
Appendix for: Invertible Gaussian
Reparameterization

1 Computing the determinant of the Jacobian of the softmax++

As mentioned in section 3.1, we can use the matrix determinant lemma to efficiently compute the
determinant of the Jacobian of the softmax++. It is straightforward to see that, for g as in equation
14 from the main manuscript, we have:

Jg(y, τ) =
1

s2

1

τ
y1e

y1/τ − e2y1/τ −e(y1+y2)/τ . . . −e(y1+yK−1)/τ

−e(y2+y1)/τ 1

τ
y2e

y2/τ − e2y2/τ . . . −e(y2+yK−1)/τ

...
...

. . .
...

−e(yK−1+y1)/τ −e(yK−1+y2)/τ . . .
1

τ
yK−1e

yK−1/τ − e2yK−1/τ

(1)

where:

s =

K−1∑
k=1

eyk/τ + δ (2)

Then, if we define v = (ey1/τ , . . . , eyK−1/τ)> and D = diag(y/τ � ey/τ), where � represents
element-wise product and ey is also taken as an element-wise operation, we have that:

det (Jg(y, τ)) = det

(
1

s2
(
D − vv>

))
=

(
1

s2

)K−1 (
1− v>D−1v

)
detD (3)

=

(
1

s2

)K−1(
1− τ

K−1∑
k=1

eyk/τ

yk

)
1

τK−1

K−1∏
k=1

yke
yk/τ (4)

where the second equality follows from the matrix determinant lemma.

2 Proofs of propositions

Proposition 1: For any δ > 0, the following holds:

lim
τ→0

softmax++(y/τ) = h(y) :=

ek∗ , if k∗ = arg max

k=1,...,K−1
(yk) and max

k=1,...,K−1
(yk) > 0

0, if max
k=1,...,K−1

(yk) < 0
(5)

where ek ∈ RK−1 is the one-hot vector with a 1 in its k-th coordinate.

Proof: We will assume that arg maxk=1,...,K−1(yk) is unique, and denote y∗ = maxk=1,...,K−1(yk).
We then have:

softmax++(y/τ)k =
eyk/τ∑K−1

j=1 eyj/τ + δ
=

e(yk−y
∗)/τ∑K−1

j=1 e(yj−y
∗)/τ + δe−y∗/τ

(6)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

If yk < y∗, the numerator goes to 0 as τ → 0, while it is equal to 1 if yk = y∗. The denominator
goes to∞ if y∗ < 0, while it goes to 1 if y∗ > 0. Combining these observations finishes the proof.

Proposition 2: If yk ∼ N (µk, σk) for k = 1, . . . ,K − 1, and we define the discrete random variable
H by H = k if h(y) = ek and H = K if h(y) = 0, then:

P(H = k) =

∫ ∞
0

φ

(
t− µk
σk

)∏
j 6=k

Φ

(
t− µj
σj

)
dt, if k = 1, . . . ,K − 1

K−1∏
j=1

Φ

(
−µj
σj

)
, if k = K

(7)

where φ and Φ are the standard Gaussian pdf and cdf, respectively.

Proof: For k = 1, . . . ,K − 1, we have:

P(H = k) =

∫
{y:yk≥y1,...,yk≥yK−1,yk≥0}

p(y)dy (8)

=

∫ ∞
0

∫ yk

−∞
· · ·
∫ yk

−∞

K−1∏
j=1

1

σj
φ

(
yj − µj
σj

)
dy1 · · · dyk−1dyk+1 · · · dyK−1dyk (9)

=

∫ ∞
0

1

σk
φ

(
yk − µk
σk

)∏
j 6=k

(∫ yk

−∞

1

σj
φ

(
yj − µj
σj

)
dyj

)
dyk (10)

=

∫ ∞
0

1

σk
φ

(
yk − µk
σk

)∏
j 6=k

Φ

(
yk − µj
σj

)
dyk (11)

which finishes the first part of the proof. The remaining probability, P(H = K) can obviously be
recovered as one minus the sum of the above probabilities, but we can also obtain the following
expression:

P(H = K) =

∫
{y:y1≤0,...,yK−1≤0}

p(y)dy (12)

=

∫ 0

−∞
· · ·
∫ 0

−∞

K−1∏
j=1

1

σj
φ

(
yj − µj
σj

)
dy1 · · · dyK−1 (13)

=

K−1∏
j=1

Φ

(
−µj
σj

)
(14)

which finishes the proof.

In our experiments with RELAX [1] in section 4 of the appendix we approximate the required
integrals using a Gaussian quadrature as in Steen et al. [6], and backpropagate through this procedure.
Note that the involved integrals are one-dimensional and thus can be accurately approximated with
quadrature methods. Although we found better performance with these approximations than with a
Monte Carlo approximation, we found the method prone to numerical instabilities, which we solved
by limiting the range of values that µ and σ are allowed take as follows:

µ = −5 tanh (µ′)

σ = 0.5 + 2 sigmoid (σ′)
(15)

where µ′ and σ′ are the parameters that we optimize over.

3 Variational Autoencoders

As mentioned in the main manuscript, our VAE experiments closely follow Maddison et al. [4]: we
use the same continuous objective and the same evaluation metrics. The experiments differ to Jang

2

Model MNIST FMNIST Omniglot
IGR-I -131.86 -66.74 -143.09
IGR-Planar -126.44 -53.65 -161.78
IGR-SB -130.99 -71.87 -154.23
GS -147.82 -85.74 -160.46
IGR-I + SL -128.79 -65.77 -145.66
IGR-Planar + SL -126.22 -66.39 -139.56
IGR-SB + SL -128.08 -65.21 -157.11
GS + SL -147.60 -83.24 -155.17

Table 1: Discretized Train ELBO (not log-likelihood) on MNIST, FMNIST and Omniglot for IGR
and GS. Higher is better.

et al. [2] since they use a KL term as in equation 8 of the main manuscript, whereas Maddison et al.
[4] use a continuous KL as in equation 9 of the main manuscript. Using the former KL results in
optimizing a continuous objective which is not a log-likelihood lower bound anymore, which is
mainly why we followed Maddison et al. [4].

In addition to the reported comparisons in the main manuscript, we include further comparisons in
Table 1 reporting the discretized training ELBO instead.

4 Other Estimators

Tucker et al. [7] and Grathwohl et al. [1] proposed REBAR and RELAX, respectively. These are
variance reduction techniques which heavily lean on the GS to improve the variance of the obtained
gradients. We make several important notes: First, REBAR is a special case of RELAX, so that we
will only compare against RELAX. Second, RELAX takes advantage of the parameter interpretability
of the GS, as it considers the gradients of the relaxed objective as approximations to the gradients of
the objective of interest:

∇αEz∼α[f(z)] ≈ ∇αEq̃α,τ (z̃)[f̃(z̃)] (16)

where α is a discrete distribution, which we think of as a vector of length K and q̃α,τ is a GS
distribution. RELAX builds upon equation 16 to develop an estimator with reduced variance.
Extending this observation to IGR is not immediately straightforward, as ∇µ,σEqµ,σ,τ (z̃)[f̃(z̃)] is
not an approximation to the gradient on the left hand size of the above equation: it is not even the
same shape. However, thanks to proposition 2 we can parameterize a discrete distribution using
µ and σ, so that α(µ, σ) is the discrete distribution given by proposition 2. This way, instead of
directly optimizing over the discrete distribution, we optimize over its parameters, µ and σ, so that
the gradient of interest becomes∇µ,σEz∼α(µ,σ)[f(z)], and its corresponding approximation:

∇µ,σEz∼α(µ,σ)[f(z)] ≈ ∇µ,σEq̃µ,σ,τ (z̃)[f̃(z̃)] (17)

where q̃µ,σ,τ is an IGR distribution, thus enabling the use of RELAX along IGR. Third, it should
also be noted that the bias and variance of the gradient estimator of RELAX are central points of
discussion by Grathwohl et al. [1]. However, comparing bias and variance between the GS and
IGR is a difficult task, as they are intrinsically approximating different gradients (equations 16 and
17, respectively). To make the fairest possible comparison, we compare between IGR and the GS
not by trying to estimate biases and variances, but by empirically comparing the recovered discrete
objectives. Ultimately, bias and variance of a stochastic gradient estimator are used as proxies for
how adequately optimized the corresponding objective will be, so that directly comparing on this
metric is sensible. We show results of running IGR and GS with and without RELAX in Table 2.

Discrete Models MNIST
IGR-I -94.18
GS -103.80
IGR-I + RELAX -81.95
GS + RELAX -83.41

Table 2: Test log-likelihood on MNIST for nonlinear architecture. Higher is better.

3

Finally, Kool et al. [3] proposed USPGBL, an unbiased estimator (unlike the GS or IGR, which
are biased), which is based on sampling without replacement. Their method requires using several
approximate posterior samples to estimate the ELBO. We used S = 4 samples, and for a fair
comparison against GS and IGR, we also estimated the ELBO using 4 samples (instead of 1, which
we used in every other experiment). Results are in Table 3 and we can see that again, IGR performs
best.

Discrete Models MNIST (S = 4)
IGR-I -118.45
GS -126.84
IGR-I + RELAX -102.21
GS + RELAX -112.76
USPGBL -106.89

Table 3: Test ELBO on MNIST for nonlinear architecture with 4 samples. Higher is better.

5 Architecture and hyperparameter details

In this section we describe the hyperparameters and architecture for the VAEs we use. The choice of
hyperparameters and architecture are aligned with [4, 2, 7, 1, 3].

• Linear Architecture: 784 - 200 - 784
– Encoder: One fully connected dense layers of 200 units with linear activation.
– Decoder: Symmetrical to the Encoder. One fully connected dense layer of 200 units

with linear activation.
• Non-linear Architecture: 784 ∼ 512 ∼ 256 - 200 - 256 ∼ 512 ∼ 784

– Encoder: Two fully connected dense layers of 512 units and 256 units respectively.
The nonlinear activations are ReLu.

– Decoder: Symmetrical to the Encoder. Two fully connected dense layers of 256 units
and 512 units respectively. The nonlinear activations are ReLu.

The hyperparameters are shared across the models. The only thing that changes is the temperature,
which is selected through cross validation as specified in the main manuscript. We use the following
configuration:

• Batch size = 100
• Epochs = 300 - 500
• Learning Rate ∈ {1.e− 4, 3.e− 4}
• Adam with β1 = 0.9, β2 = 0.999

• Categories = 10
• Number of Discrete Variables = 20

For the structure output prediction task the architecture used is:

• Four-layered non-linear architecture 240 ∼ 240 - (first sample) & 240 ∼ 240 - (second
sample)

– First sample is taken from double-layer 240 with tahn activation followed by a layer
with 240 units with a linear activation

– Second sample is taken as above

The hyperparameters used are

• Batch size = 100
• Epochs = 100
• Learning Rate = 1.e-3

4

• Weight Decay = 1.e-3

• Adam with β1 = 0.9, β2 = 0.999

For the nonparameteric mixture model the architecture used is:

• Nonlinear architecture 784 ∼ 200 ∼ 200 - 200 - 200 ∼ 200 - 784
– Encoder: 3 fully connected dense layers with 200 units and a ReLu activation.
– Decoder: 3 fully connected dense layers with 200 units and a ReLu activation.

The hyperparameters used are

• Batch size = 100

• Epochs = 300

• Learning Rate = 3.e-4

• Continuous Dimensionality = 50

• Max number of mixtures = 20 (not necessarily used)

• Adam with β1 = 0.9, β2 = 0.999

6 Approximating Discrete Distributions

Next we compare the GS and the IGR in approximating discrete distributions. We took 1,000 samples
of the learned parameters of the IGR from solving equation 14 from the main manuscript.

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25
Initial distribution

p
IGR-SB

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Final distribution

p
IGR-SB

Figure 1: IGR approximation to a Binomial(N = 12, p = 0.3)

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25
Initial distribution

p
GS

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25
Final distribution

p
GS

Figure 2: GS approximation to a Binomial(N = 12, p = 0.3)

We observe how both methods approximate the Binomial adequately, although it seems that the
advantage of the IGR-SB to better approximate countably infinite distributions was not translated to
this simple example.

5

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Initial distribution

p
IGR-SB

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Final distribution

p
IGR-SB

Figure 3: IGR approximation to a Discrete defined as p = (10
46 ,

1
46 ,

5
46 ,

1
46 ,

10
46 ,

10
46 ,

1
46 ,

6
46 ,

1
46 ,

1
46).

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Initial distribution

p
GS

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Final distribution

p
GS

Figure 4: GS approximation to a Discrete defined as p = (10
46 ,

1
46 ,

5
46 ,

1
46 ,

10
46 ,

10
46 ,

1
46 ,

6
46 ,

1
46 ,

1
46).

Results for this discrete distribution are similar to those observed on the Binomial.

0 20 40 60 80 100
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Initial distribution

p
IGR-SB

0 20 40 60 80 100
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Final distribution

p
IGR-SB

Figure 5: IGR-SB approximation to a Negative Binomial(r = 50, p = 0.6).

0 20 40 60 80 100
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Initial distribution

p
GS with K=20
GS with K=40
GS with K=100

0 20 40 60 80 100
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Final distribution

p
GS with K=20
GS with K=40
GS with K=100

Figure 6: IGR-SB approximation to a Negative Binomial(r = 50, p = 0.6).

6

Here again we see how the GS has difficulty approximating another distribution with a countably
infinite support. The GS with K = 40 (middle-purple) doest not assign mass to the right tail where as
the GS with K = 100 has difficulty taking out sufficient weight from the right tail of the distribution.

References
[1] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud. Backpropagation through the void:

Optimizing control variates for black-box gradient estimation. ICLR, 2018.

[2] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. ICLR, 2017.

[3] W. Kool, H. van Hoof, and M. Welling. Estimating gradients for discrete random variables by
sampling without replacement. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=rklEj2EFvB.

[4] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. ICLR, 2017.

[5] A. Mnih and D. J. Rezende. Variational inference for monte carlo objectives. CoRR, 1602.06725,
2016. URL http://arxiv.org/abs/1602.06725.

[6] N. Steen, G. Byrne, and E. Gelbard. Gaussian quadratures for the integrals
∫∞
0

exp(−x2)f(x)dx

and
∫ b
0

exp(−x2)f(x)dx. Mathematics of Computation, pages 661–671, 1969.

[7] G. Tucker, A. Mnih, C. J. Maddison, J. Lawson, and J. Sohl-Dickstein. Rebar: Low-variance,
unbiased gradient estimates for discrete latent variable models. In Advances in Neural Information
Processing Systems, pages 2627–2636, 2017.

7

https://openreview.net/forum?id=rklEj2EFvB
http://arxiv.org/abs/1602.06725

	Computing the determinant of the Jacobian of the softmax++
	Proofs of propositions
	Variational Autoencoders
	Other Estimators
	Architecture and hyperparameter details
	Approximating Discrete Distributions

