
We thank all reviewers for their valuable feedback. We are encouraged that they found our algorithm novel (R1), our1

paper well-written (R1, R2, R3, R4) with sound claims (R2), solid theoretical justifications (R3), and clear technical2

expositions (R4). We are honored that R4 recognizes the potential value of our work to the RL community. We provide3

detailed responses to their major concerns below:4

[R1, R4]: 1. Evaluation on more complex domains. We appreciate this valuable suggestion. To better illustrate the5

performance of our approach, we provide more evaluations on the Humanoid task (given the limited time constraint),6

which is a challenging domain with high state-action dimension (S ×A = R376 × R17). The strength of OPOLO is7

more significant in this domain ((Figure 1), while its counterparts can be prone to sub-optimality (DAC) or overfitting8

(ValueDICEfO) (see our response 2).9

[R2, R4]: 2. Solid comparison with stronger baselines. Following this informative suggestion, we compare with10

three more baselines: 1 ValueDICE as R4 mentioned. We would like to emphasize that ValueDICE is a LfD approach11

which is not directly applicable to LfO (see Sec 8.8), as it requires the expert actions at our disposal. For fairer12

comparisons, we implemented its variant 2 ValueDICEfO (as suggested by R2), which replaces ground-truth expert13

actions with pseudo ones provided by an inverse model. Thanks to R2’s valuable suggestions, we also implemented14

3 DACfO, a variation of DAC that learns the discriminator on (s, s′) instead of (s, a); Although ValueDICEfO and15

DACfO have not been investigated by other prior work, we still found them quite interesting and relevant to our setting.16

Results in Figure 1 (learning efficiency) and Table 2 (asymptotic performance) shows that: OPOLO (blue) in general 1)17

learns faster than DACfO (red), 2) yields higher asymptotic performance than DACfO and ValueDICEfO (green), and18

3) is more robust than other off-policy baselines including ValueDICE (orange) which uses expert actions. OPOLO is19

the only approach that consistently achieves competitive performance regarding both sample-efficiency and asymptotic20

performance across all tasks, and is therefore more stable compared with ValueDICE. As for the LfO baseline21

ValueDICEfO, its performance compared with ValueDICE can be further deteriorated by potential action-drifts, as the22

inferred actions are not guaranteed to recover expertise (see Sec 3.4 and Sec 8.3).23

[R3]: 3. Comparison with other choices of f -divergence. Following this valuable suggestion, we evaluated the24

effects of different f -functions, where f(x) = 1
p |x|

p, f∗(y) = 1
q |y|

q, s.t. 1
p +

1
q = 1, p, q > 1, as adopted by DualDICE25

(Nachum’19). We observed that OPOLO yields reasonable performance across different f -functions, although our26

choice (q = p = 2 ) turns out to be most stable. Results using the Ant task is illustrated in Figure 2.27

[R2]: 4. Conceptual resemblance to prior art: DICE and the inverse-action regularization. We appreciate this28

insightful comment for drawing a nice connection between OPOLO and other prior arts. We would like to highlight that:29

1) Our approach is inspired by while different from DICE , as it is the first work to extend DICE to a more challenging30

scenario (LfO), which is non-trivial especially when the philosophy of DICE is not directly applicable to this setting,31

for which we have provided theoretical analysis (Sec 8.8). 2) Unlike prior art that empirically validated the effects of an32

inverse-action model, we provide solid interpretations of its functionality, i.e. a mode-covering regularizer, by both33

theoretical derivations and empirical ablation studies.34

[R4]: 5. Effects of learning discriminator using fresh data. We appreciate this insightful suggestion. We had similar35

ideas before, by training discriminator D using on-policy data, which did not bring us much benefit in terms of the36

learning efficiency. We attribute this phenomenon to a training distribution drift, i.e. the on-policy dataset seen by D37

differs from the off-policy ones used to train π and Q, and the (potential) overfitting of D may cause it forget on how to38

distinguish stale (off-policy) samples. We consider it analogous to a catastrophic forgetting issue.39

Env HalfCheetah Hopper Walker Swimmer Ant Humanoid
opolo(-x) 7632.80±128.88 3581.85±19.08 3947.72±97.88 257.38±4.28 5783.57±651.98 4699.68±1245.81

DAC 6900.00±131.24 3534.42±10.27 4131.05±174.13 232.12±2.04 5424.28±594.82 2303.97±379.28
DACfO 7035.63±444.14 3522.95±93.15 3033.02±207.63 185.28±2.67 4920.76±872.66 640.49±233.43

ValueDICE 5696.94±2116.94 3591.37±8.60 1641.58±1230.73 262.73±7.76 3486.87±1232.25 942.47±730.13
ValueDICEfO 4770.37±644.49 3579.51±10.23 431.00±140.87 265.05±3.45 75.08±400.87 198.39±65.46

Table 1: Performance after training with 106 interaction steps
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Figure 2: different f -functions.
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Figure 1: Learning curves averaged over 3 random seeds.
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