 0,

P

✓
�max

✓X

k

Xk

◆
� t

◆
 m · exp(�t2/8v) .

Equivalently, with probability at least 1��, k
P

k Xkk  2
p

2v ln(m/�). A version of the inequality
for non-Hermitian matrices of dimension m1 ⇥ m2 can be obtained by applying the theorem to a
Hermitian dilation of X , D(X) =

⇥
0 X

X⇤ 0

⇤
, which satisfies �max(D(X)) = kXk and D(X)2 =⇥

XX⇤ 0
0 X⇤X

⇤
. In this case, we have that v = max (k

P
k XkX⇤

kk , k
P

k X⇤
kXkk).

Let � be a |S||A|⇥ (m+1) matrix whose rows correspond to bias-augmented feature vectors �(s, a)
for each state-action pair (s, a). Let �i be the feature vector corresponding to the ith row of �, and
let C� = maxi k�ik2. For any matrix A, we have

���>A�
��
2

=

����
X

ij

Aij�i�
>
j

����
2



X

i,j

|Aij |
���i�

>
j

��
2

 C2
�

X

i,j

|Aij | = C2
� kAk1,1 . (23)

B.2 Proof of Lemma 3.1

Proof. Let � be a |S||A|⇥ (m+1) matrix whose rows correspond to bias-augmented feature vectors
�(s, a). Let D� = diag(d�). Let d̃� be the empirical data distribution, and D̃� = diag(d̃�). The
true and estimated (concatenated) model parameters can be written as

cW⇡ = (⇤ + �>D̃��)�1�>D̃�⇧̃⇡�

W⇡ = (�>D��)�1�>D�⇧⇡�

where ⇧⇡ is the true state-action transition kernel under ⇡, and ⇧̃⇡ corresponds to empirical next-state
dynamics P̃ . For the true model satisfying ⇧⇡� = �M⇡, we have taken expectations over d� and
taken advantage of Assumption A3.

Let ⇤ = ↵�T D̃��; in this case

cW⇡ =
1

1 + ↵
(�>D̃��)�1�>D̃�⇧̃⇡�

We first bound the error for (1 + ↵)cM⇡ . The model error can be upper-bounded as:
���(1 + ↵)cW⇡ � W⇡

���
2



���(�>D��)�1�>(D̃�⇧̃⇡ � D�⇧⇡)�
���
2

+
���
�
(�>D̃��)�1

� (�>D��)�1
�
�>D̃�⇧⇡�

���
2

 ��1
����>(D̃� � D�)⇧⇡�

���
2

+
���(�>D̃��)�1

� (�>D��)�1
���
2

����>D̃�⇧⇡�
���
2
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 ��1
����>(D̃� � D�)⇧⇡�

���
2

+ C2
�

���(�>D̃��)�1
� (�>D��)�1

���
2

where the second inequality follows from Assumption A3, and the last inequality follows from (23).
We proceed to bound the two terms

E1 = ��1
����>(D̃�⇧̃⇡ � D�⇧⇡)�

���
2

E2 =
���(�>D̃��)�1

� (�>D��)�1
���
2

Bounding E1. Let (Yi)i be the Doob martingale defined in (21)-(22), and let ⇧̃� be the empirical
state-action transition matrix under the policy �. Note that D̃�⇧̃� = YT /T . Furthermore, let K⇡ be
a |S||A| ⇥ |S||A| matrix defined as

K⇡
(s,a),(s0,a0) =

⇢
⇡(a0

|s) if s0 = s
0 otherwise

Notice that D̃�⇧̃�K⇡ = D̃�⇧̃⇡ and D�⇧�K⇡ = D�⇧⇡ . We can upper-bound E1 as:

��1
����>(D̃�⇧̃� � D�⇧�)K⇡�

���
2

=
1

�T

���>(YT � Y0)K
⇡�
��
2

+
1

�T

���>(Y0 � TD�⇧�)K⇡�
��
2

Note that �>YiK⇡� is a matrix-valued martingale, whose difference sequence is bounded by
��(�>(Yi � Yi�1)K

⇡�)2
��
2

 C4
� k(Yi � Yi�1)K

⇡
k
2
1,1  16C4

�2

where we have used (23) and the fact that rows of K⇡ sum to 1. Applying the matrix-Azuma
theorem B.2, we have that with probability at least �,

1

�T

���>(YT � Y0)K
⇡�
��
2

 8C2
���1

p
2 ln(2(m + 1)/�)/T .

Using the mixing Assumption A1, and letting d0 be the initial state-action distribution,

1

�T

���>(Y0 � TD�⇧�)K⇡�
��
2


1

�T

TX

t=1

���>diag(d>0 ⇧t
� � d>� )⇧�K⇡�

��
2


C2

�

�T

TX

t=1

��diag(d>0 ⇧t
� � d>� )⇧⇡

��
1,1


C2

�

�T

TX

t=1

exp(�t/) kd0 � d�k1 
2C2

�

�T

Thus we get that with probability at least 1 � �,

E1  8C2
���1

⇣p
2 ln(2(m + 1)/�)/T + 1/T

⌘

Bounding E2. To bound E2, we first rely on the Woodbury identity to write

(�>D̃��)�1
� (�>D��)�1

= (�>D�� + �>(D� � D̃�)�)�1
� (�>D��)�1

= (�>D��)�1
�
(�>D��)�1 + (�>(D̃� � D�)�)�1

��1
(�>D��)�1

E2  ��2
���
�
(�>D��)�1 + (�>(D̃� � D�)�)�1

��1
���
2

 ��2
����>(D̃� � D�)�

���
2

 8��2C2
�
⇣p

2 ln(2(m + 1)/�)/T + 1/T
⌘
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where the second line follows because (�>D��)�1
� 0, and the last line follows by similar

concentration arguments as those for E1 for the matrix-valued martingale �>diag(Bi)�, with
probability at least 1 � �.

Bounding
���cW⇡ � W⇡

���
2
. Putting previous terms together, with probability at least 1 � �, for an

absolute constant C,
���(1 + ↵)cW⇡ � W⇡

���
2

 CC4
���2

p
2 ln(2(m + 1)/�)/T (24)

Furthermore, we have:
���cW⇡ � W⇡

���
2



���(1 + ↵)cW⇡ � W⇡

���
2

+ ↵
���cW

���
2

 CC4
���2

p
2 ln(2(m + 1)/�)/T + ↵��1C2

�

Setting ↵ = C2
���1/

p
T gives the final result.

Bounding kw � ŵk. For linear rewards r(s, a) = �(s, a)>w, we estimate the parameters w using
linear regression. Abusing notation, assume that the feature matrix � does not include bias for the
purpose of this section. The true and estimated parameters w and ŵ satisfy

w = (�>D��)�1�>D�r (25)

ŵ = (�>D̃��)�1�>D̃�r (26)

where r = �w is the length-|S||A| vector of rewards. We have that

kw � ŵk =
���(�>D��)�1�>(D� � D̃�)�w

���+
���((�>D��)�1

� (�>D̃��)�1)�>D̃��w
���

(27)

Using the bounds from the previous section, we get that for a constant Cw, with probability at least
1 � �,

kw � ŵk  CwC2
���2(

p
2 ln(2m/�)/T ) kwk (28)

C Proof of Theorem 3.2 (policy evaluation error)

Proof. Assuming that the optimization problem is feasible, the following holds for the resulting
distribution d̂⇡(s, a) = µ̂⇡(s)⇡(a|s):

X

s,a

d̂⇡(s, a)�(s, a)> =
X

s,a

d̂⇡(s, a)�(s, a)>cW⇡ .

Assume that the reward is linear in the features, r(s, a) = w>�(s, a), and let ŵ be the corresponding
parameter estimate. Let w = [w0 ] and let ŵ = [ ŵ0 ].

The policy evaluation error is:

J⇡ � bJ⇡ =
X

s,a

(d⇡(s, a)�(s, a)>w � d̂⇡(s, a)�(s, a)>ŵ)

=
X

s,a

(d⇡(s, a) � d̂⇡(s, a))�(s, a)>w +
X

s,a

d̂⇡(s, a)�(s, a)>(w � ŵ) .

The norm of the second term is bounded by C� kw � ŵk2. We proceed to bound the first term.

Let W↵
⇡ = 1

1+↵W⇡, and define e> :=
P

s,a d(s, a)�(s, a)> and ê> :=
P

s,a d̂(s, a)�(s, a)>. The
first term can be written as:

(e> � ê>)w = e>(W↵
⇡ + ↵W↵

⇡ )w � ê>cW⇡)w
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= (e � ê)>W↵
⇡ w + ê>(W↵

⇡ �cW⇡)w + ↵e>W↵
⇡ w

= (e � ê)>(W↵
⇡ )2w

+ ê>(W↵
⇡ � cM⇡)(I + M↵

⇡ )w

+ ↵e>W↵
⇡ (I + (W↵

⇡ )2)w

= lim
K!1

(e � ê)>(W↵
⇡ )Kw +

⇣
ê>(W↵

⇡ �cW⇡) + ↵e>W↵
⇡

⌘ KX

i=0

(W↵
⇡ )i
!

w

In order to evaluate the infinite sum, we first show that W⇡ is non-expansive in a ⌃⇡-weighted norm
(and hence W↵

⇡ is contractive):

⌃⇡ := E(s,a)⇠d⇡
[�(s, a)�(s, a)>]

= E(s,a)⇠d⇡
[E(s0,a0)⇠⇧⇡(·|s,a)[�(s0, a0)�(s0, a0)>]]

= E(s,a)⇠d⇡
[W>

⇡ �(s, a)�(s, a)>W⇡] + V

= W>
⇡ ⌃⇡W⇡ + V (29)

where V ⌫ 0. Multiplying each side of (29) by ⌃�1/2
⇡ from the left- and right-hand side, we get that

I = ⌃�1/2
⇡ W>

⇡ ⌃1/2
⇡ ⌃1/2

⇡ W⇡⌃�1/2
⇡ + ⌃�1/2

⇡ V ⌃�1/2
⇡

1 �

���⌃1/2
⇡ W⇡⌃�1/2

⇡

���
2

2

Thus we have that
���⌃1/2

⇡ W↵
⇡ ⌃�1/2

⇡

���
2

 (1 + ↵)�1, and we can compute the infinite sum as:

(W↵
⇡ )i = ⌃�1/2

⇡

⇣
⌃1/2

⇡ W↵
⇡ ⌃�1/2

⇡

⌘i
⌃1/2

⇡
�����

1X

i=0

(W↵
⇡ )i

����� 

1X

i=0

���⌃�1/2
⇡

���
���⌃1/2

⇡ W↵
⇡ ⌃�1/2

���
i ���⌃1/2

⇡

���  C���1/2
⇡ (1 + ↵)

The error can now be written as

|J⇡ � bJ⇡| =
⇣
kêk2

���W↵
⇡ �cW⇡

���
2

+ ↵
��e>W↵

⇡

��
2

+ kuk2)
⌘

C���1/2
⇡ (1 + ↵) kwk2 + C� kw � ŵk2

Note that kek2  C� and kêk2  C�. Set ↵ = C2
���1/

p
T as in the previous section. From (24),

we have that
���W↵

⇡ �cW⇡

���
2

 (1 + ↵)CC4
���2

p
2 ln(2(m + 1)/�)/T (30)

Plugging in the model errors and ↵ and combining terms we get the final result in the theorem.

D Stationary distribution with large entropy

In this paper, we try to find the distribution over states that maximizes the entropy under some linear
constraints, and use it as a proxy for the stationary distribution. In this section, we provide some
theoretical evidence that at least when the probability transition over the states is sufficiently random,
the stationary distribution tends to have large entropy.

For simplicity, we focus on finite-state Markov chains instead of MDPs. Consider a Markov chain
with state space S and probability transition matrix P . Let S := |S|. Then the stationary distribution
d satisfies d> = d>P . In this section, we assume that each row of P is sampled uniformly at random
from the simplex over S , i.e., �S , independently of other rows. We prove the following result, which
shows that as S increases, the stationary distribution d converges to a uniform distribution over the
states at a rate O(1/

p
S).

16



Theorem D.1. Let P be the probability transition matrix of a Markov chain with finite state space S ,

and assume that rows of P are sampled independently and uniformly at random from �S . Then, with

probability at least 1 � �, the stationary distribution d of the Markov chain satisfies

����
d

kdk2
�

1
p

S
1

����
2


2
p

10

�
p

S
,

where 1 denotes an all-one vector.

Proof. We denote the uniform distribution over the simplex in RS by U . The distribution U is a
special case of Dirichlet distribution [Hazewinkel, 2001]. In this proof, we make use of the following
properties of U .

Lemma D.2. [Hazewinkel, 2001] Let x ⇠ U and xi be the i-th coordinate of x. Then we have

E[xi] =
1

S
, E[x2

i ] =
2

S(S + 1)
, E[x4

i ] =
24

S(S + 1)(S + 2)(S + 3)

E[xixj ] =
1

S(S + 1)
, E[x2

ix
2
j ] =

4

S(S + 1)(S + 2)(S + 3)
, 8i 6= j.

This lemma gives us the following direct corollary.

Corollary D.3. Suppose that x and y are two independent samples from U . Then we have

E[kxk
2
2] =

2

S + 1
(31)

E[x>y] =
1

S
(32)

E[kxk
4
2] =

4(S + 5)

(S + 1)(S + 2)(S + 3)
(33)

E[(x>y)2] =
S + 3

S(S + 1)2
(34)

Proof.

E[kxk
2
2] = E

"
SX

i=1

x2
i

#
=

2

S + 1
.

E[x>y] = E

"
SX

i=1

xiyi

#
=

SX

i=1

E[xi]E[yi] =
1

S
.

E[kxk
4
2] = E

"
(

SX

i=1

x2
i )

2

#
=

SX

i=1

E[x4
i ] +

X

i 6=j

E[x2
ix

2
j ] =

4(S + 5)

(S + 1)(S + 2)(S + 3)
.

E[(x>y)2] = E

"
(

SX

i=1

xiyi)
2

#
=

SX

i=1

E[x2
i y

2
i ] +

X

i 6=j

E[xixjyiyj ] =
S + 3

S(S + 1)2
.

Now we turn to the proof of Theorem D.1. In the following, we define b⌃ := PP>, ⌃ := E[b⌃], and
let pi be the i-th column of P>. For a PSD matrix M , we define �i(M) as its i-th largest eigenvalue.
Since P is a probability transition matrix, we know that �1(b⌃) = 1, and the corresponding top
eigenvector is d

kdk2
. We then analyze ⌃. Since ⌃i,j = E[p>i pj ], according to Corollary D.3, we know

that ⌃i,i = 2
S+1 , 8i and ⌃i,j = 1

S , 8i 6= j. Thus

⌃ =
S � 1

S(S + 1)
I +

1

S
11>.
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Then, we know that �1(⌃) = 1 + S�1
S(S+1) , �i(⌃) = S�1

S(S+1) , 8i � 2. Then, the gap between the top
eigenvalue of ⌃ and the second largest eigenvalue of ⌃ is

�1(⌃) � �2(⌃) = 1. (35)

The top eigenvector of ⌃ is 1p
S
1. Next, we proceed to bound the difference between ⌃ and b⌃. In

particular, we bound E[kb⌃ � ⌃k
2
F ]. We have

E[kb⌃ � ⌃k
2
F ] =

SX

i=1

⇣
E[b⌃2

i,i] � E[b⌃i,i]
2
⌘

+
X

i 6=j

⇣
E[b⌃2

i,j ] � E[b⌃i,j ]
2
⌘

=
SX

i=1

�
E[kpik

4
2] � E[kpik

2
2]

2
�

+
X

i 6=j

�
E[(p>i pj)

2] � E[p>i pj ]
2
�

=
4S(S � 1)

(S + 1)2(S + 2)(S + 3)
+

(S � 1)2

S(S + 1)2
(36)


5

S
, (37)

where in (36) we use Corollary D.3. Thus, we have

E[kb⌃ � ⌃kF ] 

q
E[kb⌃ � ⌃k2F ] 

r
5

S
. (38)

According to Markov’s inequality, with probability at least 1 � �,

kb⌃ � ⌃kF 

p
5

�
p

S
. (39)

We then apply Davis-Kahan Theorem [Davis and Kahan, 1970] (see also Theorem 2 in Yu et al.
[2015]) and obtain

s

1 � h
d

kdk2
,

1
p

S
1i2 

2kb⌃ � ⌃kF

�1(⌃) � �2(⌃)
= 2kb⌃ � ⌃kF ,

where for the equality we use (35). This implies
����

d

kdk2
�

1
p

S
1

����
2

=

s

2 � 2h
d

kdk2
,

1
p

S
1i


p

2

s

1 � h
d

kdk2
,

1
p

S
1i2

 2
p

2kb⌃ � ⌃kF . (40)

Then we can complete the proof by combining (39) and (40).

E Experiment details for linear quadratic control

In a linear-quadratic (LQ) control problem, the dynamics are linear-Gaussian in states x:

xt+1 = Axt + Bat + wt, wt ⇠ N (0, W ) . (41)

Assume that all policies are linear-Gaussian: ⇡(a|x) = N (a|Kx, C). In this case, assuming that the
policy ⇡ is stable (the spectral radius of A + BK is less than 1), the stationary state distribution is

µ(x) = N (0, S), where S = (A + BK)S(A + BK)> + W . (42)

Given an estimate of the dynamics parameters ( bA, bB,cW ), maximum-entropy OPE corresponds to
the following convex problem:

max
S⌫0

ln det(S) (43)
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s.t. S = ( bA + bBK)S( bA + bBK)> +cW (44)

Note that the constraint corresponds to that in the dual formulation of LQ control presented in Cohen
et al. [2018]. We solve the above problem using cvxpy [Diamond and Boyd, 2016]. The problem
will only be feasible if ⇢( bA + bBK) < 1, where ⇢(·) denotes the spectral radius. Furthermore, when
the system is controllable, the constraint fully specifies the solution and so the maximum-entropy
objective plays no role.

In LQ control problems, rewards are quadratic:

r(x, a) = �x>Qx � a>Ra, Q, R � 0, (45)

Thus to evaluate policies, we can estimate Q and R, and estimate the policy value as

bJ⇡ = trace(SQ̂) + trace((KSK> + C)R̂) .

In our experimental setup, we produce the behavior policies by solving for the optimal controller for
true dynamics (A, B, W ), true action costs R, and state costs corrupted as

Q̃ = Q + "2U>U

U is a matrix of the same size as Q whose entries are generated uniformly at random. Given the corre-
sponding optimal linear feedback matrices K̃, we set behavior policies to �(a|x) = N (a|K̃x, 0.1I),
and we make target policies greedy, i.e. a = K̃x.

When evaluating policies using BRM and FQI, we use the following features for a policy ⇡(a|x) =
N (a|Kx, C):

�(s, a) = VEC

✓
xx> xa>

ax> aa>

�◆
, �(s, ⇡) = VEC

✓
xx> xx>K>

Kxx> Kxx>K> + C

�◆
.
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