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A Further Discussion on Related Work

IdentiÞcation and estimation of endogenous regression problems via the method of instrumental
variables (IV) has a long history in econometrics and causal inference [Bowden and Turkington,
1990, Angrist and Krueger, 1991, Imbens and Angrist, 1994, Balke and Pearl, 1997, Angrist and
Krueger, 2001, Stock and Trebbi, 2003], dating back to early works in empirical economics [Wright,
1928] (for more detailed exposition see [Angrist and Pischke, 2008, Pearl, 2009b,a, Imbens and
Rubin, 2015]). The most prevalent approach for estimating endogenous regression models with
instruments is assuming low-dimensional linear relationships, i.e.h0(x) = !x, " " and invoking the
two-stage-least-squares (2SLS) algorithm: the treatment is regressed on the instruments via a Þrst
stage linear regression,x # z to learn a modelöf (z) = ! ö#, z" and subsequently the outcomey is
regressed on the predicted treatments from the Þrst stage linear regression model, i.e.y # öf (z). The
coefÞcient in the Þnal regression is taken to be the estimate of" .

A.1 Non-Parametric IV Regression in Econometrics and Statistics

Non-parametric and high-dimensional versions of the IV estimation problem have received great
attention by the econometrics and statistics community in the past two decades [Newey and Powell,
2003, Blundell et al., 2007, Chen and Pouzo, 2012, Chen and Christensen, 2018, Hall et al., 2005,
Horowitz, 2007, 2011, Darolles et al., 2011, Chen and Pouzo, 2009].

Sieve-based 2SLS Newey and Powell[2003] consider a non-parametric analogue of the 2SLS
regression, where the non-parametric modelh0(x) is approximated by a linear function on a growing
feature space, i.e.h0(x) $ ! $(x), " " and subsequently, the conditional expectationsE[$(x) | z] are
also approximated via linear functionsf (z) $ ! %(z), #". Then a 2SLS estimation method is applied
on these transformed feature spaces. The authors show asymptotic consistency of the resulting
estimator, assuming that the approximation error goes to zero.
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Sieve-based regularized minimum distance estimation Arguably the closest to our work is that
of Chen and Pouzo[2012] (in particular their Theorem 4.1), who consider estimation of non-
parametric function classes and estimation via the method of sieves and a penalized minimum distance
estimator of the form:minh!H E[E[y%h(x) | z]2]+ &R(h), whereR(h) is a regularizer. The authors
approximate the function classH by linear functions in a growing feature space. Subsequently, they
also estimate the functionm(z) = E[y %h(x) | z] based on another growing sieve.

Though it may seem at Þrst that the approach in that paper and ours are quite distinct, the population
limit of our objective function coincides with theirs. To see this, consider the simpliÞed version of
our estimator presented in (6), where the function classes are already norm-constrained and no norm
based regularization is imposed. Moreover, for a moment consider the population version of this
estimator, i.e.

min
h!H

max
f !F

!( h, f ) % &f &2
2 = min

h!H
max
f !F

E[(y %h(x)) f (z) %f (z)2]

Observe that ifF is expressive enough (ifT(h0 %h) ' F ), then the maximizing test function is
1
2 E[y %h(x) | z] = 1

2 E[h0(x) %h(x) | z]. Then by the law of iterated expectations, the population
criterion becomes:

min
h!H

E
!
(y %h(x))

1
2

E[y %h(x) | z] %
1
4

E[y %h(x) | z]2
"

= min
h!H

1
4

E
#
E[y %h(x) | z]2

$

Thus in the population limit and without norm regularization on the test functionf , our criterion is
equivalent to the minimum distance criterion analyzed inChen and Pouzo[2012]. Another point of
similarity is that we prove convergence of the estimator in terms of the pseudo-metric, the projected
MSE deÞned in Section 4 ofChen and Pouzo[2012] - and like that paper we require additional
conditions to relate the pseudo-metric to the true MSE.

The present paper differs in a number of ways: (i) the Þnite sample criterion is different; (ii) we
prove our results using localized Rademacher analysis which allows for weaker assumptions; (iii) we
consider a broader range of estimation approaches than linear sieves, necessitating more of a focus
on optimization.

Digging into the second point,Chen and Pouzo[2012] take a more traditional parameter recovery
approach which requires several minimum eigenvalue conditions and several regularity conditions
to be satisÞed for their estimation rate to hold (see e.g. their Assumptions 3.1, 3.2, 3.3, 4.1 and
C.1). This is analogous to a mean squared error proof in an exogenous linear regression setting, that
requires the minimum eigenvalue of the feature co-variance to be bounded away from zero. Moreover,
such parameter recovery methods seem limited to the growing sieve approach, since only then one
has a clear Þnite dimensional parameter vector to work on for each Þxedn.

In contrast we work with inÞnite dimensional parameter spaces directly and our analysis makes no
further assumptions other than boundedness of the random variables and the conditional moment
restriction in order to provide a projected MSE rate. We do not require that the hypothesis space
be a convex set, nor that the moment is path-wise differentiable with respect toh. Relaxing these
assumptions is important, since they are violated in three of our leading examples: linear hypothesis
spaces with hard sparsity constraints or for neural network spaces or for tree based regressors.
Another beneÞt of the localized Rademacher analysis is that we do not require a preliminary proof
of consistency, which is typical of more classical approaches to MSE rates. Such proofs typically
require thatn be larger than some constant before the convergence rate kicks in, so that the estimator
is within some small ball around the truth. This constant can sometimes be prohibitively large. Our
convergence rate is global and holds without any lower bound condition onn. The sieve method is
most closely related to our RKHS section (and the expository sieve AppendixD), where essentially
we consider inÞnite dimensional linear function spaces. However, unlike the sieve method, we do not
clip the eigenfunctions to a Þnite set that is growing, but rather impose an RKHS penalty. We show
that this approach has advantages in auto-tuning to the ill-posedness of the problem. Finally, we do
not require a bound on the ill-posedness of the problem in order to prove convergence rates in terms
of the pseudo-metric - this bound is only needed in post-processing to relate the pseudo-metric to the
MSE. By contrastChen and Pouzo[2012] use the bounded ill-posedness condition (Assumption 4.1)
to prove convergence in the pseudo-metric.

As a concrete example of the differences in the analysis, we apply our main Theorem1 for the
case whereH and F are growing sieves, equipped with the parameter! 2 norms, i.e. H =

18



%
!", $ n (á)" : " ' Rkn

&
, F = {! #, %n (á)" : # ' Rm n } , &!", $ n (á)"&H = &" &2, &!#, %n (á)"&F =

&#&2, for some Þxed and growing feature maps$n (á), %n (á). In that case' n will correspond to
the approximation error of the sieve%n that is used for the test function space and, if we choose
h" = arg min h!H &h" % h0&2, then&T(h" % h0)&2 ( & h" % h0&2 =: (n , will correspond to
the approximation error of the sieve$n that is used for approximating the modelh0. In that case,
Theorem1 gives a bound ofO ()n &" " &2 + ' n + (n ), where" " is the! 2 norm of the parameter of the
projection ofh0 on the sieve space for the model, i.earg min! ! Rk n &!", $ (á)" % h0&2

2. Moreover,)
is a bound on the critical radius ofFU andGB,U . Since both are Þnite dimensional linear functions,

via standard covering arguments (see Corollary5), we can bound) = O
' (

max { kn ,m n } log( n )
n

)
.3

Combined with ill-posedness conditions provided in [Chen and Pouzo, 2012], our results can thus
give an alternative proof to the results in [Chen and Pouzo, 2012] that i) do not make minimum
eigenvalue conditions, ii) provide adaptivity to&" " &2, without knowledge of it, thereby justifying
theoretically the use of the regularization termR(h), that was mostly proposed for experimental
improvement in [Chen and Pouzo, 2012]. We provide a more thorough exposition of how our main
theorem applies to the case of growing sieves in AppendixD.

The localized Rademacher analysis also allows us to consider hypothesis spaces that are not linear
sieves, such as neural nets and random forests. This introduces some new optimization difÞculties,
as the estimator cannot be written in closed form (as it can for linear sieves). Our work gives
several solutions for these difÞculties, via iterative Þrst order algorithms. Intuitively, our optimization
algorithms gradually and iteratively make gradient steps towards solving both optimization problems
(of regressingy %h(x) on z and minimizingE[E[y %h(x) | z]2] overH), as opposed to calculating
full solutions of either problem. This formulation allows us to work with arbitrary hypothesis spaces
and not just linear sieves.

Tikhonov regularized minimum distance estimation The work of [Hall et al., 2005, Darolles
et al., 2011, Horowitz, 2007, 2011], considers a Tikhonov regularized minimum distance estimator,
as opposed to a sieve-based approach. In particular, they consider the population criterion:

min
h!H

&T(y %h)&2
2 + &&h&2

2 ) E
#
E[y %h(x) | z]2

$
+ &&h&2

2

This is equivalent to the minimum distance criterion ofChen and Pouzo[2012], albeit with an
added and crucial! 2 regularization penalty on the hypothesis. The! 2 or Tikhonov regularization
achieves two objectives: i) it regularizes the estimate to avoid overÞtting (as in the case of an
exogenous regression setting), ii) it protects against the ill-posedness of the inverse problems, by
avoiding estimates that put a lot of weight on the non-smooth eigenfunctions of the singular value
decompsition of the operatorT.

Darolles et al.[2011] consider the closed form solution to the minimization problem, which takes the
form:

h" = ( & I + T" T)# 1 T" r
wherer = T y = E[y | z] andT" is the adjoint operator ofT, deÞned as(T" $)(x) = E[$(z) | x].
The authors further make minimal regularity assumptions that imply that the operatorT admits a
singular value decomposition(* i , $i , %i )i ! I for some countable setI , with 1 = * 0 * * 1 * . . .,
$i : X + R and%i : Z + R, i.e. T $i = * i %i andT" %i = * i $i . Moreover, one can express theT
operator as:

T h =
*

i ! I

* i !h, $"%i

where the! , " is the inner product associated with the corresponding! 2 metric spaces, i.e.!h, $" =
E[h(x)$(x)] and ! f, %" = E[f (z)%(z)]. Under these assumptions the optimal solution to the
population criterion can also be written as:

h" =
*

i ! I

* i

&+ * 2
i

! r, %i "$i

Intuitively, the functions$i , %i correspond roughly to the sieve functions that are used in the sieve
methods, e.g.Chen and Pouzo[2012], albeit instead of clipping the functionh to be supported on the

3Thelog(n) factor can also be saved with a more careful analysis of the critical radius for Þnite dimensional
linear function spaces (see SectionD).
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Þrstkn eigenfunctions of the singular value decomposition, they impose a Tikhonov regularization,
which penalizes the large eigenfunctions in a smoother manner.

Darolles et al.[2011] take the latter approach to estimation by Þrst estimating the conditional operators
T andT" from samples and the conditional expectationE[y | z], in a Þrst stage. They achieve this
using non-parametric kernel density estimation methods to estimate the densitiesp(x, z), p(z, x),
p(y, z), p(z) andp(x). Subsequently they estimate the operatorsT, T" in a plug-in manner, e.g.
öT h =

«
X h(x) öp(x,z )

öp(z) dx. Finally, they consider the plug-in estimate:öh" = ( &I + öT" öT)# 1 öT" ör .

The crucial assumption in this line of work (see e.g.Hall et al.[2005], Darolles et al.[2011]) is what
is known as thesource condition, where the true hypothesish0 is assumed to be smooth in the metric
space deÞned by the eigenfunctions of the operatorT. More concretely:

*

i ! I

!h, $i "2

* 2#
i

< , (source condition)

This assumption has the crucial implication that&h" %h&2
2 = O

+
&min { #, 2}

,
, thus providing a control

on the bias of the regularized estimate with respect to the MSE metric.

The decay of the singular values* i of T, is related to the rate of decay+m that we analze inE.4. For
instance, if the operatorT has as right eigenfunctions the eigenfunctions of the kernelK , then observe
that:T ei = &i %i andE[E[ei (x) | z]E[ej (x) | z]] = E[(T ei )(z)(T ei )(z)] = &2

i E[$i (z)$j (z)]. Thus
we get thatE[E[ei (x) | z]E[ei (x) | z]] = &2

i and fori -= j , E[E[ei (x) | z]E[ej (x) | z]] = 0 . Thus
the conditions in Lemma11 are satisÞed with+m = * 2

m andc = 0 . Thus by imposing an RKHS
norm penalty and assuming the latter eigendecomposition, we can get rates of the form:

&öh %h" &2 = min
m ! N+

'
4) 2

* 2
m

+ B&m +1

)

Moreover, observe that:!h, ei " = ai and that if&h&K ( B , then
-

i ! I
a2

i
" i

( B and hence:
-

i $ m a2
i ( &m B , where&i are the eigenvalues of the kernel. In this notation, the source condition

is equivalent to:
-

i ! I
a2

i

$ 2!
i

< , . An RKHS norm bound implies that the function is smooth in the

metric space deÞned by the eigenfunctions ofT andB is a level of smoothness. However, the level
of smoothness is also governed by the eigendecay of the kernelK . In some sense, the eigendecay
of the kernel governs the numerator of the source condition, while the eignedecay of the operator
T governs the denominator. Our estimator adapts to these two quantities and automatically and
optimally balances them, by imposing an RKHS norm penalty. However, the two conditions are
slightly incomparable, even though they capture similar constraints.

A.2 High Dimensional IV Regression

Instrumental variable estimation with high dimensional sparse linear models was analyzed in [Gautier
et al., 2011, Fan and Liao, 2014]. [Gautier et al., 2011] proposes a Dantzig selector analogue for
endogenous regression. Our work on sparse linear hypotheses provides a minimax formulation
alternative to the Dantzig selector. [Fan and Liao, 2014] propose a variant of the optimally re-
weighted generalized method of moments in high-dimensions with hard sparsity. Our results apply to
the setting analyzed in [Fan and Liao, 2014] and unlike [Fan and Liao, 2014] our estimation algorithm
is computationally efÞcient (seeF for more details).

A.3 Non-Parametric IV Regression and Machine Learning

There is also a growing body of work in the machine learning literature on the non-parametric
instrumental variable regression problem [Hartford et al., 2017, Bennett et al., 2019, Singh et al.,
2019, Muandet et al., 2019, 2020].

Neural networks The seminal work ofHartford et al.[2017] provided a methodology for training
neural networks that solve the instrumental variable problem by taking a non-parametric analogue of
the two stage least squares method. A preliminary version of this work [Lewis and Syrgkanis, 2018]
proposed a minimax criterion for training neural networks that solve the IV problem (albeit, crucially,
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with no regularization on the test functions and no formal guarantees on estimation rates). It however,
does not provide statistical guarantees of the resulting estimator apart from a fully non-parametric
rate that grows exponentially with dimension. A crucial difference of our work from [Lewis and
Syrgkanis, 2018] is that they donÕt penalize the objective with the norm of the test function which is
the key idea that enables our fast rates (based on critical radius ofF ). Finally, [Lewis and Syrgkanis,
2018] only provides experimental results for neural nets, while here we provide experimental and
theoretical results for many other function classes of interest.Bennett et al.[2019] also considered a
minimax criterion with a variance penalty. Albeit the variance penalty they impose is not the second
moment of the test functions and depends on a preliminary estimate of the true model. Moreover,
they only show asymptotic consistency of their estimate and not Þnite sample rates and primarily
focus on neural network applications (see Section6 for more details).

Reproducing kernel function spaces Singh et al.[2019] consider a RKHS analogue ofHartford
et al.[2017], where the hypothesis spaceh fall in an RKHS and the conditional distribution ofX
conditional onZ is represented via a conditional kernel mean embedding. They offer very strong
Þnite RKHS-norm rates on the estimatedh, which typically imply sup-norm rates of the recovered
function. Albeit, we focus on projected MSE and MSE rates and achieve faster rates as a function of
the eigendecay of the kernel and the degree of ill-posedness. Moreover, the work ofSingh et al.[2019]
makes several strongerprior assumptions, that control the smoothness of the function within the
kernel, assumptions that are typical of RKHS norm guarantees in kernel ridge regression [Caponnetto
and De Vito, 2007], but which are not required for the weaker MSE metric. In essence, the prior
condition imposes that the RKHS norm of error of the projection of the true function on the topJ

eigenfunctions&(I %PJ )f 0&2
H =

-
j>J

a2
j

" j
+ 0 asJ goes to inÞnity. This is not the case for all

functions in the RKHS, which only implies that the! 2-norm of the error of these projections vanishes,

i.e. &(I %PJ )f 0&2
2 =

-
j>J a2

j
J %&+ 0.

RKHS and neural network training Muandet et al.[2019] also propose a method that is very
related to the second moment penalized method that we propose, albeit the motivation stems from
a different dual formulation of the two-stage-least-squares problem presented in [Hartford et al.,
2017] and similar to [Bennett et al., 2019] only offer asymptotic consistency of the estimator and
only focus on RKHS function spaces. Finally,Muandet et al.[2020] consider the version of the
minimax criterion that does not impose the second moment penalty onf , and make the important
observation that for RKHS function spaces, the internal maximization takes a closed form, leading to
a pairwise sample criterion (see Equation(12) and Equation(15)). Moreover, they focus primarily
on hypothesis testing as opposed to estimation. The un-penalized criterion can have sub-optimal
convergence guarantees, as it does not posses the property that as the hypothesis of the learner gets
close to the truth, then the adversary is testing smaller functions in terms of variance. The inability
to achieve the fast rates attained via the critical radius was the main reason why we introduced the
second moment penalty. The suboptimality of the un-penalized kernel based criterion was also proven
in the context of hypothesis testing byBalasubramanian et al.[2017], who also show that a form of
second moment penalization can yield hypothesis tests with optimal power, when the alternative is
very close to the null. Moreover, for RKHS, we show that the penalized method still admits a closed
form solution, albeit now the closed form depends on the inverse of a kernel matrix, which makes it
less amenable to gradient training as we discuss in6.

B Beyond the IV Moments

Our results easily extend to arbitrary moments that are linear inh, which can capture several other
problems in econometrics and causal inference, but for simplicity of exposition we focus on the case
of moments of the formy % h(x). Moreover, our results can also be extended to non-linear and
non-smooth moments%(y; h(x)) , albeit in that case our convergence rates will be with respect to the

distance metric:d(öh, h) =
(

E[E[%(y; öh(x)) %%(y; h(x)) | z]2] as opposed to the projected MSE
distance. For instance, in the case of, -quantile IV regression:%(y; h(x)) = a %1{ y ( h(x)} and
the distance metric corresponds to:d(öh, h0) =

.
E[E[1{ y ( h(x)} % , | z]2].
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C Supplementary Discussion of Main Theorems

C.1 Adaptivity of Regularized Estimator

Suppose that we know that forB, U = 1 , we have that functions inH B , FU have ranges in[%1, 1] as
their inputs range inX andZ correspondingly. Then our Theorem requires that we set:& * ) 2 and
µ * 2&(4L 2 + 27) , where) 2 depends on the critical radius of the function classF1 andG1. Observe
that none of these values depend on the norm of the benchmark hypothesis&h" &H , which can be
arbitrary and not constrained by our theorem. For instance, if we knew that the true modelh0 ' H
andT(h %h0) ' F L 2 ' h# h0 ' 2

H
, then we can apply the latter theorem to get rates of the form:

O
+
) max

%
1, &h0&2

H

&,

with & = ) 2 andµ = 2 ) 2(4L 2 + 27) . This hyperparameter tuning only requires knowledge of the
critical radius of the function classesF1 adnH 1 and the Lipschitz constant of the operatorT, but
does not require knowledge of the norm of the true model&h0&H , nor upper bounds on it. If the
true model does not fall in the hypothesisH , then observe that we also require knowledge of the
unconstrained approximation error, i.e. if we knew that:

inf
h!H

&h %h0&2 ( (n

and thatT(h %h0) ' F L ' h# h0 ' H , then we can choose) * (n to get rates of the form:

O
+
) max

%
1, &h" &2

H

&
+ (n

,

whereh" = arg inf h!H &h %h0&2. Again we do not require knowledge of the norm of the uncon-
strained projection,&h" &H , just bounds on the approximation error of the unconstrained function
space. Then the regularized estimator adapts to the norm of the projection of the true model onH.
These results are inline with recent work on statistical learning theory [LecuŽ and Mendelson, 2017,
2018] for square losses and extend these qualitative insights to the minimax objectives that we deal
with.

C.2 Critical Radius and Rademacher Complexity via Covering

The critical radius of a function class is characterized to within a constant factor by itÕs empirical
localized Rademacher critical radius, which subsequently is chracterized by the empirical entropy
integral. The empirical Rademacher complexity of a function classG : V + [%1, 1], for a given set
of samplesS = { vi } n

i =1 is deÞned as:

RS() ; G) = E{ %i } n
i =1

/

sup
g!G :' g' 2 ,n ( &

1
n

*

i

( i g(vi )

0

The empirical critical radius is deÞned as any solutionö)n to:

RS() ; G) ( ) 2

Proposition 14.1 ofWainwright[2019] shows that w.p.1 %- ,

)n = O

1

ö)n +

2
log(1/- )

n

3

. (8)

Thus we can choose) in our main theorems based on the empirical critical radiusö)n .

Moreover, an upper bound on the empirical critical radius can be obtained via the empirical covering
integral deÞned as follows. An empirical(-cover ofG, is any function classG%, such that for all
g ' G , inf g" !G " &g%%g&2,n ( (. We denote withN ((, G, S) as the size of the smallest empirical
(-cover ofG. The empirical metric entropy ofG is deÞned asH ((, G, S) = log( N ((, G, S)) . An
empirical) -slice ofG is deÞned asGS,& = { g ' G : &g&2,n ( ) } . Then the empirical critical radius
of G is upper bounded by any solution to the inequality:

ö &

&2 / 8

2
H ((, GS,&, S)

n
d( (

) 2

20
(9)
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Observe that a conservative upper bound onö)n comes from replacingGS,& inside the integral with
G, i.e. when we do not restrict the function class to be in an empirical) -slice, when calculating
itÕs empirical metric entropy. For many function classes (e.g. parametric! 2-balls, RKHS, high-
dimensional sparse parametric spaces, VC-subgraph classes) this still yields tight results. For some
other cases, such as! 1-balls centered around a sparse parameter, this can be loose.

When we make this relaxation, then observe that we can derive an upper bound on the critical radius
of GB,U , as a function of the empirical metric entropy ofH andF . Observe that ifH %is an empirical
(-cover ofH andF%is an empirical(-cover ofFU , then sinceH contains functions uniformly
bounded in[%1, 1], we have that:

inf
h!H " ,f " !F "

&(h%%h)f %%(h %h" )f U
h &2,n ( 2&h%%h" &2,n + 2&f %%f U

h &2,n ( 4(

Thus, the product of these two spaces is an(-cover of the function classGdeÞned in Equation (3).
Hence, the empirical metric entropy ofGsatisÞes:

H ((, GB,U , S) ( H ((/ 4, H B , S) + H ((/ 4, FU , S)

Thus by applying Proposition 14.1 ofWainwright[2019] we get the following corollary.

Corollary 5. Suppose thatö)n satisÞes the inequality:
ö &

&2 / 8

2
H ((/ 4, H 2B , S) + H ((/ 4, F3U , S)

n
d( (

) 2

20

Then w.p.1 %- , )n ( O
'

ö)n +
(

log(1 /' )
n

)
, where)n is the maximum of the critical radii ofF3U ,

GB,U and öGB,U .

For instance, ifH andF is assumed to be a VC-subgraph class with constant VC dimension, then the

above is satisÞed forö)n = O
' (

log( n )
n

)
.

C.3 Solving the Min-Max Optimization Problem

In this section we outline some strategies for addressing the empirical min-max problem required by
the estimators described in Equations(4) and(7). In subsequent sections, we will present instances
of these optimization approaches for each of the function classes that we consider.

First observe that if the hypothesis space can be parameterized ash(x; " ), such that the moment
%(y; h(x; " )) is convex in" and the inner optimization problem is solvable in closed form then we
can solve the empirical problem via subgradient descent: i.e. letting

f " (á; h) := arg sup
f !F

! n (h, f ) %&"( f ),

" t +1 := " t %' (En [f " (z; h(x; " t )) . ! h(x; " t )] + µ. ! R(h(á; " t )))

where" , R are the regularizers onf andh correspondingly. AfterT iterations, the average parameter
ø" = 1

T

- T
t =1 " t , will correspond to anO

+
T# 1/ 2

,
approximate solution to the min-max problem. This

approximate solution will satisfy the same guarantees asöh presented in Theorem1 and Theorem2,
augmented by an extraO

+
T# 1/ 2

,
additive factor.

Many times, even if the hypothesis space is not parameterizable by a Þnite dimensional parameter
vector" , universally, we can invoke characterizations (typically referred to asrepresenter theorems),
that prove that the empirical solution can always be expressed in terms of a Þnite set of parameters
(many times of the order of the number of samples). This is for instance the case whenF andH
belong to a Reproducing Kernel Hilbert space, as we will see in Section4. In such settings, we will
see that even the overall min-max optimization problem can be expressed in closed form, involving
only matrix inversions and mutliplications, with matrices of size of the order ofn2.

Since the min-max problem does not have a smooth gradient, one can also beneÞt by invoking
algorithms that are tailored to saddle point problems. These improvements typically assume some
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structure on the inner optimization problem. For instance, if the functionf can be parameterizedd as
f (á; w) such that the inner maximization problem is concave inw then faster thanT# 1/ 2 optimization
rates can be achieved. We will see examples of such settings in the high-dimensional linear function
class setting in Section5. The following set of papers provide examples of algorithms that achieve
T# 1 approximation rates (see e.g.Nesterov[2005], Nemirovski [2004], Rakhlin and Sridharan
[2013], Mokhtari et al.[2019]).

One simple such algorithm is the simultaneous optimistic mirror descent algorithm proposed in
Rakhlin and Sridharan[2013] and also recently analyzed by several papers, both theoretically and
empirically, in the context of non-convex optimization problems (see e.g.Daskalakis et al.[2017],
Mertikopoulos et al.[2018]). In this algorithm, instead of fully solving the internal optimization
problem, we only take gradient steps. However, it modiÞes the gradient descent algorithm to
incorporate a notion ofoptimism(i.e. that the next gradient will look similar to the last gradient). In
particular, if we use the short-hand notation! n (", w ) := ! n (h(á; " ), f (á; w)) , then in the simpliÞed
setting where we have no regularization on", w , the algorithm is described via the following update
dynamics:

" t +1 = " t %2' . ! ! n (" t , wt ) + ' . ! ! n (" t # 1, wt # 1)
wt +1 = wt + 2 ' . w ! n (" t , wt ) %' . w ! n (" t # 1, wt # 1)

Convex constraints on" andw can be easily incorporated via projection steps and we defer toRakhlin
and Sridharan[2013] for the formal deÞnition of the algorithm in that setting. Similarly, for the
regularized versions one would simply replace! n with its regularized counterparts.

Unlike the sub-gradient descent approach, the simultaneous optimistic gradient dynamics, with the
regularized version of our estimator, can also be implemented in a stochastic gradient manner, where
a mini-batch of samples are drawn at each step (with replacement), from the empirical set of samples
and! n is replaced with the empirical expectation over that sub-sample. This can enable applications
where storing all the dataset in-memory is prohibitive. Moreover, this algorithm has variants that have
been proven beneÞcial for neural nets (see, e.g. the Optimistic Adam algorithm ofDaskalakis et al.
[2017], also used in the related work ofBennett et al.[2019] in a generalized method of moments
setup). Properties of simultaneous gradient dynamics in non-convex/non-concave settings have also
been a topic of recent interest in the machine learning community and recent techinques from this
line of work can be invoked to empirically solve the optimization problem (see e.g.Jin et al.[2019],
Nouiehed et al.[2019], Thekumparampil et al.[2019], Yang et al.[2020], Lin et al. [2020]).

C.4 From Projected MSE to MSE: Measure of Ill-Posedness

If we want to get a bound on the RMSE oföh, i.e. &h %h0&2, then we need to bound the quantity:

+" () ) = sup
h!H B :' T (h# h ! ) ' 2 ( &

&h %h" &2

In fact, it sufÞces to bound the measure of ill-posedness of the operatorT with respect to the function
classH B , deÞned as:

+ := sup
h!H B

&h %h" &2

&T(h %h" )&
.

Both of these measures have been used in the literature on conditional moment models. For instance,
Chen and Pouzo[2012] deÞnes both of these measures for the case whereH B is a space of growing
linear sieves. In that case, the second measure+ is typically referred to as thesieve measure of
ill-posedness. Then observe that Theorem1 implies that:

&öh %h" &2 ( +&T(öh %h" )&2 ( O (+ )n + +&T(h" %h0)&2) ( O (+ )n + +&h" %h0&2)

which by a triangle inequality also implies that:

&öh %h0&2 ( O (+ )n + ( + + 1) &h" %h0&2)

Choosingh" = arg min h!H :' h ' H ( B &h" %h0&, yields the bound:

&öh %h0&2 ( O
'

+ )n + ( + + 1) inf
h!H :' h ' H

&h %h0&2

)
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Subsequently one can appropriately chooseH andB so as to trade-off the ill-posedness constant and
the bias term.

Moreover, we show that when we have a bounded ill-posedness measure, then we can prove a more
convenient version of Theorem1, that only requires bounds on the critical radius of the centered
function classesstar(H B % h" ) = { r (h % h" ) : h ' H B , r ' [0, 1]} andstar(T(H % h" )) =
{ T(h % h" ) : h ' H B , r ' [0, 1]} , as opposed to the spaceG that contains products of these
functions.

Theorem 6. LetF be a symmetric and star-convex set of test functions and consider the estimator
in Equation(4). Let h0 be any hypothesis (not necessarily inH) that satisÞes the Conditional
Moment(1) and suppose thatH satisÞes that:

inf
h!H

&h %h0&2 ( (n

and leth" = arg inf h!H &h %h0&2. Moreover, suppose that:

/ h ' H : min
f !F L 2 " h # h ! " 2

H

&f %T(h %h" )&2 ( ' n

Assume that functions inH B andF3U have uniformly bounded ranges in[%1, 1] and that:

) := )n + ' n + (n + c0

2
log(c1/- )

n

for universal constantsc0, c1, and)n an upper bound on the critical radii of the classesF3U and

star(H B %h" ) := { r (h %h" ) : h %h" ' H B , r ' [0, 1]}
star(T(H B %h" )) := { r f h : h %h" ' H B , r ' [0, 1]}

wheref h = arg min f !F U
&f %T(h %h" )&2. If O() 2) * & * ) 2/U andO() 2) * µ * 2&(4L 2 +

27U/B ), thenöh satisÞes w.p.1 %3- :

&h %h0&2 = O
+
+2) max{ 1, &h" &H }

,

C.5 Minimax Optimality of Estimation Rate

In this section we take the viewpoint of establishing minimax optimal rates for the estimation problem
of interest and discuss under which circumstances the upper bound we provide will typically be
tight (i.e. achieving the statistically best possible projected RMSE). Suppose that the only prior
assumptions we are willing to make about our data generating process is that it satisÞes the moment
condition, thath0 ' H and thatT0 ' T for some function classH and linear operator classT .
Moreover, letF := { T h : T ' T , h ' H} . What is the minimax estimation rate, with respect to the
projected MSE norm, achievable in this setting? More concretely, letD (h, T ) be any distribution
consistent with functionh, linear operatorT and conditional moment conditionT h = E[y | z]. Then
for any estimatoröh, that takes as input a training sampleS of sizen, drawn i.i.d. fromD(h, T ), and
returns a functionöhS, we want to lower bound the minimax optimal rate:

min
öh

max
h0 !H ,T 0 !T

ES) D (h0 ,T 0 )n

4
&T0(öhS %h0)&2

2

5

If the spaceT contains the identity, then this is lower bounded by the RMSE rates of a non-parametric
regression problem over hypothesis spaceH. Thus by standard results on regression problems, the
critical radius ofH is insurmountable for many classesH of interest (see e.g.Massart[2000], Bartlett
et al.[2005], Rakhlin et al.[2017].

Moreover, suppose that there exists aT ' T such that: for allf there existsh ' H , such that
T h = f , i.e. T is the worst mapping that allows one to span all ofF . Then even if we knewT = T0,
we could not bypass the critical radius ofF for many classesF of interest (see e.g.Bartlett et al.
[2005], Rakhlin et al.[2017]). More generally, we can lower bound the minimax risk as:

max
T0 !T

min
öh

max
h0 !H

ES) D (h0 ,T 0 )n

4
&T0(öhS %h0)&2

2

5
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Let FT = { T h : h ' H} . Then the above can be re-written:

max
T0 !T

min
öf !F T

max
f 0 !F

ES) D ( f 0 )n

4
&öf S %f 0&2

2

5

whereD(f 0) is any distribution that satisÞesE[y | z] = f 0. This is the minimax lower bound for
the regression problem of predictingy from z, assuming thatE[y | z] ' F T . Thus we have that
the minimax rate is at leastmaxT ) (FT ). If we knew that there was a Þnite set ofk representative
linear operatorsT1, . . . , Tk in T , such thatF = FT1 0 . . . 0 F Tk , then observe that the critical
radius ofF is at mostO(log(k)) more than the maximum critical radius of each of theFTi . Thus
the only case that remains open where our upper bound might not be providing tight results is when
there is not such Þnite small set of representative operators inT . In many of our settings, we will
have that) (F ) # ) (H ), which is achieved for the single identity operatorT = I . The case where
our upper bound is loose, is essentially the case when knowing the operator, or some equivalence
class of the operator, can signiÞcantly reduce the sample complexity of the problem. Potentially
in such settings Þtting a Þrst stage model ofT to identify the equivalence class or a Þnite number
of viable equivalence classes and focus only on a remaining set ofk candidateFT1 0 . . . 0 F Ti in
a second stage can be beneÞcial. However, in most of our applications this setting does not arise.
One for instance can follow techniques similar to aggregation algorithmsRakhlin et al.[2017], that
applies our minimax estimator on an( partition of the original hypothesisH and then aggregates the
resulting winning hypothesis from each partition. However, this would typically be a computationally
inefÞcient algorithm.

D Application: Growing Linear Sieves

Consider the case whereH andF are growing linear sieves, i.e.

H = H n :=
%

!", $ n (á)" : " ' Rkn
&

,

F = Fn := {! #, %n (á)" : # ' Rm n } ,

equipped with norms&!", $ n (á)"&H = &" &2, &!#, %n (á)"&F = &#&2, for some known and growing
feature maps$n (á), %n (á).

Moreover, we denote with' n the approximation error of the sieve%n that is used for the test function
space, i.e. for allh, h" ' H :

inf
f !F

&f %T(h %h" )&2 ( ' n

and, let(n the approximation error of the sieve$n used for the model, i.e.:

inf
h!H

&h %h0&2 ( (n

In that case, applying Theorem1 with h" = arg inf h!H &h %h0&2, gives a bound w.p.1 %- of:

&T(öh %h0)&2 ( O

11

)n + (n +

2
log(1/- )

n

3

max{ 1, &" " &2
2} + ' n

3

where" " is the! 2 norm of the parameter that corresponds toh" .

Moreover, ) n is a bound on the critical radius ofFU and GB,U . Since both are Þnite di-
mensional linear functions, via standard covering arguments (see Corollary5), we can bound

)n = O
' (

max { kn ,m n } log( n )
n

)
. We also now provide a more intricate argument that removes

the log(n) from this rate. Observe thatFU is a simple linear model space and therefore existing
results directly apply to show that the critical radius ofFU is at most

. m n
n (see e.g. Example 13.5 of

Wainwright[2019]). The function spaceGB,U is a bit more subtle. We will in fact bound the critical
radius of the following larger class:

÷GB,U = { (x, z) + ! " %" " , $n (x)"! #, %n (z)" : " ' Rkn , # ' Rm n , &" %" " &2 ( B, &#&2 ( U}

We will use the empirical covering integral bound on the critical radius, presented in Equation(9).
Thus we need to bound the metric entropy of the function class÷GB,U () ) = { g ' ÷GB,U : &g&2,n ( ) } .
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Let ! n denote then 1 kn matrix whosei -th row corresponds to the vector%n (xi ) and similarly" n .
Observe that the norm empirical! 2,n norm can then be written as:

&!" %" " , $n (á)"! #, %n (á)"&2,n =
&! n (" %" " )&2&" n #&22

n
Thus! 2,n deÞnes a norm on the space deÞned by the Hadamard (coordinate-wise) productv1 3 v2

of two vectorsv1, v2 in range(! n ) andrange(" n ), correspondingly, i.e.&v1 3 v2& = ' v1 ' 2 ' v2 ' 2*
n .

Moreover,÷GB,U () ) is isomorphic to a) -ball in this space. Moreover, observe that the dimension of
the space{ v1 3 v2 : v1 ' range(! n ), v2 ' range(" n )} is at mostrank(! n ) rank(" n ) ( kn ámn .
Therefore by the volumetric argument presented in Example 5.4 ofWainwright[2019], we get that
for any set of samplesS of sizen, log(H ((, ÷GB,U () ), S) ( kn mn log

+
1 + 2&

%

,
. Moreover, observe

that:
ö &

0
log(H ((, ÷GB,U () ), S)d( (

2
kn mn

n

ö &

0

6

log
'

1 +
2)
(

)
d(

( )

2
kn mn

n

ö 1

0

6

log
'

1 +
2
u

)
du = c )

2
kn mn

n

for some constantc. Thus Equation(9) is satisÞed for) = O
' (

kn m n
n

)
. Combining all these we

get a projected MSE rate w.p.1 %- of:

&T(öh %h0)&2 = O

11 2
kn mn

n
+ ' n + (n +

2
log(1/- )

n

3

max{ 1, &" " &2
2}

3

Invoking standard bounds on the approximation error of classical sieves (e.g. wavelets) and optimally
balancingkn , mn , yields concrete rates (see e.g.Chen and Pouzo[2012] for particular approximation
rates of known sieves).

Combined with ill-posedness conditions provided in [Chen and Pouzo, 2012], our results can thus
give an alternative proof to the results in [Chen and Pouzo, 2012] that i) do not make minimum
eigenvalue conditions, ii) provide adaptivity to&" " &2, without knowledge of it, thereby justifying
theoretically the use of the regularization termR(h), that was mostly proposed for experimental
improvement in [Chen and Pouzo, 2012]. For instance, one concrete ill-posedness condition is
that&min

+
E

#
E[$n (x) | z]E[$n (x) | z]+

$,
* . n and&max

+
E

#
%n (x)%n (x)+

$,
( * n . Then the

ill-posedness constant is upper bounded by+n = * n /. n . Moreover, if one assumes a bound on
ill-posedness, then Theorem6 requires) to be an upper bound of simpler function spaces, that
all correspond to simple linear function spaces in Þnite dimensions. Thus a smaller bound of

O
' (

max { kn ,m n }
n

)
, sufÞces, leading to an error w.p.1 %- of the form:

&öh %h0&2 = O

1

+2
n

1 2
max{ kn , mn }

n
+ ' n + (n +

2
log(1/- )

n

3

max{ 1, &" " &2
2}

3

E Application: Reproducing Kernel Hilbert Spaces

In this section we deal with the case whereh0 lies in a reproducing kernel Hilbert space (RKHS)HK H

with kernelK H : X 1 X + R andT h0 lies in another RKHSHK F with kernelK F : Z 1 Z + R.
We present the three components required to apply our general theory.

First we characterize the set of test functions that are sufÞcient to satisfy the requirement that
T(h %h0) ' F U ; under non-parametric assumptions on the conditional densityp(x | z) then we
can haveK H = K F . Second, by recent results in statistical learning theory, the critical radius of
the function classesF andGcan be characterized as a function of theeigendecay of the kernelK
and the product kernelK , ((x, z), (x-, z-)) = K (x, x -) áK (z, z-) and in the worst-case is of the
order ofn# 1/ 4. Combining these two facts, we can then apply Theorem1, to get a bound on the
estimation error of the minimax or regularized minimax estimator. Finally, we show that for this set
of test functions and hypothesis spaces,the empirical min-max optimization problem can be solved in
closed form; in particular the inner maximization problem can be shown to correspond roughly to a
regularized version of a pairwise metric of the form:

-
i,j %i K (zi , zj )%j , where%i = %(yi ; h(xi )) .
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E.1 Characterization of SufÞcient Test Functions

In general, it sufÞces to assume that the linear operatorT is regular enough that it satisÞes that for any
h ' H , we have thatT h ' HK F for some known kernelK F and that it is anL-Lipschitz operator
with respect to the pair of RKHS norms&á&H , &á&K F . Then observe that we satisfy the requirement
thatT(h %h" ) ' F L 2 ' h# h ! ' 2

H
, if we takeF = HK F . We now present two complementary sets of

sufÞcient conditions for which the aforementioned property holds.

The Þrst set of conditions applies to a generic function classH and asks principally thatp(x|á)
belongs to a common RKHS for eachx.
Lemma 7. Suppose that, for eachx, p(x|á) is an element of an RKHSHK F andh ' H satisÞes
|h(x)| ( / (x)&h&H for some/ : X + R. If L !

«
/ (x)&p(x|á)&K F dx < , , thenT h ' HK F with

&T h&K F ( L&h&H .

Proof. For any nonnegativeh, JensenÕs inequality implies that

&T h&K F = &
«

h(x)p(x|á)dx&K (
«

|h(x)|&p(x|á)&K F dx. (10)

The same result (10) holds for arbitrary signedh due to the decompositionh = h+ % h# for
h+ (x) = max( h(x), 0) andh# (x) = max( %h(x), 0), the identity|h(x)| = |h+ (x)| + |h# (x)|, and
the triangle inequality&T h&K F ( & T h+ &K F + &T h# &K F .

Now consider anyh ' H satisfying|h(x)| ( / (x)&h&H for some/ : X + R By our inequality
(10), we have

&T h&K F ( & h&H

ö
/ (x)&p(x|á)&K F dx = L&h&H .

The second set of conditions applies whenh belongs to a translation-invariant RKHS and ensures
that T h belongs to the same RKHS. Suppose that the kernelK H (x, y) = k(x % y). Moreover,
suppose thatp(x | z) = 0(x %z). Then the following lemma states thatT h ' HK H and hence also
T(h %h" ) ' HK H for anyh, h" ' HK H .
Lemma 8. Suppose the conditional distribution ofX givenZ = z has continuous densityp(x|z) =
0(x %z) and thatK H (x, y) = k(x %y) for k positive deÞnite and continuous. If the generalized
Fourier transform ofk is continuous onRd\{ 0} , thenT h ' HK H for all h ' HK H with &T h&K H (
L&h&K H for L = &ö0&& .

Proof. Fix anyh ' HK . By [Wendland, 2004, Thm. 10.21],&h&K H = &öh/
.

ök&2 < , . Moreover,
since0 is in L 1, the Hausdorff-Young inequality implies thatö0 ' L & . Hence, sinceT h = h 4 0,

&T h&2
K H

=
ö

7T h(1)2/ ök(1)d1 =
ö

öh(1)2 ö0(1)2/ ök(1)d1 ( & ö0&2
& &öh/

.
ök&2

2 = L 2&h&2
K H

< , ,

so thatT h ' HK H by [Wendland, 2004, Thm. 10.21].

Thus in Theorem1 we can useH = F = HK for K = K H . Moreover, we can setB to be an upper
bound on the squared RKSH norm ofh0, i.e. &h0&2

H ( B so that we can takeh" = h0 and have
&T(h" %h0)&2 = 0 , i.e. zero bias. Moreover, by Lemma8 we also know that&T h0&2

F ( LB for
some constantL . Thus we can setU = 2LB in Theorem1 and have that Equation(5) holds with
' n = 0 . Thus by Theorem1, we can get that the estimator in Equation (4) satisÞes w.p.1 %3- :

&T(öh %h0)&2 ( )n + c0

2
log(c1/) )

n
where)n is an upper bound on the critical radii ofF6LB andGB , which simplify to:

F3U :=
%

f ' HK : &f &2
K ( 6LB

&

GB :=
%

(x, z) + (h(x) %h0(x)) T(h %h0)(z) : h ' HK , &h %h0&2
K ( B

&

Similar rates can also be established for the regularized estimator analogue in Theorem1, without
explicit knowledge ofB .
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E.2 Critical Radius of F3U and GB

We now turn to analyze the critical radii ofF3U andGB . We Þrst show that these function spaces are
also RKHS with appropriate kernels and have bounded RKHS norms. This is trivial forFU . Moreover,
observe that the spaceGB , contains the product of two functionshf , whereh : X + [%1, 1] and
f : Z + [%1, 1] and such thath ' H andf = T h ' F . Thus the spaceG, with inner product
!hf, h -f -"G = !h, h-"H ! f, f -"F , also admits a reproducing kernel, deÞned as (see Proposition 12.2
of Wainwright[2019]):

K G((x; z), (x-; z-)) = K H (x, x -) K F (z, z-)

Moreover,&hf &G = &h&H &f &F . Thus if h, satisÞes&h&2
H ( B , then by Lemma8, &T h&2

F (
L&h&2

K ( LB for some constantL and&hf &2
G ( LB 2.

Assuming that the RKHS spacesF andG, also have a sufÞciently fast eigendecay then existing results
in statistical learning theory also bound the generalization errorWainwright[2019]. In particular,
Corollary 14.2 ofWainwright[2019], shows that for any RKHSHK , if we let

HB
K := { h ' HK : &h&K ( B } ,

then we can bound the localized Rademacher and empirical Rademacher complexity as:

R() ; HB
K ) ( B

2
2
n

89
9
:

&*

j =1

min{ &j , ) 2} R S() ; HB
K ) ( B

2
2
n

89
9
:

n*

j =1

min{ &S
j , ) 2}

where&j are the eigenvalues of the kernel and&S
j are the empirical eigenvalues of the empirical

kernel matrixK deÞned asK ij = K (xi , xj )/n . Moreover, the unrestricted Rademacher complexity
is upper bounded as (see Lemma 26.10 ofShalev-Shwartz and Ben-David[2014]):

R(HB
K ) ( O

1

B

2
maxx !X K (x, x )

n

3

Thus in the worst case we can take)n = O
' 2

B
;

max x $X K (x,x )
n

<1/ 4
)

, to get a non-parametric

rate of convergence.4 However, for many kernels, the eigendecay will be sufÞciently fast, that) 2 will
not be binding in the minimum. For instance, for the Gaussian kernel in one dimension on the domain

[0, 1], with bandwidth of1, i.e. K (x, x -) = e# ( x # x %) 2

2 , we have that)n = O
'

B
(

log( n +1)
n

)
(see

Example 14.4 ofWainwright[2019]).

Data-adaptive estimation Moreover, by Equation(8), we can choose) in Theorem1 based on
the empirical critical radius. Observe that the empirical eigenvalues are directly computable from
the data and hence, we can calculate a data-adaptive quantityö)n and choose) in Theorem1, based

on this data-adaptive quantity plus anO
' (

log(1 /' )
n

)
term. Moreover, if we use the regularized

estimator, then we also do not require knowledge ofB , which leads to a very data-adaptive estimation
scheme. The only thing required is knowledge of an upper bound on the Lipschitz constantL of the
operatorT with respect to the RKHS norm.

E.3 Closed-Form Solution to Optimization Problem

Finally, we show that the optimization problem that deÞnes the estimator in Equation(4) can be
computed in closed form. We present the results for the constrained estimator, but exact analogues
also hold for the regularized version. The proof can be found in AppendixL.1.

4Observe that: K (x, x ) =
! !

j =1 ! j ej (x)2 and therefore:
! !

j =1 ! j =
! !

j =1 ! j Ex [ej (x)2] =
Ex [

! !
j =1 ! j ej (x)2] = Ex [K (x, x )] ! maxx "X K (x, x ). Thus in the worst case, when! j " " 2 for mostj ,

we still recover the non-localized from the localized bounds.
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Proposition 9 (Closed-form maximization). SupposeF is an RKHS with kernelK equipped with
the canonical RKHS norm&á&F = &á&K . Then for anyh

sup
f !F

! n (h, f )2 %&
'

&f &2
K F

+
U

n) 2 &f &2
2,n

)
=

1
4&

%+
n K 1/ 2

n ( U
n&2 K n + I )# 1K 1/ 2

n %n (11)

=
1

4&
%+

n K n ( U
n&2 K n + I )# 1%n

whereK n = ( K (zi , zj )) n
i,j =1 is the empirical kernel matrix and%n = ( 1

n %(yi ; h(xi ))) n
i =1 .

We note that if we did not enforce the extra! 2,n norm constraint onf (i.e. ) + , , then the above
inner optimization problem simpliÞes to:

sup
f !F

! n (h, f )2%&&f &2
K F

=
1

4&
%+

n K n %n =
1

4& n2

*

i,j

%(yi ; h(xi ))K (zi , zj )%(yj ; h(xi )) (12)

i.e. we get a pair-wise residual loss, weighted by a kernel matrix that is only a function of the
conditioning setz.

Thus the solutionöh of the estimator in Equation (4) is equivalent to:

öh = arg min
h!H

1
4&

%+
n M%n + µ&h&2

H = arg min
h!H

%+
n M%n + 4µ &&h&2

H

whereM := K 1/ 2
n ( U

n&2 K n + I )# 1K 1/ 2
n . Finally, we show that this outer maximization also has a

closed form solution. See AppendixL.2 for the proof.
Proposition 10(Closed-form minimization). Suppose thatH andF are the RKHSes of the kernels
K H andK F , equipped with the canonical RKHS norms&á&H = &á&K H and&á&F = &á&K F . DeÞne
the empirical kernel matricesK H ,n = ( K H (xi , xj )) n

i,j =1 andK F ,n = ( K F (zi , zj )) n
i,j =1 . Then the

following estimator is an optimizer of Equation(4):

öh =
n*

i =1

, " ! ,i K H (xi , á) , " := ( K H ,n MK H ,n + 4 & µK H ,n )  K H ,n My

for M = K 1/ 2
F ,n ( U

n&2 K F ,n + I )# 1K 1/ 2
F ,n ) K F ,n ( U

n&2 K F ,n + I )# 1 andA  is the Moore-Penrose
pseudoinverse of a matrixA.

Hyper-parameter tuning Observe that Theorem1 states that as long as the regularization strength
satisÞes that&µ = #( ) 4L 2), then this estimator will provide results that automatically scale with the
RKHS norm of true hypothesish0. Moreover, the regularization hyperparameter& áµ can also be
tuned in practice by evaluating the loss function%+

n M%n on a left-out sample, with parametersn, )
set to the appropriate ones for the size of that sample.

Low-Rank Approximation and NystromÕs Method The solution to the empirical optimization
problem requires inverting ann 1 n kernel matrix, which takes timeO(n3). This can be prohibitive
for moderate sample sizes of the order of tens of thousands. We note here that one can construct
very good approximations to the solution in Proposition10 by considering low-rank approximations
of the kernel matrixK . We present here one such low-rank approximation, based on NystromÕs
method, but we note that the plethora of recent literature on low-rank kernel approximation methods
are applicable to our problem too (see e.g.Kumar et al.[2012], Bach and Jordan[2005], Musco and
Musco[2017], Oglic and GŠrtner[2017]).

Suppose that we can express our kernel matrices asK H ,n andK H ,n asK H ,n = DD + andK H ,n =
V V+ , whereD andV are of dimensionsn 1 r and such that we can express thekernel rowof any
new test sample as:

(K H (x1, x), . . . , K H (xn , x)) = V $(x)

for somer -dimensional vector$(x). Then we can expressh(x) = $(x)+ V + a" . If we then deÞne
. = V + , " . Then we can re-write the closed form solutions to the min and max problems as follows:

sup
f !F

! n (h, f )2 %&
'

&f &2
K F

+
U

n) 2 &f &2
2,n

)
=

1
4&

%+
n D

'
U

n) 2 D + D + I
) # 1

D + %n
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(a)# 1.5 áx + .9 áx2 (b) 1 + 1 .5 á1{ x > 0} (c) sin(x)

(d) |x| (e) 2
1+ e# 2x (f) # 1.5 áx + .9 áx2 + x3

Figure 5: Estimated functions based on our minimax estimator for different true functions. We use an
rbf kernel with parameter. = .1 and1000samples. We chose critical radius parameter) = 5 /n .4

and the regularization hyper-parameter+ is chosen via k-fold cross-validation. The data generating
process was:x = .6z + .4u + ) andy = h0(x) + u + ( andz, u # N (0, 2) and(, ) # N (0, .1).

and if we letQ :=
+

U
n&2 D + D + I

, # 1
andA = V + D, then:

. :=
+
AQA + + 4 & µ I

, # 1
AQD + y

öh(x) := $(x)+ .

Observe that every matrix calculation in the above expressions requires time at mostO(n r 2) to be
computed. Thus ifr 5 n, we have massively reduced the computation time from#( n3) to O(n r 2),
making the method practical even very large data regimes.

Even thoughr in the worst-case can be of sizen, we can typically well-approximate the kernel
matrices withr 5 n. One popular approach for achieving this is NystromÕs method, which essentially
sub-samples a set ofr points and uses the normalized kernel distances with respect to this subset
of points asD andV , respectively. In particular, letS denote ann 1 r matrix whosei -th column
contains a1 in positionj for some randomly sampled indexj . ThenKS is ann 1 r sub-matrix
of K , where a subsetS of the columns ofK are chosen at random.5 Then we can approximateK
via V V+ , whereV = KSM 1/ 2 andM = ( S+ KS )+ (i.e. V is contains normalized kernel-based
similarities to the subsetS of r randomly chosen points). Moreover, for any new test point, we can
set$(x) = M 1/ 2(K H (xi , x)) i ! S .

E.4 Bounds on Ill-Posedness Measure

The results so far in the section provide bounds on the projected RMSE. In this last section, we show
that under further assumptions on the strength of the instrument (i.e. the correlation ofx andz), then
the projected RMSE rates also imply rates for the RMSE. We give an example such set of conditions,
mostly as an example of a sufÞcient set of assumptions that lead to RMSE rates and in order to
provide qualitative insights on what RMSE rates one can expect in different regimes of the instrument
strength and the eigendecay of the kernel. In this section we will assume that the spaceH is also
augmented with a hard constraint on the RKHS norm, i.e.H = HB

K = { h ' HK : &h&K ( B } .
Assuming&h0&K ( B this does not change the statistical guarantees and moreover the closed
form optimization theorems, can easily be amended to incorporate a hard constraint on top of the

5Several sampling strategies have been proposed in the literature to improve upon pure uniform sampling
(see e.g.Kumar et al.[2012], Musco and Musco[2017], Oglic and GŠrtner[2017]). One popular practical and
simple method is to perform some version of unsupervised clustering of the samples, such as kmeans clustering,
and choosing the points as the cluster centroids.
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(a) sin(x) (b) 1 + 1 .5 á1{ x > 0} (c) # 1.5 áx + .9 áx2 + x3

Figure 6: Estimates based on Nystrom approximation, with50nystrom samples, for the same dgp
and parameter setup as in Figure5.

regularization (due to the equivalent between hard constraints and regularization). Imposing this hard
constraint will simplify the analysis of this section.6

By MercerÕs theorem we can express any function in the RKHSHB
K , in terms of the eigenfunctions

of the kernel:
h =

*

j ! J

aj ej

with ej : X + R, such thatE[ej (x)2] = 1 andE[ei (x) ej (x)] = 0 andJ a countable set. Moreover,

we have&h&2
2 =

-
j ! J a2

j and&h&K =
-

j ! J
a2

j

" j
( B . Thus we have that&h&2

H ( B implies that

for all m ' N+ :
-

j $ m a2
j ( &m B . Moreover, we have:

&T h&2
2 =

*

i,j ! J

ai aj E[E[ei (x) | z]E[ej (x) | z]].

For anym ' N+ , let I := { 1, . . . , m} , eI = ( e1, . . . , em ), aI = ( a1, . . . , am ) and:

Vm := E[E[eI (x) | z] E[eI (x) | z]+ ]

and suppose that&min (Vm ) * +m , i.e. that these Þnite eigenfunctions maintain some fraction of
their independent components, even when they are smoothened through the conditional expectation
p(x | z). Furthermore suppose that for alli ( m < j : |E[E[ei (x) | z]E[ej (x) | z]]| ( . m ( c +m
(for some constantc), i.e. the smoothening performed by the conditional expectation does not ruin
a lot the orthogonality of the Þrstm eigenfunctions with eigenfunctions for indices larger thanm.
Observe that if we had a perfect instrument, i.e.z was perfectly correlated withx, thenVm = I m and
E[E[ei (x) | z]E[ej (x) | z]] = E[ei (x)ej (x)] = 0 . Thus for a perfect instrument+m = 1 and. m = 0 .
Therefore the latter requirements are implicit assumptions on the strength of the instrument.7 We
show that under these assumptions, we can bound the measure of ill-posedness as follows.

Lemma 11. Suppose that&min (Vm ) * +m and for some constantc > 0, for all i ( m < j ,

|E[E[ei (x) | z]E[ej (x) | z]]| ( c +m

Then:

+" () )2 := max
h! HB

K :' T h ' 2 ( &
&h&2

2 ( min
m ! N+

'
4) 2

+m
+ (4 c2 + 1) B&m +1

)

The optimal choice ofm" roughly solves the equation:+m &m +1 = ) 2/B . If for instance&m ( m# b

for b > 1, and+m * m# a for a > 0, then:m" # ) 2/ (a+ b) , leading to a rate of:

&öh %h" &2 = O
;

) b/ (a+ b)
<

6We note that the proof of Theorem1 implies that even without a hard constraint, with high probability
$öh$2

K ! $ h0$2
K + ! 2 + "U

µ . Thus the results of this section hold forB = $h0$2
K + ! 2 + "U

µ even without the
extra hard constraint.

7Potentially the strongest assumption of these is that#m ! $m . This could be avoided by restricting the
hypothesis spaceH B to only be supported on the Þrstm eigenfunctions. However, this would require being
able to diagonalize the kernel and also to tune the estimator to the unknown parameters$m .
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We see that the RMSE rate is of a slower order than the projected MSE rate. If&m has an exponential
eigendecay, i.e.&m # 2# m (e.g. such as in the case of a Gaussian kernel), and+m * m# a, then
m" # log(1/) 2) and we get:

&öh %h" &2 = O
;

) (log(1/) )) a/ 2
<

Thus we only get a logarithmic increase in the RMSE rate as compared to the Projected RMSE
rate. However, we note that if also+m # 2# a m and&m # 2# b m , then we get rates ofO

+
) b/ (a+ b)

,
,

by settingsm" # log(1/) 2/ (a+ b) ). Finally, in the severely ill-posed setup, where+m # 2# m and
&m # m# b, then we havem" # log(1/) 2) and:

&öh %h" &2 = O
'

1
log(1/) )b

)

leading to a very slow rate of convergence that will typically be of the order of1/ log(n).

Observe that we achieve the rate for the optimal choice ofm, without the need to tune our algorithm.
The RKHS norm penalty implicitly clips the weight that our functions can put on eigenfunctions with
large index and hence controls the measure of ill-posedness for whatever is the decay rates of the
eigenvalues&m and+m .

F Application: High-Dimensional Sparse Linear Function Spaces

In this section we deal with high-dimensional linear function classes, i.e. the case whenX , Z 6 Rp

for p 7 n andh0(x) = ! " 0, x". We will address the case when the function"0 is assumed to be
sparse, i.e.&"0&0 := { j ' [p] : |" j | > 0} ( s. We will be denoting withS the subset of coordinates
of "0 that are non-zero and withSc its complement. For simplicity of exposition we will also assume
that E[xi | z] = !#, z", though most of the results of this section also extend to the case where
E[xi | z] ' F i for someFi with small Rademacher complexity. We provide two sets of results,
dependent on whether we make further minimum eigenvalue assumptions on the covariance matrix
of the random variablesE[xi | z].

F.1 Hard Sparsity Constraints without Minimum Eigenvalue

In the Þrst result, we apply Theorem1 to show that even without any further assumptions on the
eigenvalues of the covariance matrix

V := E[E[x | z]E[x | z]+ ],

we can attain fast rates of the order ofn# 1/ 2 that are logarithmic inp and only linear in the sparsitys
of h0 and the sparsityr of the conditional expectation functionsE[xi | z]. Albeit the optimization
problem we need to solve to get these rates is non-convex and has running time that is exponential in
r, s. This setting covers and extends the linear moment case of the setting analyzed in [Fan and Liao,
2014]; albeit we only provide RMSE and projected RMSE rates.

Corollary 12. Suppose thath0(x) = ! " 0, x" with &"0&0 ( s andE[xi | z] = !#i
0, z" with &#i

0&0 ( r .
Then letH consist of alls-sparse linear functions ofx andF consist of all(s ár )-sparse linear
functions ofz with coefÞcients in[%1, 1]. in p dimensions with onlys non-zero coefÞcients andF
consists of linear functions inq dimensions withr non-zero coefÞcients. Then the estimator presented
in Equation(4), satisÞes that w.p.1 %- :

&T(öh %h0)&2 ( O

1 2
r s log(p n)

n
+

2
log(1/- )

n

3

The proof follows immediately from the fact that the metric entropy ofr s-sparse linear functions
in p-dimensions, with coefÞcients in[%1, 1] is of the order ofO (r s log(p/( )) . Thus we can invoke

Corollary5 to get a bound ofO
' (

r s log( p n )
n

)
on the critical radii of classesF3U andGB,U and

apply Theorem1.
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F.2 ! 1-Relaxation under Minimum Eigenvalue Condition

In the second set of results we assume a restricted minimum eigenvalue of. on the matrixV and
apply Theorem2 to get fast rates of the order ofn# 1/ 2, that also scale logarithmically inp, linearly
in r, s and. # 1. Moreover, the optimization problem required is now a convex problem as we replace
the hard sparsity constraint with an! 1 constraint. This dichotomy of computationally efÞcient vs
computationally hard estimation dependent on whether we make minimum eigenvalue assumptions
is a well established result in exogenous regression problems [Zhang et al., 2014] and hence we
provide here analogous positive results for the endogenous regression setup. We also note that without
the minimum eigenvalue condition, our Theorem1 still provides slow rates of the order ofn# 1/ 4,
for computationally efÞcient estimators that replace the hard sparsity constraint with an! 1-norm
constraint. Our results based on the! 1-constraint are also closely related to the work ofGautier
et al.[2011], who analyzes an endogenous analogue of the Dantzig selector. Our work proposes an
alternative to the Dantzig selector that enjoys similar estimation rate guarantees.

Corollary 3. Suppose thath0(x) = ! " 0, x" with &"0&0 ( s and &"0&1 ( B and &"0&& ( 1.
Moreover, suppose thatE[xi | z] = !#i

0, z", with #i
0 ' Rp and&#i

0&1 ( U and that the co-variance
matrix V satisÞes the following restricted eigenvalue condition:

/ 2 ' Rp s.t. &2Sc &1 ( & 2S&1 + 2 )n,' : 2+ V 2 * . &2&2
2

Then letH = { x + ! ", x " : " ' Rp} , &!", á"&H = &" &1, FU = { z + ! #, z" : # ' Rp, &#&1 ( U}
and&!#, á"&F = &#&1. Then the estimator presented in Equation(7) with & ( (

8s , satisÞes that w.p.
1 %- :

&T(öh %h0)&2 ( O

1

max
=

1,
1
&

.
s

> 2
s
.

1

(B + U + 1)

2
log(p)

n
+

2
log(p/- )

n
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If instead we assume that&#i
0&2 ( U andsupz!Z &z&2 ( R then by settingFU = { z + ! #, z" :

&#&2 ( U} and&!#, á"&F = &#&2, we have:

&T(öh %h0)&2 ( O

1

max
=

1,
1
&

.
s

> 2
s
.

1

(B + 1)

2
log(p)

n
+

U R
2

n
+

2
log(p/- )

n
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Second order inßuence fromE[xi | z] model complexity Notably, observe that in the case of
&#i

0&2 ( U, we note that if one wants to learn the true# with respect to the! 2 norm or the functions
E[xi | z] with respect to the RMSE, then the best rate one can achieve (by standard results for
statistical learning with the square loss), even when one assumes thatsupz!Z &z&2 ( R and that

E[zz+ ] has minimum eigenvalue of at least. , is: min
?. p

n ,
+

U R
n

, 1/ 4
@

. For largep 7 n the
Þrst rate is vacuous. Thus we see that even though we cannot accurately learn the conditional
expectation functions at a1/

2
n rate, we can still estimateh0 at a1/

2
n rate, assuming thath0 is

sparse. Therefore, the minimax approach offers some form of robustness to nuisance parameters,
reminiscent of the type of robustness of Neyman orthogonal methods (see e.g. [Chernozhukov et al.,
2018]).

F.3 Solving the! 1-Relaxation Optimization Problem via First-Order Methods

The estimator presented in Corollary3 require solving optimization problems of the form:

min
! :' ! ' 1 ( B

max
# :' # '( U

!En [(y % !", x ")z] , #" + µ&" &1 (13)

for someR, µ and for norm& á &either& á &1 or & á &2 (in the constrained estimatorµ = 0 ; while
in the regularizedR = , - though in practice we can set it to some large value for stability of the
optimization process). Observe that inner optimization simpliÞes to:

min
! :' ! ' 1 ( B

&En [(y % !", x ")z]&" +
µ
U

&" &1
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where& á &" is the dual norm of& á &(i.e. the! & norm in the case where& á &is the! 1 norm and the
! 2 norm in the case where& á &is the! 2 norm). One approach to solving these optimization problems
is using projected sub-gradient descent:

#t = arg max
# :' # '( U

!En [(y % !" t , x")z] , #"

" t +1 = $
;

" t + ' En
#
x z+ $

#t %
µ
U

sign (" t )
<

$( " ) = arg min
! %:' ! %' 1 ( B

&" %" -&2

Moreover, for both! 1 and! 2 norm, the solution to#t can be easily found in closed form.8 After
O(1/( 2) iterations and for' = #( (), we will have thatø" = 1

T

- T
t =1 " t , is an(-approximate solution

to the optimization problem.

Improved Iteration Complexity with Optimistic FTRL Dynamics The sub-gradient descent
approach has two caveats: i) the rate of1/( 2 is considerably slow and would require a large number
of iterations to converge to a reasonable solution, ii) the gradient does not admit an unbiased stochastic
version (due to the non-linearity introduced by thearg max operation that deÞnes#t ), and therefore
the algorithm does not admit a stochastic variant, which is useful for large samples. We can improve
the error rate by invoking algorithms that address non-smooth optimization problems that take the
form of a min-max objective of some underlying smooth loss.

First, we show that we can remove the non-smoothness of the! 1-regularization by lifting the
parameter" to a2p-dimensional positive orthant. Consider two vectors0+ , 0# * 0 and then setting
" = 0+ % 0# , with 0 = ( 0+ ; 0# ) and&0&1 ( B . Observe that for any feasible" , the solution
0+

i = " i 1{ " i > 0} and0#
i = " i 1{ " i ( 0} is still feasible and achieves the same objective. Moreover,

any solution0, maps to a feasible solution" (since&" &1 ( & 0+ %0# &1 ( & 0+ &1 + &0# &1 ( B )
and thus the two optimization programs have the same optimal solutions. Then, if we deÞne with
v = ( x; %x), then the optimization problem can be re-stated as:

min
) $ 0:' ) ' 1 ( B

max
# :' # '( U

! (0, #)

where:

! (0, #) := #+ En [zy] %#+ En [zv+ ]0 + µ
2p*

i =1

0i

This falls exactly into the class of problems analyzed in a line of work on bi-linear minimax opti-
mization, starting from the seminal work ofNesterov[2005]. For instance, we can view the problem
as a two-player bi-linear zero-sum game and invoke the Optimistic Follow-the-Regularized-Leader
(OFTRL) or Optimistic Mirror Descent (OMD) paradigm ofRakhlin and Sridharan[2013], Syrgkanis
et al.[2015], to Þnd an(-approximate solution for0 in O(1/( ) iterations. The algorithm repeats for
T iterations the updates:

0t +1 = arg min
) $ 0:' ) ' 1 ( B

*

* ( t

! (0, #* ) + ! (0, #t ) +
1
'

Rmin (0)

#t +1 = arg max
# :' # ' 1 ( U

*

* ( t

! (0* , #) + ! (0t , #) %
1
'

Rmax (#)

and returnsø0 = 1
T

- T
t =1 0t , ø# = 1

T

- T
t =1 #t .9 We note that if we did not double count the last

periodÕs loss and we usedRmin (x) = Rmax (x) = 1
2 &x&2

2, then this would correspond to running

8For the case of the%1 norm:&t = Uei t sign (En [y#%' t , x&)zi t ]), with i t = arg max i |En [(y#%' t , x&)zi ]|.
For the case of the%2 norm: &t = En [(y # %' t , x&)z] áU/ $En [(y # %' t , x&)z]$2

9Finally, if we want to compare withs-sparse solutions and we want to enhance sparsity of the returned
solution, then we can always truncate to zero at the end of training any coordinate ofø' = ø( + # ø( # that was
smaller than1/ (s n1/ 2+ #). This can introduce an extra lower order approximation error of at most1/n 1/ 2+ # in
our projected MSE theorem, since by this shrinkage procedure, the error with respect to a sparse solution' 0 can
only increase on the non-zero entries of' 0 and it can only increase by at most1/ (sn1/ 2+ #) on every such entry.
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simultaneous gradient descent dynamics for both parameters0, #. Moreover, the parametersø0, ø# can
be thought as primal and dual solutions and we can use the duality gap as a certiÞcate for convergence
of the algorithm.10

tol = max
# :' # '( U

! (ø0, #) % min
) :' ) ' 1 ( B

! (0, ø#)

This approach addresses both problems with projected sub-gradient descent: i) as we will show
below, the iteration complexity isO

+
(B + U2) log(B p)/(

,
, instead of1/( 2, ii) the per-iteration

losses! (0, #t ), ! (0t , #) in the FTRL formulation can be replaced with unbiased estimates, while still
maintaining theoretical guarantees and therefore the algorithm admits a stochastic analogue which
makes it scalable to very large data sets.11

To instantiate this paradigm we need to Þnd appropriate regularizers for the strategy spaces of the
two players. Below we outline two concrete such algorithms for the two cases of the norm of# and
provide worst-case convergence rates.

! 1-ball adversary For the case when&#&= &#&1, we can further simplify the problem by showing
that the inner optimization can be performed over a2p-dimensional simplex. If we letu = ( z; %z),
then we can re-write the optimization problem as:

! (0, w) := w+ En [uy] %w+ En [uv+ ]0 +
µ
U

2p*

i =1

0i

min
) $ 0:' ) ' 1 ( B

max
w:' w ' =1

! (0, w)

Since both player strategies0, w are constrained to be in an! 1-ball, we can get iteration complexity
that only grows logarithmically with the dimensionp, if for each player we use OFTRL with an
entropic regularizer: i.e.Rmin (x) = Rmax (x) =

- 2p
i =1 xi log(xi ), denotes the negative entropy.

Proposition 13. Consider the algorithm that fort = 1 , . . . , T, sets:

÷0i,t +1 = ÷0i,t e# 2 #
B (# En [vi u & wt ]+ µ

U )+ #
B (# En [vi u & wt # 1 ]+ µ

U ) 0t +1 = ÷0t +1 min
=

1,
B

&÷0t +1 &1

>

÷wi,t +1 = wi,t e2 + En [( y# ) &
t v) u i ]# + En [( y# ) &

t # 1 v) u i ] wt +1 =
÷wt +1

&÷wt +1 &1

with ÷0i, # 1 = ÷0i, 0 = 1 /e and ÷wi, # 1 = ÷wi, 0 = 1 / (2p) and returnsø0 = 1
T

- T
t =1 0t . Then for

' = 1
4' En [vu & ]' '

,12 after

T = 16&En [vu+ ]&&
4B 2 log(B 8 1) + ( B + 1) log(2p)

(

iterations, the parameterø" = ø0+ % ø0# is an (-approximate solution to the minimax problem in
Equation(13).

Moreover, every update step requires computation timeO(min{ n p, p2} ).13 Using techniques for
sparse gradient updates, one could also potentially improve the iteration complexity to not depend
linearly on the dimensionp (see e.g.Langford et al.[2009], Duchi et al.[2008], Duchi and Singer
[2009], McMahan[2011]), but we defer such approaches to future work.

10In particular,ø( and ø& are an)-equilibrium of the zero-sum game.
11We note that the fast rate of1/) will deteriorate with the size of the mini-batch, but a1/) 2 rate is always

achievable and the step-size* should be appropriately tuned to account for the mini-batch sampling noise.
12For a matrixA, we denote with$A$! = max i,j |A ij |
13If p " n, then at every iteration we can calculatem( j ) = v( j ) áwt , for each samplev( j ) ; which takes

O(n áp) time; and then update each÷( i,t +1 based on the quantityEn [vi u$ wt ] = 1
n

!
j v( j )

i m( j ) . If p < n ,
then we can calculate! n = En [vu$ ] ahead of time and at each period calculateEn [vi u$ wt ] = (! wt )i ; which
would requireO(p2) time.
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(a) true vs. est.' (n = 600) (b) true vs. est.' (n = 1000) (c) dual variablesw+ # w#

Figure 7: Estimates based on minimax estimator proposed in Proposition13. The left Þgure depicts
thep = 2000 estimated coefÞcients compared to the true coefÞcients; we also include the coefÞcients
of i) a direct lasso regression to portray the importance of dealing with the endogeneity problem
(Lasso), ii) a two-stage lasso regression where we regress eachxi onz and then regressy onE[x | z],
all regressions performed with lasso where the Þrst stage regularization was Þxed to0.01 and the
Þnal stage was chosen via cross-validation (2SLasso), iii) the algorithm in Proposition13 (SparseIV),
iv) a stochastic variant of the algorithm in Proposition13where a mini-batch of10samples is used
at each iteration (StochasticSparseIV). The right pictures depicts the coefÞcients of the dual test
function learned by the adversary at equilibrium, which is of the form:f (z) =

- p
i =1 (w+

i %w#
i )zi .

The data generating process was:x, z, u ' Rp, x = z + u, y = !x + u, " ", z, u # N (0, I d),
" = (1 , %1, 0, . . . , 0), p = 2000.

! 2-ball adversary For the case when&#& = &#&2, then we can useRmax (#) = 1
2 &#&2

2, which
leads to an alternative update rule for the maximizing player. In this case, the update of the maximizing
player is essentially optimistic gradient descent, modulo the normalization so as to respect the! 2-norm
constraint.
Proposition 14. Consider the algorithm that fort = 1 , . . . , T, sets:

÷0i,t +1 = ÷0i,t e# 2 #
B (# En [vi z& #t ]+ µ

U )+ #
B (# En [vi z& #t # 1 ]+ µ

U ) 0t +1 = ÷0t +1 min
=

1,
B

&÷0t +1 &1

>

÷#t +1 = ÷#t +1 + 2 ' En [(y %0+
t v) z] %' En [(y %0+

t # 1v) z] #t +1 = ÷#t +1 min
=

1,
U

&÷#t +1 &2

>

with ÷0i, # 1 = ÷0i, 0 = 1 /e and ÷## 1 = ÷#0 = 0 . Then for' = 1
4' En [zv & ' 2 , '

,14 after

T = 16&En [zv+ ]&2,&
4B 2 log(B 8 1) + B log(2p) + U2/ 2

(
.

iterations, the parameterø" = ø0+ % ø0# is an (-approximate solution to the minimax problem in
Equation(13).

Observe that ifvj ' [%H, H ] then the quantity&En [zv+ ]&2,& & can be upper bounded by
H

.
En [&z&2

2], which under the assumptions of Corollary3 is at most a constant.

F.4 Bounds on Ill-Posedness Measure

Let h(x) = ! ", x ", h0(x) = ! " 0, x" and2 = " %"0. Then observe that we have:

&T(h %h0)&2
2 = 2+ E

#
E[x | z]E[x | z]+

$
2 = 2+ V 2 * &min (V )&2&2

2

where we remind thatV := E
#
E[x | z]E[x | z]+

$
and&min (V ) denotes the minimum eigenvalue of

V . Moreover, if we let% = E
#
xx +

$
then:

&h %h0&2
2 = 2+ E

#
xx + $

2 ( &max (%)&2&2
2

Thus we see that the measure of ill-posedness can be upper bounded as:

+ (

6
&max (%)
&min (V )

14For a matrixA, we denote with$A$2,! =
" !

i maxj A2
ij
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Thus assuming that these eigenvalues are upper and lower bounded correspondingly, then the results
of this section extend also to RMSE guarantees for the recoveredöh and not just projected RMSE
guarantees, at the cost of an extra multiplicative factor of+.

Moreover, we note that in both our hard sparsity and! 1-relaxed estimators we have further constraints
on the vector2 and thus we only require the minimum and maximum eigenvalue to be bounded
subject to these constraints. For instance, in the case of hard sparsity, we know that2 is a2s-sparse
vector. Thus it sufÞces to require the minimum eigenvalue ofV and the maximum eigenvalue of%to
be bounded only for such2s-sparse vectors (i.e. they should hold for all2s 1 2s square sub-matrices
of %andV). Similarly, for the! 1 based estimators we know that the vector2 falls in a restricted
cone, such that most of the! 1 norm of2 is concentrated on thes coordinates of the true coefÞcient" 0.
Thus we solely need the&min and&max constraints to be valid only in this restricted cone of vectors.

G Application: Shape Constrained Functions

In this section, we consider the case whenx ' [0, 1] and we make shape constraints onh0. We look
at both monotonicity/total variation bound constraints and convexity constraints.

G.1 Monotone functions and functions with small total variation

Consider the case whenh0 is a function with range in[0, 1] and of bounded total variation,BV (h0) (
1.15 We letH := BV (1) denote the latter class of functions. Moreover, we assume that the operator
T satisÞes thatT h is a monotone non-decreasing (or non-increasing) function ofz for any monotone
non-decreasing (or non-increasing) functionh of x. Total variation function classes in linear inverse
problems with a known linear operator have also been recently analyzed bydel çlamo and Munk
[2019] and a minimax loss based estimator was also considered, similar in spirit to our general
framework.

Observe that any functionh with range in[0, 1] and total variation at most1 can be written as the
difference of two non-decreasing functionsh+ , h# with ranges in[0, 1], i.e. h = h+ %h# . Thus we
note that our assumption onT implies that ifh ' BV (1), thenT h = T h+ %T h# = f + %f # , where
f + andf # are monotone non-decreasing functions in[0, 1]. ThusT h ' BV (1) andT(h %h0) '
BV (2). Thus in order to apply our main theorems, it sufÞces to takeF = BV (2), i.e. the class of
functions that can be expressed as the difference of two monotone non-decreasing functions with
range in[0, 2]. Alternatively, we could also deÞne the norm of a function in the function classes
F andH as the total variation, which would enable the regularized estimator to adapt to the total
variation of the true hypothesis. For simplicity, we assume a known upper bound.

Furthermore, we note that by standard results in statistical learning theory (see e.g. exercise 18, p.153
of Vaart and Wellner[1996] or excercise 3.6.7 ofGine and Nickl[2015]), that the class of monotone
functions with range in[0, 2] have metric entropy of the order ofO(1/( ). Thus the same holds for
the classBV (2), leading to a critical radius of)n = O

+
n# 1/ 3

,
, by invoking Corollary5. Thus

by applying our Theorem1, we get that the corresponding estimators presented in these sections,
whenH = BV (1) andF = BV (2) (and no norm constraints, which can be emulated by setting
B = U = , ), satisfy w.p.1 %- :

&T(öh %h0)&2 = O

1
1

n1/ 3
+

2
log(1/- )

n

3

The latter rate matches known lower bounds on the achievable RMSE for monotone functions even in
the case of exogenous regression problemsChatterjee et al.[2015].

EfÞciently solving the optimization problem We can solve the empirical optimization problem
by using piece-wise constant monotone functions (or piece-wise linear), i.e. when running the
estimator onn samples, we can describe the functionh via a2n-dimensional vector" = ( " + ; " # ),
such that1 * " +

1 * . . . * " +
n * 0 and1 * " #

1 * . . . * " #
n * 0.16 Let # describe the set of"

15Our results easily extend to arbitrary intervalsx ' [a, b] and ranges[# H, H ], though we restrict to[0, 1]
for simplicity of exposition.

16If we want to enforce a monotone non-decreasingh, then we can set' # = 0 and similarly, for a monotone
non-increasing algorithm' + = 0 .
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(a) Isotonic Regressiony ( x (b) Isotonic IV (c) Lipschitz Isotonic IV

Figure 8: Estimated functions based on our minimax estimator under monotonicity constraints. The
Þrst Þgure depicts a direct isotonic regression that ignores endogeneity. The second Þgure depics our
isotonic IV regression, without any lipschitz constraints and the Þnal Þgure depicts our isotonic IV
regression with Lipschitzness constraints. The data generating process was:h0(x) = x2 1{ x > 0} ,
x = .6z + .4u + ) andy = h0(x) + u + ( andz, u # N (0, 2) and(, ) # N (0, .1). (n = 1000)

that satisfy these constraints. Similarly, we can describef via a vectorw = ( w+ ; w# ), such that
2 * w+

1 * . . . * w+
n * 0 and2 * w#

1 * . . . * w#
n * 0. Let W describe the set ofw that satisfy

these constraints.

Then for every samplei , if we let qx (i ) be the rank of samplei (i.e. samplei has theqx (i ) highestx),
when we order all samples based onx, we can seth(xi ) = " +

qx ( i ) %" #
qx ( i ) . Similarly, if we letqz(i )

be the rank of samplei , when we order all samples based onz, we can setf (zi ) = w+
qz ( i ) %w#

qz ( i ) .
For simplicity of exposition and w.l.o.g. we will assume that samples are ordered in terms ofx, i.e.
qx (i ) = i . Thus we can simplify the optimization problem in Theorem1 as:

min
! ! !

max
w! W

*

i

(yi %(" +
i %" #

i ))( w+
qz ( i ) %w#

qz ( i ) ) %&
n*

i =1

(w+
i %w#

i )2

where the conclusions of the theorem hold if& * 1. Since the loss:

! (", w ) =
*

i

(yi %(" +
i %" #

i ))( w+
qz ( i ) %w#

qz ( i ) ) %&
n*

i =1

(w+
i %w#

i )2

is convex in" and concave inw and the spaces# , W are convex sets, we can solve this problem by
running simultaneous projected gradient descent for" andw separately and returning the average
solutions, i.e.: fort = 1 , . . . , T:

" t = $ ! (" t # 1 %' . ! ! (" t # 1, wt # 1))
wt = $ W (wt # 1 + ' . w ! (" t # 1, wt # 1))

and returnø" = 1
T

- T
t =1 " t . After O(n/( 2) iterations this would return an(-approximate solution to

the minimax problem. Each iteration step would require running a projection on the spaces# , W. If
we let ÷" ' R2n , then we need to Þnd a solution to the problem:

min
! ! !

1
2n

*

i

( ÷" +
i %" +

i )2 + ( ÷" #
i %" #

i )2

Since the objective and the constraints decompose for the two parts of the vector, this corresponds to
running two isotonic regressions for" +

i and" #
i with observations÷" +

i and÷" #
i . Thus each problem

can be solved via the well-known Pool-Adjacent-Violator (PAV) algorithm, which requiresO(n)
computation time. Similarly, we can deal with the projection ofw. Thus each iteration of the
simultaneous projected gradient descent algorithm requires four calls to the PAV algorithm. If we
further want to impose Lipschitzness constraints on our estimates, then we can instead use the
Lipschitz-PAV algorithm (seeYeganova and Wilbur[2009], Kakade et al.[2011]) to project onto
spaces# andW that are augmented with lipschitzness constraints, e.g.0 ( " +

i %" +
j ( L (xi %xj )

for all i ( j . Albeit the LPAV algorithm requires computation ofO(n2).
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Generality of computational approach We note that the above approach of solving the endoge-
nous regression problem with shape constraints via our minimax estimator essentially applies to any
type of shape constraints and reduces the minimax problem to a standard square loss problem subject
to the same shape constraints (assuming that bothH andF satisfy the same shape constraints; i.e.
that these constraints are invariant to the application of the operatorT). Thus to solve the minimax
problem we simply require an oracle for the square loss problem. In the the setting described in this
section we used the PAV and LPAV algorithm as such oracles. In the next section we will be using a
quadratic optimization subject to linear constraints solver as our oracle.

Ill-posedness We note that the recent work ofChetverikov and Wilhelm[2017], shows that when
x, z ' [0, 1] and the distributions ofx andz have full support and lower-bounded density, then for
any functionh, that is, -approximately monotone and continuously differentiable, then&T h&2 *
1
* &h&2,t , where&h&2,t =

«x 2

x 1
h(x)2dx, for some0 < x 1 < x 2 < 1. The result requires several more

regularity conditions on the operatorT and the constant+ depends on constants in these regularity
conditions (e.g. the lower bound on the density, the quantitiesx1 and1%x2, the constant, , etc). Thus
under these further regularity conditions, we have that for anyh" that is, -approximately constant
and forh being a monotone function&T(h %h" )&2 * 1

* &h&2,t . Thus our bound on&T(h %h" )&2
also implies a bound on&h %h" &2,t . This claim, roughly recovers the main estimation rate result of
Chetverikov and Wilhelm[2017].

G.2 Convex functions

In this section we consider the case whenh0 is assumed to be a convex function in[0, 1], &-Lipschitz
and with range in[0, 1]. Moreover, we asusme that the linear operatorT satisÞes that for any convex
&-Lipschitz functionh, T h is also convex and&-Lipschitz. Observe that ifT is a symmetric density,
i.e. T h = h 3 0 (where3 denotes the convolution operator), for some conditional density function
0, then we have(T h)--(z) = ( h--) 3 0 * 0, sinceh--(x) * 0 and0(x) * 0 for all x. Thus any such
symmetric density satisÞes our constraints.

The work ofBronshtein[1976] shows that the metric entropy this function class, even in thed-
dimensional hypercube, with respect to the! & norm, and therefore also with respect to the! 2,n norm,
is of the order of(# d/ 2 (see also the recent work ofGuntuboyina and Sen[2012]). Thus we get
that by invoking Corollary5, for d = 1 , we can choose)n in Theorem1 in the order ofO(n2/ 5),
leading to the corollary that the estimator in Theorem1, for the case whenH is the space of convex,
&-Lipscthiz functions with range in[0, 1] andF is the space of differences of two convex functions,
each&-Lipschitz and with range in[0, 1, then w.p.1 %- :

&T(öh %h0)&2 = O

1
1

n2/ 5
+

2
log(1/- )

n

3

Solving the optimization problem Moreover, we can address the optimization problem in manner
similar to the previous section. We can choose estimators that optimize over piece-wise linear
functions and hence can be uniquely determined by their values on then samples, i.e. we can
describeh by a n-dimensional vector" , such thath(xi ) = "qx ( i ) (whereqx (i ) as deÞned in the
previous section). Similarly, we can descirbef ' F via a2n-dimensional vectorw = ( w+ ; w# ),
such thatf (zi ) = w+

qz ( i ) %w#
qz ( i ) . Subsequently, we can apply the simultaneous projected gradient

descent approach, which reduces the minimax optimization problem to solving the projection problem.
Observe that we can describe the constraints that describe the vectors" andw as linear constraints.
Using the same idea as the one described in Example 13.4 ofWainwright[2019], we can express the
convexity constraint as the existence of a subgradient, i.e. there must exist sub-gradientsu, µ+ , µ# '
Rn such that for alli, j ' [n]:

" j * " i + !ui , xq# 1
x ( j ) %xq# 1

x ( i ) "

w+
j * w+

i + !µ+
i , zq# 1

z ( j ) %zq# 1
z ( i ) "

w#
j * w#

i + !µ#
i , zq# 1

z ( j ) %zq# 1
z ( i ) "

This is a set of linear constraints of", w + , w# , u, µ+ , µ# . Moreover, the lipschitz constraints
corresponds to another set of linear constraints, for alli ' [n]:

%&(xq# 1
x ( i +1) %xq# 1

x ( i ) ) ( " i +1 %" i ( &(xq# 1
x ( i +1) %xq# 1

x ( i ) )
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(a) Bounded TV (b) Bounded TV and1-Lipschitz (c) Convex and1-Lipschitz

Figure 9: Estimated functions based on our minimax estimator for different sets of shape constraints.
In the last Þgure we also depict the direct regression estimate subject to the same constraints, i.e.
if we regressedy on x, ignoring endogeneity. The data generating process was:h0(x) = |x| and
x = .5z + .5u + ) andy = h0(x) + u + ( andz, u # N (0, 2) and(, ) # N (0, .1). (n = 1000)

and similarly forw+ , w# . Thus projecting onto onto# or W, corresponds to a convex quadratic
optimization problem with2n variables andO(n2) linear constraints. Therefore, we can compute
such projections in polynomial time at every iteration of the simultaneous projected gradient descent
algorithm. In practice, one can achieve substantial speedup by subsampling a set ofs 5 n points and
restricting the curve to a piece-wise linear function in between these points. This would reduce the
number of variables and constraints to2s andO(s2), correspondingly.

H Neural Networks

In this section we describe how one can apply the theoretical Þndings from the previous sections
to understand how to train neural networks that solve the conditional moment problem. We will
consider the case when our true functionh0 can be represented (or well-approximated) by a deep
neural network function ofx, for some given domain speciÞc network architecture, and we will
represent it ash0(x) = h! 0 (x), where"0 are the weights of the neural net. Moreover, we will assume
that the linear operatorT, satisÞes that for any set of weights" , we have thatT h! belongs to a set of
functions that can be represented (or well-approximated) as another deep neural network architecture,
and we will denote these functions asf w (z), wherew are the weights of the neural net.

Adversarial GMM Networks (AGMM) Thus we can apply our general approach presented in
Theorem1 and consider the estimator:

ö" = arg min
!

sup
w

En [%(yi ; h! (xi )) f w (z)] %&

1

&f w &2
F +

U
n) 2

*

i

f w (zi )2

3

+ µ&h! &2
H (14)

where&, µ, U, ) are hyperparameters that need to satisfy the conditions of the theorem. In particular,
if we know that the neural netsh! , f w output functions in[0, 1], then we can chooseU = B = 1 ,
& = ) 2, µ = 2 ) 2(4L 2 + 27) , whereL is a bound on the lipschitzness of the operatorT with respect
to the two function space norms and) is a bound on the critical radius of the function spacesF3 and
öG1,L 2 . Then problem takes the form:

ö" = arg min
!

sup
w

En [%(yi ; h! (xi )) f w (z)] %) 2&f w &2
F %

1
n

*

i

f w (zi )2 + c )2&h! &2
H

for some constantc > 1 that depends on the lipschitzness of the operatorT. Moreover, theoretically
we can set the critical radius) by invoking Corollary5, and using existing results on the pseudo-
dimension of the neural network architecture, for which there exist known boundsAnthony and
Bartlett[2009] that scale with the number of nodes and edges of the neural net. Moreover, one can
also use the recent work ofBartlett et al.[2017], Golowich et al.[2018], to provide size independent
bounds on the critical radius of these classes, that only depend on spectral properties of the learned
weight matrices of the neural nets.

The work ofBennett et al.[2019] also proposed the use of second moment penalization of the test
function, albeit from a different perspective. In particular, their approach stems from a reasoning
based on the optimally weighted GMM estimator. In this work we show that second moment
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penalization arises also when one wants to achieve fast rates of convergence in terms of mean squared
error of the learned function. Moreover, the regularization presented inBennett et al.[2019] is
not a simple second moment penalization, but the second moment of each sample is re-weighted
based on the moment evaluated at a preliminary estimate of" , i.e.

-
i f w (zi )2%(yi ; h÷! (xi )) 2. The

preliminary estimate of÷" is an extra burden and typically requires sample splitting and Þrst stage
estimation. Here we show that such re-weighting is not required if one simply wants fast projected
MSE rates. Moreover, this alternative penalty has the property that as the modelh becomes very
accurate, then%(yi ; h(xi )) $ 0 and hence the penalty vanishes as the model becomes accurate. This
is a big qualitative difference of the two penalties and it is not clear that the penalty that rescales with
the moment enjoys the same theoretical guarantees in terms of projected MSE as the simpler second
moment penalty.

In the remainder of the section, we will mostly focus on the practical aspect of training neural
networks, such as what would be appropriate architectures for the test function space, based on the
intuition developed in the prior theoretical developments of the paper and what would be appropriate
optimization algorithms for solving the optimization problem.

H.1 MMD-GMM: A Neural Network Architecture for Adversarial GMM

Maximum Mean Discrepancy GMM Networks (MMD-GMM). Our results for RKHS function
spaces, suggest that one class of test functions are functions that fall in an RKHS. Observe that
Lemma7 shows that, even whenh is an arbitrary function represented by a neural network, as long
asp(x | á) is a function that belongs to an RKHSHK , with some kernelK , thenT h ' HK . Thus we
can choose test functions inHK .

In many neural network applications, we might have thatp(x | á) is not in an RKHS (or might have
very large RKHS norm), when we use the raw instrumentz, asz might be very high-dimensional
and structured (e.g. an image). However, it might be natural to assume that there is some latent
representationg(z) of the instrumentz, such that:p(x | z) = 0(x | g(z)) and such that0(x | á) is in
an RKHS.

Thus we will generalize our RKHS approach to augment the adversary with the ability to simul-
taneously learn the representationgw (represented as a neural network with weightsw), and also
choose the best function in the RKHS of the implied kernelK w (z, z-) := K (gw (z), gw (z-)) . With
this generalization, we are still guaranteeing thatT(h %h0) ' F , wheneverp(x | á) = 0(x | g(á))
and0(x | á) is in HK .

Using the variational characterization of the best function in the RKHS presented in Equation(11)
we get that the optimization of the adversary can be rephrased as optimizing over test functions of the
form f (z) = 1

n

- n
i =1 #i K w (zi , z), leading to an objective for the adversary of the form:

sup
#,w

1
n2

*

i,j

+
%(yi ; h! (xi ))K w (zi , zj )#j %) 2#i K w (zi , zj ) #j

,
%

1
n

*

i

A

B
*

j

#j

n
K w (zi , zj )

C

D

2

which can be written as an average over triplets of samples:

1
n3

*

i,j,k

+
%(yi ; h! (xi ))K w (zi , zj )#j %#i

+
) 2K w (zi , zj ) + K w (zi , zk )K w (zk , zj )

,
#j

,

Kernels applied to learned representations have been applied in the context of distribution learning
(see e.g. the work on MMD-GANsLi et al. [2017], Binkowski et al.[2018]) and distribution testing
(see the recent work ofLiu et al. [2020]).

Unregularized MMD-GMM. When we omit the! 2,n regularization then the optimal solution for
# can be found in closed form (see Proposition9) and the MMD-GMM simpliÞes to:

arg min
!

sup
w

1
n2

*

i,j

%(yi ; h! (xi ))K w (zi , zj )%(yj ; h! (xj )) + c)4&h! &2
H (15)

This version (without Þxed kernel parametersw) was also independently analyzed from the per-
spective of testing byMuandet et al.[2020]. However, the! 2,n penalty is crucial for obtaining fast
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Figure 10: MMD-GMM architecture of adversaryÕs test function.

rates (e.g. rates that adapt to the eigendecay in the case of RKHS spaces). On the other hand, the
unregularized MMD-GMM admits a much easier implementation as we do not need to deal with
then parameters# and in the case where we use Þxed kernel parametersw we donÕt even need
adversarial training.

Kernel Approximation Moreover, as we saw in the RKHS section, it can be beneÞcial from
a computational perspective to approximate the kernel function by sampling a set of training
points (either at random or more cleverly based on either leverage scores or k-means cluster-
ing) and restrict the space of functions to be supported only on this subset of the points, i.e.
f (z) = 1

s

- s
i =1 #i K (gw (z"

i ), gw (z)) , wherez"
i is a set of representative samples and approximating

the RKHS norm penalty with
-

i,j ! S #i K w (z"
i , z"

j )#j . This has the beneÞt of only depending on an
|S|-dimensional vector#, that the adversary needs to optimize over, as opposed ton-dimensional.
Moreover, in practice, instead of constraining the centers to be of the formgw (z"

i ), we could instead
consider arbitrary centersci in the space of the output ofgw and consider test functions of the form:
f (z) = 1

s

- s
i =1 #i K (ci , gw (z)) , whereci are parameters that could also be trained via gradient

descent. The latter essentially corresponds to adding what is known as an RBF layer at the end of the
adversary neural net. This simpliÞed architecture seems the most appealing from a practical point
of view (as it does not require any pre-selection of representative samplesz"

i ) and is depicted in
Figure11.

Multi-Kernel MMD-GMM. The case of sparse linear representations portrays that it might be
important to test many different classes of functions, each potentially trained on a separate part of the
input space, since different instruments might be correlated with different treatments and many of
these treatments can be irrelevant.

sup
w1 ,...,w m ,t ! [m ]

En [%(yi ; h(xi )) f wt (zSt )] %) 2&f wt &
2
F %

1
n

*

i

f wt (zSt ,i )2

whereSt are pre-deÞned subsets of the instruments andzSt corresponds to the sub-vector of instru-
ments. Each of these functionsf wt corresponding to a neural net.

One can also combine the above approaches and setf wt (zSt ) = 1
n

-
j #tj K wt (zSt ,j , zSt ), i.e. allow

for the test function that takes as input the subset of the instrumentsSt to be in an RKHS of a learned
kernelwt . This leads to taking a supremum over a set of kernels in the MMD-GMM objective, where
each kernel calculates similarity based on a subset of the input instruments, i.e.:

sup
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whereK t
w (zi , zj ) is shorthand notation forK wt (zSt ,i , zSt ,j ). The adveraryÕs objective can also be

written as choosing a distributionpt over thet kernels, leading to an adversary objective of:
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Figure 11: SimpliÞed MMD-GMM architecture of adversaryÕs test function with kernel Þnal activa-
tion layer.

We can again reduce the complexity of the optimization problem by restricting to a subset of samples
to represent the test functions.

This combined method targets settings where different instruments are correlated with different latent
Òtreatment factorsÓ, treatment factors are high-dimensional but only a small subset of them having
a large and additively separable effect on the outcome and the relationship between the treatment
factor and the instrument is non-linear. Thus it tackles several sources of high-dimensionality in the
instrumental variable regression problem.

H.2 Adversarial Training: Simultaneous Optimistic First-Order Stochastic Optimization

The optimization problem that we are facing is similar to the optimization problem that is encountered
in training Generative Adversarial Networks, i.e. we need to solve a non-convex, non-concave
zero-sum game, where the strategy of each of the two players are the parameters of a neural net.
This is obviously a computationally intractable problem from a worst-case perspective. However,
typical instances are far from worst-case and there has been a surge of recent work proposing
iterative optimization algorithms inspired by the convex-concave zero-sum game theory (see, e.g. the
Optimistic Adam algorithm ofDaskalakis et al.[2017]). For instance, one can expect that in practice
most early layers of a neural net will change very slowly or will not have a face transition in their
non-linearities. In that case, the main parameters that matter are the parameters of the Þnal layers
of the two neural nets. However, the zero-sum game is convex-concave in these parameters. Hence,
assuming that the features constructed in the Þnal layer of the two neural nets, change slowly, then
one should expect convex-concave zero-sum game optimization theory to apply. Such arguments
have been recently exploited in the case of square loss minimization with deep over-parameterized
neural networks (see e.g.Allen-Zhu et al.[2018], Du et al.[2018], Soltanolkotabi et al.[2019]). It is
highly plausible and an interesting question for future research, whether such guarantees extend to
the minimax problem that we are facing here. For instance, recent work ofLei et al.[2019], provides
an instance of a minimax objective, related to training Wasserstein GANs, where stochastic iterative
optimization of neural nets provably converges to an optimal solution.

In our implementation and experiments we used the optimistic Adam algorithm as was also proposed
in Bennett et al.[2019]. Other algorithms that could prove useful for our problem are the extra-
gradient or stochastic extra-gradient algorithm (see e.g.Hsieh et al.[2019], Mishchenko et al.
[2019]).

I Random Forests via a Reduction Approach

In this section we deal with the problem of training random forests that solve the non-parametric IV
problem. In particular, we aim to develop a learning procedure that learns a hypothesish that solves
the Conditional Moment(1), that is represented as an ensemble of regression trees. Prior work on
random forests for causal inference problems has primarily focused on learning forests that capture
the heterogeneity of the treatment effect of a treatment, but did not account for non-linear relationships
between the treatment and the outcome variable. We will provide a theoretical foundation of the
proposed method by taking a reductions approach to the minimax problem deÞned by our estimator.

For simplicity, throughout this section we will assume that the hypothesis spacesH andF are
bounded and have bound critical radius and will make no further norm constraints. Thus the estimator
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(a) AGMM
(p = 1 , n = 4000)

(b) MMD-GMM
(p = 1 , n = 4000)

(c) Learned Kernel MMD-GMM
(p = 1 , n = 4000)

(d) AGMM
(p = 50 , n = 4000)

(e) MMD-GMM
(p = 50 , n = 4000)

(f) Learned Kernel MMD-GMM
(p = 50 , n = 4000)

Figure 12: Estimated function based on our minimax estimator with neural networks as a function of
the relevant treatment. Theh! function was a two layer neural net with100hidden units. In the Þrst
Þgure an two-layer neural net was used as a test functionf w . In the second and third, we used the
MMD-GMM test functions with a low rank approximation. In the second we used test functions of
the form:f # (z) =

- s
i =1 #i K ( (ci , z), with ci a Þxed grid of test points in[%3, 3]p andK is the rbf

kernel with parameter. = .2, i.e. K (z, z-) = exp( %. &z %z-&2
2). In the third we learned the kernel,

i.e. we used test functions of the form:f w,# (z) =
- s

i =1 #i K ( (ci , gw (z)) andgw (z) = relu(Az + b)
(all the parametersA, b, #, ci , . where trained). The networks were trained via the simultaneous
Optimistic Adam algorithm. The data generating process was:h0(x) = |x[0]| andx = .6z + .4u + )
andy = h0(x) + u + ( andz # N (0, 2I p), u # N (0, 2) and(, ) # N (0, .1).

(a) Weak Instruments
(p = 2 , n = 4000)

Figure 13: Estimated function based on our minimax estimator with neural networks as a function of
the relevant treatment. The setup is the same as in Figure12, but we now made the instrument very
weak. The data generating process was:h0(x) = |x[0]| 1{ x[0] > 0} andx = .05z + .95u + ) and
y = h0(x) + u + ( andz # N (0, 2I p), u # N (0, 2) and(, ) # N (0, .1).
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proposed in Theorem117 takes the simple form of:

öh = arg min
h!H

sup
f !F

En [%(yi ; h(xi )) f (zi )] %En [f (zi )2]

Since the statistical properties of random forests is an active area of investigation, we will solely focus
on the optimization problem and leave the statistical properties (e.g. bounding the critical radius or
bias of Random Forest methods) to future work. Our goal is to reduce the aforementioned optimization
problem to classiÞcation and regression oracles over arbitrary hypothesis spaces. Subsequently in
practice we can use random forests as oracles.

Reducing the Optimization to Regression and ClassiÞcation OraclesTo achieve this reduction
we will make the assumption that the spaceF deÞnes a convex image set on the samples, i.e. the set
A = { (f (z1), . . . , f (zn )) : f ' F} is a convex set. This can potentially be violated for tree based
methods, but in practice will be alleviated when training a forest with a large set of trees.

We will show that we can reduce the problem to a regression oracle over the function spaceF and a
classiÞcation oracle over the function spaceB. We will assume that we have a regression oracle that
solves the square loss problem overF : for any set of labels and featuresz1:n , u1:n it returns

OracleF (z1:n , u1:n ) = arg min
f !F

1
n

n*

i =1

(ui %f (zi ))
2

Moreover, we will assume that we have a classiÞcation oracle that solves the weighted binary
classiÞcation problem overB: for any set of sample weightsw1:n , binary labelsv1:n in { 0, 1} and
featuresx1:n :

OracleH (x1:n , v1:n , w1:n ) = arg max
h!H

1
n

n*

i =1

wi Pr
zi ) Bernoulli

!
1+ h ( x i )

2

" [vi = zi ]

Observe that the objective in the equation above is equivalent to a classiÞcation accuracy objective,
assuming thath outputs values in[%1, 1] and it corresponds to an expected accuracy objective if one
interprets(h(x) + 1) / 2 as the probability of label1 conditional onx. Having access to these oracles
we can then show the following computational result:

Theorem4. Consider the algorithm where fort = 1 , . . . , T: let

ut
i =

1
2

1

yi %
1

t %1

t # 1*

* =1

h* (xi )

3

, f t = OracleF
+
z1:n , ut

1:n

,

vt
i = 1 { f t (zi ) > 0} , wt

i = |f t (zi )| ht = OracleH
+
x1:n , vt

1:n , wt
1:n

,

Then the ensemble hypothesis:øh = 1
T

- T
t =1 ht , is a 8 (log( T )+1)

T -approximate solution to the minimax
problem in Equation(6).

In practice, we will consider a random forest regression method as the oracle overF and a binary
decision tree classiÞcation method as the oracle forH .

Moreover, we observe that if the hypothesis spaceH can be expressed as linear span of base
hypothesis, i.e.H = {

-
i wi bi : bi ' B } , then observe that because the best-response problem

of the learner is linear in the output of the hypothesis, it sufÞces to optimize only over the space
of base hypothesis. Then the algorithm will return a linear span, supported onT base hypothesis
that solves the minimax problem over the whole linear span. This improvement can also lead to
statistical rate improvements. For instance, if the base hypothesisB is a VC class with VC dimension
d (e.g. a binary decision tree with small depth, see e.g. [Mansour and McAllester, 2000]), then the
algorithm returns a convex combination ofT base hypothesis, which has VC dimension at mostd T

[Shalev-Shwartz and Ben-David, 2014]. Thus the entropy integral ofH is of the order of
(

T d log( n )
n .

17By setting! = " 2/U , µ = 2 !
#
4L 2 + 27U/B

$
using an%! norm in both function spaces and taking

U, B ) * . Observe that we can also takeL = 1 , since$T h$! ! $ h$! for anyT .
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If we further have that the entropy integral ofF is at most/ (F ), then we get a Þnal rate of the order
of: 2

T dlog(n)
n

+ / (F ) +
log(T)

T
Setting,T = O(n1/ 4), one can achieve rates of the order ofn# 1/ 4 + / (F ).

In practice, we will leverage the above observation and train a single binary classiÞcation tree at each
period of the algorithm, as ourOracleH . In the end the Þnal prediction will be the prediction of the
random forest represented by the ensemble of theT trees trained at each period. We refer to this
algorithm as Random Forest IV (RFIV).
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J Experimental Analysis

We consider the following data generating processes: fornx = 1 andnz * 1

y = h0(x[0]) + e+ ), ) # N (0, .1)
x = . z [0] + (1 %. ) e+ ., z # N (0, 2I n z ), e # N (0, 2), . # N (0, .1)

While, whennx = nz > 1, then we consider the following modiÞed treatment equation:

x = . z + (1 %. ) e+ .,

We consider several ranges of the number of samplesn, number of treatmentsnx , number of
instrumentsnz and instrument strength. and the following functional forms forh0:

1. abs:h0(x) = |x|

2. 2dpoly: h0(x) = %1.5x + .9x2

3. sigmoid:h0(x) = 2
1+ e# 2x

4. sin: h0(x) = sin( x)

5. frequentsin:h0(x) = sin(3 x)

6. abssqrt:h0(x) =
.

|x|

7. step:h0(x) = 1 { x < 0} + 2 .5 1{ x * 0}

8. 3dpoly: h0(x) = %1.5x + .9x2 + x3

9. linear: h0(x) = x

10. randpw: piece wise linear function drawn at random

11. abspos:h0(x) = x 1{ x * 0}

12. sqrpos:h0(x) = x2 1{ x * 0}

13. band:h0(x) = 1 {%.75 ( x ( .75}

14. invband:h0(x) = 1 %1{%.75 ( x ( .75}

15. steplinear:h0(x) = 2 1 { x * 0} % x

16. pwlinear:h0(x) = ( x + 1) 1 { x ( % 1} + ( x %1) 1{ x > = 1 }

We consider as classic benchmarks 2SLS with a polynomial features of degree3 (2SLS) and a regu-
larized version of 2SLS where ElasticNetCV is used in both stages (Reg2SLS). We have implemented
several of the algorithms described in the paper:

1. NystromRKHS: The method described in AppendixE, with the Nystrom approximation
described in AppendixE.3. We used100Nystrom samples for the approximation.

2. ConvexIV: The variant of the method described in AppendixG.2with both lipscthiz and
convexity constraints (lipschitz bound ofL = 2 ).

3. TVIV: The variant of the method described in AppendixG.1without a lipschitz constraint
and only total variation constraint.

4. LipTVIV: The variant of the method described in AppendixG.1with lipscthiz constraint
and total variation constraint (lipscthiz bound ofL = 2 )

5. RFIV: The method described in AppendixI, where a Random Forest Regressor is used as
an oracle for the adversary (with40 trees, max depth2, bootstrap sub-sampling enabled,
and minimum leaf size of40) and Random Forest ClassiÞer (with5 trees, max depth2,
minimum leaf size of40and bootstrap subsampling disabled) was used as an oracle for the
learner. The optimization was run forT = 200 iterations.

6. SpLin: The method described in AppendixF.2 with the speciÞc optimization method
described in Proposition13.

7. StSpLin: A stochastic gradient descent variant of SpLin, where a mini-batch of100samples
is used at every step to calculate the co-variance matrices.
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8. AGMM: The method described in Equation(14). A two-layer neural net with100hidden
units at each layer and leaky ReLU units was used for both the learner and the adversary
architecture. Optimization was done via the Optimistic Adam.

9. KLayerFixed: The variant of the method described in AppendixH.1, where an RBF layer is
attached at the end of the adversaryÕs architecture with Þxed centers, i.e. testing functions of
the form: f (z) =

- n centers
j =1 K (cj , gw (z))#j , with ncenters= 100. The centerscj are placed

in a100dimensional feature space and the functiongw is a two-layer neural net with100
hidden units in each layer.

10. KLayerTrained: The same as KLayerFixed, but the centers of the RBF layer are trained.

11. CentroidMMD: The version of the MMMD-GMM in AppendixH.1, where we select a
subset of the data points to use as centers in the Kernel approximation, i.e. testing functions
of the form: f (z) =

- n centers
j =1 K (gw (z"

j , gw (z))#j . z"
j are chosen as the centroids of a

KMeans clustering andncenters= 100. gw is the same architecture as in KLayerFixed.

12. KLossMMD: The method described in Equation(15), where no! 2,n penalty is imposed on
the adversary test function.gw is the same architecture as in KLayerFixed.

In addition to these regimes, we consider high-dimensional experiments with images, following the
scenarios proposed inBennett et al.[2019] where either the instrumentz or treatmentx or both are
images from the MNIST dataset consisting of grayscale images of281 28pixels. We compare the
performance of our approaches to that ofBennett et al.[2019], using their code. A full description of
the DGP is given in AppendixJ.1.

Results. The main Þndings are: i) for small number of treatments, the RKHS method with a
Nystrom approximation (NystromRKHS), outperforms all methods (Figure1) with only exception
being functions that are highly non-smooth or non-continuous, in which case the methods that are
based on shape constraints (ConvexIV, TVIV, LipTVIV) are better, ii) for moderate number of
instruments and treatments, Random Forest IV (RFIV) signiÞcantly outperforms most methods, with
second best being neural networks (AGMM, KLayerTrained) (Figure2), iii) the estimator for sparse
linear hypotheses can handle an ultra-high dimensional regime (Figure3), iv) neural network methods
(AGMM, KLayerTrained) outperform the state of the art in prior work [Bennett et al., 2019] for tasks
that involve images (Figure4). The Þgures below present the average MSE across100experiments
(10 experiments for Figure4) and two times the standard error of the average MSE. Note that for
non-parametric IV there was no prior Random Forest (RF) algorithm, as we outline in the Random
Forest section. We present the Þrst algorithm for this setting. Prior Random Forest algorithms for
IV setup only work when one makes the assumption of linearity w.r.t. to treatment and estimates
heterogeneity with respect to exogenous features (such as the IV forest of [Wager and Athey, 2018]).

NystromRKHS 2SLS Reg2SLS ConvexIV TVIV LipTVIV RFIV
abs 0.045± 0.010 0.100± 0.035 1.733± 2.981 0.054± 0.005 0.089± 0.005 0.047± 0.004 0.084± 0.007

2dpoly 0.121± 0.014 0.036± 0.022 9.068± 16.071 0.060± 0.007 0.090± 0.009 0.069± 0.009 0.379± 0.022
sigmoid 0.016± 0.003 0.071± 0.037 0.429± 0.244 0.029± 0.005 0.067± 0.004 0.034± 0.003 0.044± 0.006

sin 0.023± 0.003 0.090± 0.042 0.801± 0.420 0.055± 0.005 0.074± 0.004 0.036± 0.003 0.057± 0.007
frequentsin 0.129± 0.005 0.193± 0.040 0.145± 0.017 0.143± 0.008 0.115± 0.005 0.106± 0.005 0.126± 0.010

abssqrt 0.033± 0.004 0.099± 0.039 0.117± 0.046 0.045± 0.007 0.096± 0.006 0.047± 0.004 0.064± 0.008
step 0.035± 0.003 0.103± 0.043 0.497± 0.276 0.054± 0.005 0.073± 0.004 0.044± 0.003 0.056± 0.007

3dpoly 0.220± 0.037 0.004± 0.003 0.066± 0.014 0.396± 0.051 0.138± 0.028 0.190± 0.036 0.687± 0.069
linear 0.019± 0.003 0.038± 0.021 0.355± 0.189 0.017± 0.005 0.042± 0.002 0.027± 0.002 0.048± 0.005

randpw 0.067± 0.012 0.092± 0.024 3.810± 5.878 0.162± 0.032 0.073± 0.009 0.046± 0.006 0.121± 0.015
abspos 0.022± 0.003 0.060± 0.027 0.299± 0.157 0.022± 0.004 0.062± 0.004 0.033± 0.003 0.055± 0.006
sqrpos 0.064± 0.013 0.026± 0.015 0.490± 0.494 0.030± 0.006 0.034± 0.003 0.033± 0.005 0.181± 0.013
band 0.059± 0.003 0.125± 0.051 0.085± 0.017 0.086± 0.008 0.102± 0.006 0.059± 0.004 0.071± 0.008

invband 0.056± 0.003 0.130± 0.041 0.138± 0.051 0.075± 0.008 0.102± 0.006 0.059± 0.004 0.073± 0.008
steplinear 0.141± 0.009 0.231± 0.085 0.203± 0.063 0.138± 0.008 0.156± 0.009 0.100± 0.006 0.141± 0.011
pwlinear 0.032± 0.004 0.051± 0.024 0.058± 0.025 0.037± 0.006 0.061± 0.003 0.035± 0.003 0.068± 0.006

Figure 14:n = 300, nz = 1 , nx = 1 , . = .6

49



NystromRKHS 2SLS Reg2SLS ConvexIV TVIV LipTVIV RFIV
abs 0.010± 0.001 0.025± 0.001 0.025± 0.002 0.031± 0.001 0.031± 0.001 0.021± 0.001 0.026± 0.002

2dpoly 0.022± 0.005 0.002± 0.000 0.043± 0.039 0.052± 0.004 0.034± 0.004 0.037± 0.004 0.286± 0.013
sigmoid 0.005± 0.001 0.007± 0.001 0.021± 0.017 0.011± 0.000 0.018± 0.001 0.008± 0.001 0.015± 0.001

sin 0.005± 0.001 0.013± 0.002 0.033± 0.025 0.035± 0.001 0.020± 0.001 0.009± 0.001 0.017± 0.001
frequentsin 0.118± 0.001 0.117± 0.001 0.115± 0.001 0.116± 0.001 0.089± 0.002 0.105± 0.002 0.087± 0.004

abssqrt 0.011± 0.001 0.018± 0.001 0.018± 0.001 0.020± 0.001 0.028± 0.001 0.016± 0.001 0.022± 0.002
step 0.022± 0.001 0.029± 0.001 0.043± 0.017 0.034± 0.001 0.026± 0.001 0.020± 0.001 0.026± 0.002

3dpoly 0.028± 0.012 0.000± 0.000 0.010± 0.003 0.325± 0.026 0.086± 0.019 0.121± 0.020 0.375± 0.036
linear 0.004± 0.001 0.002± 0.000 0.022± 0.022 0.002± 0.000 0.013± 0.001 0.007± 0.001 0.012± 0.001

randpw 0.031± 0.006 0.057± 0.010 0.131± 0.111 0.150± 0.032 0.032± 0.004 0.029± 0.004 0.054± 0.010
abspos 0.006± 0.001 0.007± 0.001 0.015± 0.009 0.005± 0.000 0.016± 0.001 0.008± 0.001 0.016± 0.001
sqrpos 0.011± 0.003 0.004± 0.000 0.010± 0.006 0.011± 0.002 0.011± 0.001 0.012± 0.002 0.091± 0.007
band 0.031± 0.001 0.046± 0.001 0.046± 0.001 0.059± 0.001 0.039± 0.002 0.031± 0.002 0.032± 0.002

invband 0.031± 0.001 0.046± 0.001 0.046± 0.001 0.049± 0.001 0.039± 0.002 0.031± 0.001 0.032± 0.002
steplinear 0.066± 0.002 0.085± 0.003 0.089± 0.005 0.104± 0.001 0.074± 0.002 0.064± 0.002 0.066± 0.003
pwlinear 0.007± 0.001 0.009± 0.000 0.012± 0.001 0.017± 0.001 0.016± 0.001 0.009± 0.001 0.016± 0.001

Figure 15:n = 2000, nz = 1 , nx = 1 , . = .6

NystromRKHS 2SLS Reg2SLS ConvexIV TVIV LipTVIV RFIV
abs 0.008± 0.001 0.027± 0.001 0.027± 0.001 0.024± 0.000 0.016± 0.001 0.012± 0.001 0.017± 0.001

2dpoly 0.009± 0.002 0.001± 0.000 0.016± 0.007 0.036± 0.003 0.018± 0.002 0.022± 0.003 0.151± 0.010
sigmoid 0.004± 0.000 0.007± 0.000 0.017± 0.005 0.013± 0.000 0.011± 0.001 0.007± 0.000 0.012± 0.001

sin 0.003± 0.000 0.023± 0.002 0.033± 0.006 0.055± 0.001 0.013± 0.001 0.009± 0.001 0.014± 0.001
frequentsin 0.114± 0.001 0.114± 0.001 0.113± 0.001 0.114± 0.001 0.048± 0.001 0.051± 0.001 0.024± 0.001

abssqrt 0.008± 0.000 0.017± 0.001 0.017± 0.001 0.017± 0.000 0.015± 0.001 0.011± 0.001 0.015± 0.001
step 0.021± 0.000 0.031± 0.001 0.039± 0.004 0.038± 0.000 0.015± 0.001 0.012± 0.001 0.018± 0.001

3dpoly 0.030± 0.006 0.000± 0.000 0.001± 0.000 0.344± 0.025 0.081± 0.015 0.114± 0.016 0.366± 0.031
linear 0.003± 0.000 0.001± 0.000 0.016± 0.008 0.002± 0.000 0.009± 0.000 0.008± 0.000 0.010± 0.001

randpw 0.021± 0.004 0.055± 0.009 0.069± 0.010 0.157± 0.032 0.015± 0.002 0.013± 0.002 0.028± 0.004
abspos 0.004± 0.000 0.007± 0.000 0.013± 0.003 0.003± 0.000 0.010± 0.001 0.007± 0.000 0.013± 0.001
sqrpos 0.008± 0.002 0.004± 0.000 0.008± 0.003 0.025± 0.003 0.013± 0.002 0.018± 0.002 0.109± 0.008
band 0.026± 0.001 0.044± 0.001 0.044± 0.001 0.056± 0.001 0.018± 0.001 0.014± 0.001 0.020± 0.001

invband 0.026± 0.001 0.044± 0.001 0.044± 0.001 0.046± 0.001 0.018± 0.001 0.015± 0.001 0.020± 0.001
steplinear 0.042± 0.001 0.064± 0.001 0.066± 0.002 0.079± 0.001 0.036± 0.001 0.032± 0.001 0.032± 0.001
pwlinear 0.005± 0.000 0.010± 0.000 0.013± 0.002 0.019± 0.000 0.011± 0.001 0.008± 0.001 0.014± 0.001

Figure 16:n = 2000, nz = 1 , nx = 1 , . = .8

NystromRKHS 2SLS Reg2SLS RFIV
abs 0.026± 0.010 0.025± 0.001 0.054± 0.007 0.023± 0.001

2dpoly 0.033± 0.006 0.002± 0.000 0.361± 0.059 0.292± 0.012
sigmoid 0.015± 0.006 0.006± 0.000 0.096± 0.016 0.014± 0.001

sin 0.019± 0.007 0.012± 0.001 0.142± 0.024 0.016± 0.001
frequentsin 0.131± 0.007 0.117± 0.001 0.116± 0.003 0.069± 0.003

abssqrt 0.027± 0.010 0.018± 0.001 0.026± 0.004 0.019± 0.001
step 0.036± 0.006 0.028± 0.001 0.116± 0.017 0.021± 0.001

3dpoly 0.018± 0.008 0.000± 0.000 0.021± 0.003 0.416± 0.041
linear 0.015± 0.005 0.002± 0.000 0.120± 0.019 0.012± 0.001

randpw 0.047± 0.010 0.057± 0.011 0.448± 0.185 0.050± 0.009
abspos 0.019± 0.007 0.007± 0.001 0.060± 0.010 0.014± 0.001
sqrpos 0.025± 0.005 0.004± 0.001 0.065± 0.010 0.092± 0.007
band 0.056± 0.012 0.046± 0.001 0.053± 0.003 0.027± 0.002

invband 0.051± 0.012 0.046± 0.001 0.052± 0.004 0.027± 0.002
steplinear 0.087± 0.006 0.084± 0.001 0.103± 0.005 0.059± 0.002
pwlinear 0.023± 0.008 0.010± 0.001 0.026± 0.004 0.014± 0.001

Figure 17:n = 2000, nz = 5 , nx = 1 , . = .6
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NystromRKHS 2SLS Reg2SLS RFIV
abs 0.027± 0.011 0.035± 0.002 0.107± 0.016 0.021± 0.001

2dpoly 0.050± 0.019 0.006± 0.000 0.545± 0.080 0.282± 0.014
sigmoid 0.017± 0.009 0.014± 0.001 0.115± 0.023 0.013± 0.001

sin 0.023± 0.009 0.020± 0.001 0.181± 0.045 0.017± 0.001
frequentsin 0.136± 0.012 0.126± 0.001 0.117± 0.003 0.065± 0.003

abssqrt 0.026± 0.008 0.030± 0.002 0.038± 0.006 0.018± 0.002
step 0.035± 0.008 0.036± 0.001 0.135± 0.025 0.021± 0.002

3dpoly 0.022± 0.018 0.001± 0.000 0.035± 0.005 0.402± 0.045
linear 0.022± 0.008 0.007± 0.001 0.123± 0.020 0.011± 0.001

randpw 0.047± 0.009 0.061± 0.010 0.457± 0.165 0.051± 0.011
abspos 0.022± 0.008 0.015± 0.001 0.082± 0.015 0.013± 0.001
sqrpos 0.042± 0.017 0.008± 0.001 0.129± 0.020 0.086± 0.006
band 0.056± 0.013 0.056± 0.001 0.062± 0.007 0.027± 0.002

invband 0.052± 0.012 0.058± 0.002 0.060± 0.006 0.026± 0.002
steplinear 0.102± 0.013 0.097± 0.002 0.099± 0.005 0.059± 0.003
pwlinear 0.031± 0.008 0.017± 0.002 0.033± 0.006 0.014± 0.001

Figure 18:n = 2000, nz = 10, nx = 1 , . = .6

NystromRKHS 2SLS Reg2SLS RFIV
abs 0.051± 0.002 0.262± 0.076 0.031± 0.002 0.038± 0.001

2dpoly 0.226± 0.012 0.106± 0.033 0.105± 0.027 0.316± 0.013
sigmoid 0.025± 0.002 0.198± 0.060 0.056± 0.002 0.015± 0.001

sin 0.035± 0.002 0.222± 0.066 0.077± 0.006 0.022± 0.001
frequentsin 0.140± 0.002 0.386± 0.084 0.114± 0.001 0.108± 0.002

abssqrt 0.037± 0.002 0.288± 0.087 0.025± 0.001 0.025± 0.001
step 0.045± 0.002 0.234± 0.064 0.076± 0.002 0.025± 0.001

3dpoly 0.308± 0.030 0.009± 0.003 0.027± 0.004 0.414± 0.034
linear 0.040± 0.002 0.124± 0.039 0.058± 0.006 0.014± 0.001

randpw 0.131± 0.015 0.266± 0.163 0.161± 0.028 0.077± 0.011
abspos 0.034± 0.002 0.185± 0.057 0.043± 0.002 0.017± 0.001
sqrpos 0.111± 0.008 0.088± 0.028 0.029± 0.002 0.097± 0.006
band 0.060± 0.002 0.327± 0.085 0.055± 0.001 0.038± 0.001

invband 0.060± 0.002 0.311± 0.089 0.054± 0.001 0.039± 0.001
steplinear 0.161± 0.004 0.457± 0.115 0.100± 0.003 0.090± 0.002
pwlinear 0.052± 0.003 0.187± 0.058 0.017± 0.001 0.018± 0.001

Figure 19:n = 2000, nz = 5 , nx = 5 , . = .6

NystromRKHS 2SLS Reg2SLS RFIV
abs 0.143± 0.005 10050.672± 13267.141 0.122± 0.011 0.049± 0.001

2dpoly 0.595± 0.025 5890.128± 8261.553 4.510± 1.245 0.346± 0.014
sigmoid 0.045± 0.003 11712.144± 16799.716 0.091± 0.005 0.017± 0.001

sin 0.058± 0.003 13769.428± 20805.861 0.114± 0.006 0.029± 0.001
frequentsin 0.136± 0.004 12928.749± 19554.361 0.144± 0.004 0.120± 0.002

abssqrt 0.062± 0.004 12764.707± 17195.564 0.079± 0.005 0.034± 0.001
step 0.064± 0.003 12187.342± 17814.756 0.109± 0.004 0.027± 0.001

3dpoly 0.648± 0.039 432.572± 596.731 0.061± 0.005 0.444± 0.029
linear 0.080± 0.002 6964.376± 9566.774 0.107± 0.006 0.016± 0.001

randpw 0.272± 0.029 1882.000± 1998.862 0.682± 0.539 0.093± 0.013
abspos 0.067± 0.003 8841.523± 11921.282 0.095± 0.005 0.020± 0.001
sqrpos 0.243± 0.010 4250.312± 5449.534 0.126± 0.014 0.105± 0.006
band 0.078± 0.004 20401.368± 29655.000 0.090± 0.004 0.049± 0.002

invband 0.079± 0.004 11210.315± 14271.847 0.090± 0.005 0.048± 0.002
steplinear 0.212± 0.005 22217.181± 33274.806 0.141± 0.005 0.110± 0.002
pwlinear 0.075± 0.003 9280.655± 12159.776 0.041± 0.004 0.021± 0.001

Figure 20:n = 2000, nz = 10, nx = 10, . = .6
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AGMM KLayerFixed KLayerTrained CentroidMMD KLossMMD
abs 0.062± 0.003 0.190± 0.006 0.127± 0.007 0.114± 0.007 0.193± 0.007

2dpoly 0.099± 0.006 0.971± 0.040 0.240± 0.014 0.204± 0.022 0.467± 0.023
sigmoid 0.040± 0.001 0.063± 0.002 0.024± 0.001 0.058± 0.003 0.043± 0.003

sin 0.074± 0.002 0.076± 0.002 0.057± 0.002 0.098± 0.003 0.083± 0.004
frequentsin 0.158± 0.002 0.120± 0.002 0.128± 0.002 0.181± 0.004 0.160± 0.007

abssqrt 0.060± 0.003 0.058± 0.004 0.060± 0.003 0.093± 0.004 0.090± 0.007
step 0.066± 0.002 0.076± 0.002 0.050± 0.001 0.088± 0.003 0.069± 0.003

3dpoly 0.426± 0.027 0.716± 0.037 0.491± 0.029 0.496± 0.030 0.526± 0.032
linear 0.020± 0.001 0.142± 0.003 0.013± 0.001 0.029± 0.002 0.027± 0.001

randpw 0.127± 0.020 0.449± 0.051 0.165± 0.024 0.169± 0.025 0.218± 0.030
abspos 0.034± 0.002 0.090± 0.003 0.039± 0.002 0.057± 0.003 0.060± 0.003
sqrpos 0.059± 0.003 0.347± 0.013 0.131± 0.007 0.113± 0.009 0.178± 0.009
band 0.088± 0.003 0.068± 0.002 0.074± 0.003 0.117± 0.004 0.130± 0.037

invband 0.088± 0.003 0.073± 0.005 0.077± 0.003 0.114± 0.004 0.120± 0.026
steplinear 0.176± 0.003 0.197± 0.004 0.133± 0.003 0.218± 0.005 0.170± 0.010
pwlinear 0.049± 0.001 0.074± 0.002 0.033± 0.001 0.063± 0.002 0.049± 0.002

Figure 21:n = 2000, nz = 10, nx = 10, . = .6

p = 1000 10000 100000 1000000
SpLin 0.020± 0.003 0.021± 0.003 - -

StSpLin 0.020± 0.002 0.023± 0.002 0.033± 0.002 0.050± 0.004

Figure 22:n = 400, nz = nx := p, . = .6, h0(x[0]) = x[0]

DeepGMM (Bennett et al.[2019]) AGMM KLayerTrained
MNISTz 0.12± 0.07 0.04± 0.03 0.05± 0.02
MNISTx 0.34± 0.21 0.24± 0.08 0.36± 0.20
MNISTxz 0.26± 0.16 0.21± 0.07 0.26± 0.11

Figure 23: MSE on the high-dimensional DGPs

J.1 Experiments with Image Data

In this section, we describe the experimental setup for our experiments with high-dimensional data
using the MNIST dataset. We replicate the data-generating process ofBennett et al.[2019]. We
present a full description here for completeness.

The Data-Generating Process We begin by describing a low-dimensional DGP which will deÞne
a mapping forx or z or both to be MNIST images. The data-generating process is:

y = g0(xlow) + e+ )

zlow # Uniform([%3, 3]2)

xlow = zlow
1 + e+ .

e # N (0, 1), ), . # N (0, 0.1).

Let 4(x) = round(min(max(1 .5x + 5 , 0), 9)). 4 is a transformation function that maps inputs to an
integer between 0 and 9. LetRandomImage(d) be a function which selects a random MNIST image
from the class of images corresponding to digitd. The three high-dimensional scenarios are:

MNISTZ : x = xlow, z = RandomImage(4(zlow
1 ))

MNISTX : x = RandomImage(4(xlow)) , z = zlow

MNISTXZ : x = RandomImage(4(xlow)) , z = RandomImage(4(zlow
1 )) .

We use the functiong0(x) = |x| to compare withBennett et al.[2019] but in general, the other
functional forms described above can also be used. Similar toBennett et al.[2019] we normalize the
data so thaty has zero mean and unit standard deviation.

We evaluate the performance of our AGMM and KLayerTrained estimators on these 3 data-generating
processes with 20,000 train samples and 2,000 test samples and compare their performance to that
achieved when we evaluateBennett et al.[2019]Õs code (performance is measured by the average
mean squared error of the predictions on test data).
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Setup We describe more details about our experimental setup for the MNIST experiments here. We
run 10 Monte-Carlo runs of each experiment and report the average MSE and the standard deviation
in the MSE achieved.

Architectures We use a 4-layer convolutional architecture in all cases where the input to the
network is an image. This consists of 2 convolutional layers with a 3x3 kernel followed by two fully
connected layers with 9216 and 512 hidden units respectively. A ReLU activation is applied after
each layer. Along with that, a max-pooling operation is applied after the Þrst two convolutional layers
and a dropout operation (with dropout probability 0.1) is applied before each fully connected layer.
When the instrument or treatment is low-dimensional we use a 2 layer fully connected neural network
with 200 neurons in the hidden layer along with the dropout function as before. All networks use
ReLU as the activation function.

Early Stopping We utilize the early stopping procedure proposed inBennett et al.[2019] which
works as follows. In addition to the 20,000 training samples, 10,000 samples are used for preparing a
set of candidate adversary functions prior to training. During training at each epoch, the maximum
error incurred by the learner against the candidates in this pre-computed list is recorded. The early
stopping selects the model whose maximum error as computer above is the smallest.

Hyper-Parameters We use a batch size of 100 samples, and run for 200 epochs where an epoch is
deÞned as one full pass over the train set. We have as hyper-parameters learning rates for the learner
and adversary networks, the regularization terms for the weights of the learner and the adversary,
and a regularization term on the norm of the output of the adversary network. For theMNISTx
experiment, we saw best results when the weight penalizations on both the learner and the adversary
were set to very small values as compared to the other two experiments.
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K Proofs from Section3 and Appendix C

K.1 Preliminary Lemmas

Lemma 15. Let f h , be any test function that satisÞes:&f h %T(h" %h)&2 ( ( and let

!( h, f ) := E[%(y ; h(x)) f (z)].

Then:
1

&f h &2
(! ( h, f h ) %!( h" , f h )) * & T(h %h" )&2 %2(n

Proof. Let f "
h = T(h" %h) and observe that by the tower law of expectations:

1
&f h &2

(!( h, f h ) %!( h" , f h )) =
E[(h" %h)(x) f h (z)]

&f h &2
=

E[f "
h (z) f h (z)]
&f h &2

However, observe that by the Cauchy-Schwarz inequality we have:

E[f "
h (Z ) f h (Z )] = E[f h (Z )2] + E[f h (Z )( f "

h (Z ) %f h (Z ))] * & f h &2
2 % |E[f h (Z )( f "

h (Z ) %f h (Z ))] |

* & f h &2
2 %

.
E[f h (Z )2]

(
E[(f "

h (Z ) %f h (Z ))2]

* & f h &2
2 % &f h &2&f "

h %f h &2

* & f h &2
2 %(n &f h &2

Thus we have:
1

&f h &2
(!( h, f h ) %!( h" , f h )) * & f h &2 %(n

Finally, by a triangle inequality,

&f h &2 * & f "
h &2 % &f "

h %f h &2 * & f "
h &2 %(n .

Hence, we can conclude that:

1
&f h &2

(!( h, f h ) %!( h" , f h )) * & f "
h &2 %2(n = &T(h %h" )&2 %2(n

K.2 Proof of Theorem 1

Proof. For convenience let:

!( h, f ) := E[%(y ; h(x)) f (z)] = E[T(h0 %h)(z) f (z)] (by conditional moment restriction)

! n (h, f ) :=
1
n

n*

i =1

%(yi ; h(xi )) f (zi )

Moreover, for our choice of) as described in the statement of the theorem, let:

H B :=
%

h ' H : &h&2
H ( B

&

FU :=
%

f ' F : &f &2
F ( U

&

Moreover, let:

! "
n (h, f ) = ! n (h, f ) %&

'
&f &2

F +
U
) 2 &f &2

2,n

)

! " (h, f ) = !( h, f ) %&
'

2
3

&f &2
F +

U
) 2 &f &2

2

)

Thus our estimate can be written as:

öh := arg min
h!H

sup
f !F

! "
n (h, f ) + µ&h&2

H
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Relating empirical and population regularization. As a preliminary observation, we have that
by Theorem 14.1 ofWainwright[2019], w.p. 1 %- :

/ f ' F 3U :
E
E&f &2

n, 2 % &f &2
2

E
E(

1
2

&f &2
2 + ) 2

for our choice of) := )n + c0

(
log( c1 /' )

n , where)n upper bounds the critical radius ofF3U and
c0, c1 are universal constants. Moreover, for anyf , with &f &2

F * 3U, we can consider the function
f

2
3U/ &f &F , which also belongs toF3U , sinceF is star-convex. Thus we can apply the above

lemma to this re-scaled function and multiply both sides by&f &2
F / (3U), leading to:

/ f ' F s.t. &f &2
F * 3U :

E
E&f &2

n, 2 % &f &2
2

E
E(

1
2

&f &2
2 + ) 2 &f &2

F

3U
Thus overall, we have:

/ f ' F :
E
E&f &2

n, 2 % &f &2
2

E
E(

1
2

&f &2
2 + ) 2 max

=
1,

&f &2
F

3U

>
(16)

Thus we have that w.p.1 %- :

/ f ' F : &f &2
F +

U
) 2 &f &2

2,n * & f &2
F +

U
) 2

'
&f &2

2 %) 2 max
=

1,
&f &2

F

3U

>)

* & f &2
F +

U
) 2 &f &2

2 %max
=

U,
1
3

&f &2
F

>

*
2
3

&f &2
F +

U
) 2 &f &2

2 %U (17)

Upper bounding centered empirical sup-loss. We now argue that the centered empirical sup-loss:
supf !F (! n (öh, f ) %! n (h" , f )) is small. By the deÞnition oföh:

sup
f !F

! "
n (öh, f ) ( sup

f !F
! "

n (h" , f ) + µ
;

&h" &2
H % &öh&2

H

<
(18)

By Lemma 7 ofFoster and Syrgkanis[2019], the fact that$(y; h" (x)) f (z) is 2-Lipschitz with respect

to f (z) (sincey ' [%1, 1] and&h" && ' [%1, 1]) and by our choice of) := )n + c0

(
log( c1 /' )

n ,
where)n is an upper bound on the critical radius ofF3U , w.p. 1 %- :

/ f ' F 3U : |! n (h" , f ) %!( h" , f )| ( 36) &f &2 + 36) 2

Thus, if&f &F *
2

3U, we can apply the latter inequality for the functionf
2

3U/ &f &F , which falls
in F3U , and then multiply both sides by&f &F /

2
3U to get:

/ f ' F : |! n (h" , f ) %!( h" , f )| ( 36) &f &2 + 36) 2 max
=

1,
&f &F2

3U

>
(19)

By Equations (17) and (19), we have that w.p.1 %2- :

sup
f !F

! "
n (h" , f ) = sup

f !F

'
! n (h" , f ) %&

'
&f &2

F +
U
) 2 &f &2

2,n

))

( sup
f !F

'
!( h" , f ) + 36 ) 2 +

36) 2
2

3U
&f &F + 36) &f &2 %&

'
&f &2

F +
U
) 2 &f &2

2,n

))

( sup
f !F

'
!( h" , f ) + 36 ) 2 +

36) 2
2

3U
&f &F + 36) &f &2 %&

'
2
3

&f &2
F +

U
) 2 &f &2

2

)
+ &U

)

( sup
f !F

! "/ 2(h" , f ) + 36 ) 2 + &U

+ sup
f !F

'
36) 2
2

3U
&f &F %

&
2

2
3

&f &2
F

)
+ sup

f !F

'
36) &f &2 %

&
2

U
) 2 &f &2

2

)
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Moreover, observe that for any norm& á &and any constantsa, b > 0:

sup
f !F

+
a&f & %b&f &2,

(
a2

4b

Thus if we assume that& * ) 2/U , we have:

sup
f !F

'
) 2 36

2
3U

&f &F %
&
2

2
3

&f &2
F

)
(

362

4
) 4

U&
( 324) 2

sup
f !F

'
36) &f &2 %

&
2

U
) 2 &f &2

2

)
(

362) 4

2&U
( 648) 2

Thus we have:

sup
f !F

! "
n (h" , f ) ( sup

f !F
! "/ 2(h" , f ) + &U + O() 2)

Moreover:

sup
f !F

! "
n (öh, f ) = sup

f !F

'
! n (öh, f ) %! n (h" , f ) + ! n (h" , f ) %&

'
&f &2

F +
U
) 2 &f &2

2,n

))

* sup
f !F

'
! n (öh, f ) %! n (h" , f ) %2&

'
&f &2

F +
U
) 2 &f &2

2,n

))

+ inf
f !F

'
! n (h" , f ) + &

'
&f &2

F +
U
) 2 &f &2

2,n

))

= sup
f !F

'
! n (öh, f ) %! n (h" , f ) %2&

'
&f &2

F +
U
) 2 &f &2

2,n

))
% sup

f !F
! "

n (h" , f )

Combining this with Equation (18) yields:

sup
f !F

'
! n (öh, f ) %! n (h" , f ) %2&

'
&f &2

F +
U
) 2 &f &2

2,n

))
( 2 sup

f !F
! "

n (h" , f ) + µ
;

&h" &2
H % &öh&2

H

<

( O() 2) + &U + 2 sup
f !F

! "/ 2(h" , f )

+ µ
;

&h" &2
H % &öh&2

H

<

Lower bounding centered empirical sup-loss. For anyh, let

f h := arg inf
f !F L 2 " h # h ! " 2

H

&f %T(h" %h)&2.

and observe that by our assumption, for anyh ' H : &f h %T(h" %h)&2 ( ' n .

Suppose that&f öh &2 * ) and letr = &
2' f öh ' 2

' [0, 1/ 2]. Then observe that sincef öh ' F L ' h# h ! ' H

andF is star-convex, we also have thatrf h ' F L ' h# h ! ' H . Thus we can lower bound the supremum
by its evaluation atr f h :

sup
f !F

'
! n (öh, f ) %! n (h" , f ) %2&

'
&f &2

F +
U
) 2 &f &2

2,n

))
* r (! n (öh, f öh ) %! n (h" , f öh ))

%2&r2
'

&f öh &2
F +

U
) 2 &f öh &2

2,n

)

Moreover, since)n upper bounds the critical radius ofF3U , &f öh &F ( L&öh %h" &H and by Equa-
tion (16):

r 2
'

&f öh &2
F +

U
) 2 &f öh &2

2,n

)
( & f öh &2

F +
U
) 2 r 2&f öh &2

2,n

( & f öh &2
F +

U
) 2 r 2

'
2&f öh &2

2 + ) 2 + ) 2 &f öh &2
F

3U

)

(
4
3

L 2&h %h" &2
H +

U
2

+
U
4

( 2L 2&h %h" &2
H + U
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Thus we get:

sup
f !F

'
! n (öh, f ) %! n (h" , f ) %2&

'
&f &2

F +
U
) 2 &f &2

2,n

))
* r (! n (öh, f öh ) %! n (h" , f öh ))

%4&L2&h %h" &2
H %2&U

Observe that:

! n (h, f h ) %! n (h" , f h ) =
1
n

n*

i =1

(h" (xi ) %h(xi )) f h (h" %h)(zi )

!( h, f h ) %!( h" , f h ) = E[(h" (xi ) %h(xi )) f h (zi )]

By Lemma 7 ofFoster and Syrgkanis[2019], and by our choice of) := )n + c0

(
log( c1 /' )

n , where
)n upper bounds the critical radius ofG, we have that w.p.1 %- : / h, such thath %h" ' H B

|(! n (h, f h ) %! n (h" , f h )) %(!( h, f h ) %!( h" , f h )) | ( 18)
.

E[(h" (X ) %h(X ))2 f h (Z )2] + 18) 2

( 18)
.

E[f h (Z )2] + 18) 2

= 18) &f h &2 + 18) 2 (20)

where in the second inequality we used the fact thath%h" has range in[%1, 1], when&h%h" &H ( B .
If h %h" has&h %h" &2

H * B , we can apply the latter for(h %h" )
2

B/ &h %h" &H and multiply
both sides by&h %h" &2

H /B :

|(! n (h, f h ) %! n (h" , f h )) %(!( h, f h ) %!( h" , f h )) | ( 18) &f h &2
&h %h" &H2

B
+ 18) 2 &h %h" &2

H

B

Thus we have that for allh ' H :

|(! n (h, f h ) %! n (h" , f h )) %(!( h, f h ) %!( h" , f h )) | (
+
18) &f h &2 + 18) 2,

max
=

1,
&h %h" &2

H

B

>

Applying the latter bound forh := öh and multiplying byr := &
2' f öh ' 2

' [0, 1/ 2], yields:

r (! n (öh, f öh ) %! n (h" , f öh )) * r (!( öh, f öh ) %!( h" , f öh )) %18) 2 max
=

1,
&h %h" &2

H

B

>

Moreover, observe that by Lemma15and the fact that&f öh %T(h" %öh)&2 ( ' n , we have:

r (!( öh, f öh ) %!( h" , f öh )) *
)
2

&T(h" %öh)&2 %)' n

Thus we have:

sup
f !F

'
! n (öh, f ) %! n (h" , f ) %2&

'
&f &2

F +
U
) 2 &f &2

2,n

))
*

)
2

&T(h" %h)&2 %)' n

%27) 2 max
=

1,
&h %h" &2

H

B

>

%4&L2&h %h" &2
H %2&U

Combining upper and lower bound. Combining the upper and lower bound on the centered
population sup-loss we get that w.p.1 %3- : either&f öh &2 ( ) or:

)
2

&T(öh %h" )&2 ( O() 2 + )' n + &U) + 2 sup
f !F

! "/ 2(h" , f )

+ 27) 2 &öh %h" &2
H

B
+ 4&L2&öh %h" &2

H + µ
;

&h" &2
H % &öh&2

H

<
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We now control the last part. Since& * ) 2/U , the latter is upper bounded by:

&
'

27U
B

+ 4L 2
)

&öh %h" &2
H + µ

;
&h" &2

H % &öh&2
H

<
( 2&

'
27U
B

+ 4L 2
) ;

&öh&2
H + &h" &2

H

<

+ µ
;

&h" &2
H % &öh&2

H

<

Sinceµ * 2&
+

27U
B + 4L 2

,
, the latter is upper bounded by:

'
2&

'
27U
B

+ 4L 2
)

+ µ
)

&h" &2
H

Thus as long asµ * 2&
+

27U
B + 4L 2

,
and& * ) 2/U , we have:

)
2

&T(öh %h" )&2 ( O() 2 + )' n + &U) + 2 sup
f !F

! "/ 2(h" , f ) +
'

2&
'

27U
B

+ 4L 2
)

+ µ
)

&h" &2
H

Dividing over by) and treatingL, U, B as constants, we get:

&T(öh %h" )&2 ( O() + ' n + &h" &2
H (&/) + µ/) )) +

2
)

sup
f !F

! "/ 2(h" , f )

Thus either&f öh & ( ) or the latter inequality holds. However, in the case when&f öh & ( ) , we have by
a triangle inequality that:&T(öh %h" )&2 ( ) + ' n . Thus in any case the latter inequality holds.

Upper bounding population sup-loss at minimum. Let f 0 = T(h0 %h" ) and observe that:

sup
f !F

! "/ 2(h" , f ) = sup
f !F

E[f 0(z) f (z)]%
&
2

'
2
3

&f &2
F +

U
) 2 &f &2

2

)
( sup

f !F
E[f 0(z) f (z)]%

&
2

U
) 2 &f &2

2

Then by the Cauchy-Schwarz inequality and since& * ) 2/U :

sup
f !F

E[f 0(z) f (z)] %&
U
) 2 &f &2

2 ( sup
f !F

&f 0&2&f &2 %
&
2

U
) 2 &f &2

2 (
&f 0&2

2

2&U
) 2 (

&f 0&2

2

Concluding. Concluding we get that w.p.1 %3- :

&T(öh %h" )&2 ( O() + ' n + &h" &2
H (&/) + µ/) )) +

&T(h" %h0)&2
2

)
By a triangle inequality:

&T(öh %h0)&2 ( & T(öh %h" )&2 + &T(h" %h0)&2

( O() + ' n + &h" &2
H (&/) + µ/) )) +

&T(h" %h0)&2
2

)
+ &T(h" %h0)&2

K.3 Proof of Theorem 2

Proof. By the deÞnition oföh:

0 ( sup
f

! n (öh, f ) ( sup
f

! n (h0, f ) + &
;

&h0&H % &öh&H

<

Let F i
U = { f ' F i : &f &F ( U} and)n,' = max d

i =1 2R(F i
U ) + c0

(
log( c1 /' )

n for some universal

constantsc0, c1. By Theorem 26.5 and 26.9 ofShalev-Shwartz and Ben-David[2014], and sinceF i
U

is a symmetric class andsupy!Y ,x !X |y %h0(x)| ( 2, w.p. 1 %- :

f ' F i
U |! n (h0, f ) %!( h0, f )| ( ) n,'

Since!( h0, f ) = 0 for all f , we have that, w.p.1 %- :

&öh&H ( & h0&H + )n,' /&
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Let Bn,",' = ( &h0&H + )n,' /& )2. Then if we let(n,",' = max i R(H B n,$,% á Fi
U ) + c0

(
log( c1 /' )

n
for some universal constantsc0, c1.

/ h ' H B n,$,% , f ' F i
U |! n (h, f ) %!( h, f )| ( ) n,'

By a union bound over thed function classes composingF , we have that w.p.1 %2- :

sup
f !F U

! n (h0, f ) ( sup
f !F U

!( h0, f ) + )n,'/d = )n,'/d

and
sup

f !F U

! n (öh, f ) * sup
f !F U

!( öh, f ) %(n,'/d

Since, by assumption, for anyh ' H B n,$,% , T (h0 # h)
' T (h0 # h) ' 2

' spanR (FU ), we have T (h0 # h)
' T (h0 # h) ' 2

=
- p

i =1 wi f i , with p < , , &w&1 ( / andf i ' F U . Thus we have:

sup
f !F U

!( öh, f ) *
1
/

p*

i =1

wi !( öh, f i ) =
1
/

!

1

öh,
*

i

wi f i

3

=
1
/

1

&T(h0 %öh)&2
!( öh, T (h0 %öh))

=
1
/

1

&T(h0 %öh)&2
E[T(h0 %öh)(z)2]

=
1
/

&T(h0 %öh)&2

Combining all the above we have:

&T(h0 %öh)&2 ( /
;

(n,",'/d + )n,'/d + &
;

&h0&H % &öh&H

<<

Moreover, since functions inH andF are bounded in[%1, 1], we have that the functionh áf is
1-Lipschitz with respect to the vector of functions(h, f ). Thus we can apply a vector version of the
contraction inequalityMaurer[2016] to get that:

R(H B n,$,z á Fi
U ) ( 2

+
R(H B n,$,z ) + R(F i

U )
,

Finally, we have that sinceH is star-convex:

R(H B n,$,z ) (
.

Bn,",z R(H 1)

Leading the Þnal bound of:

&T(h0%öh)&2 ( /

1

2 (&h0&H + )n,' /& ) R(H 1) + 2
d

max
i =1

R(F i
U ) + c0

2
log(c1 d/- )

n
+ &

;
&h0&H % &öh&H

<
3

Since&h0&H ( R and& * )n,' , we get the result.

K.4 Proof of Theorem 6

The proof is identical to that of Theorem1 with small modiÞcations. Hence we solely mention these
modiÞcations and omit the full proof.

The only part that we change is instead of the set of Equations(20), we instead view%(y; h(x)) f h (z)
as a function of the vector valued function(x, z) + (h(x), f h (z)) . Then we note that since
h, f take values in[%1, 1] andy ' [%1, 1], we note that this function2-Lipschitz with respect
to this vector. Then we can apply Lemma 7 ofFoster and Syrgkanis[2019], and by our choice

of ) := )n + c0

(
log( c1 /' )

n , where)n upper bounds the critical radius ofstar(H B % h" ) and
star(T(H B %h" )) , we have that w.p.1 %- : / h ' H B :

|(! n (h, f h ) %! n (h" , f h )) %(!( h, f h ) %!( h" , f h )) | ( 36) (&h %h" &2 + &f h &2) + 18 ) 2
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Subsequently, we can follow identical steps to conclude that w.p.1 %3- , either&f öh &2 ( ) or:

&T(öh %h0)&2 ( O

1

) + )
&öh %h" &2

&f h &2
+ ' n + &h" &2

H (&/) + µ/) ) +
&T(h" %h0)&2

2

)

3

Subsequently, by the measure of ill-posedness we have:

&öh %h" &2 ( +&T(öh %h" )&2

Moreover, observe that when&f öh &2 * ) * 3' n , then we have by a triangle inequality that:

&T(h %h" )&2 * & f öh &2 %' n * 2' n

and:

&f öh &2 * & T(h %h" )&2 %' n *
1
2

&T(h %h" )&2

Thus we get that:
&öh %h" &2

&f h &2
( +

&T(h %h" )&2

&f öh &2
( 2+

Thus overall we have that either&f öh &2 ( ) or:

&öh %h" &2 ( O
'

+
'

+) + ' n + &h" &2
H (&/) + µ/) ) +

&T(h" %h0)&2
2

)

))

( O
'

+
'

+) + ' n + &h" &2
H (&/) + µ/) ) +

&h" %h0&2
2

)

))
(21)

where the last inequality follows by that fact that JensenÕs inequality implies that&T(h" %h0)&2 (
&h" %h0&2. Moreover, if&f öh &2 ( ) , then by a triangle inequality that&T(öh%h" )&2 ( ) + ' n , which,
subsquently implies by invoking the bound on the ill-posedness measure that:&öh" %h& ( +() + ' n ).
Thus in any case the bound in Equation(21) holds. Choosingh" := arg inf h!H B

&h %h0&2, yields
the result.

L Proofs from Section4 and Appendix E

L.1 Proof of Proposition 9

Proof. Since&f &2,n depends onf only through the valuesf (z1), . . . , f (zn ), and the maximization
overf in (11) is the penalized problem

sup
f !F

1
n

n*

i =1

%(yi ; h(xi )) f (zi ) %&( U
&2 &f &2

2,n + &f &2
K )

for some choice of& * 0, the generalized representer theorem of [Schšlkopf et al., 2001, Thm. 1]
implies that an optimal solution of the constrained problem in (11) takes the form

f " (z) =
n*

i =1

, "
i K (zi , z)

for some weight vector, " ' Rn . Now consider a function

f (z) =
n*

i =1

, i K (zi , z)

for any, ' Rn . We have&f &2
K = , + K n , , f (zi ) = e+

i K n , , and

&f &2
2,n =

1
n

n*

i =1

f (zi )2 =
1
n

n*

i =1

, + K n ei e+
i K n , =

1
n

, + K 2
n ,.
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Thus the penalized problem is equivalent to the Þnite dimensional maximization problem:

sup
, ! Rn

%+
n K n , %&, +

'
U

n) 2 K n + I
)

K n ,

by taking the Þrst order condition, the latter has a closed form optimizer of:

, " =
1

2&

'
U

n) 2 K n + I
) # 1

%n

and optimal value of:

1
4&

%+
n K n

'
U

n) 2 K n + I
) # 1

%n =
1

4&
%+

n K 1/ 2
n

'
U

n) 2 K n + I
) # 1

K 1/ 2
n %n

where in the last equality we used a classic matrix inverse identity for kernel matrices.18

L.2 Proof of Proposition 10

Proof. By Proposition9,

öh = arg min
h!H

1
4&

%+
n M%n + µ&h&2

K H
= arg min

h!H
%+

n M%n + 4& µ&h&2
K H

(22)

where%n = ( 1
n %(yi ; h(xi ))) n

i =1 . Since the objective of (22) depends only onh only through the
valuesh(x1), . . . , h(xn ), and the problem, the generalized representer theorem of [Schšlkopf et al.,
2001, Thm. 1] implies that an optimal solution of the problem (22) takes the form

h" (x) =
n*

i =1

, "
i K H (xi , x)

for some weight vector, " ' Rn . Now consider a function

h(z) =
n*

i =1

, i K H (zi , z)

for any, ' Rn . We have&h&2
K H

= , + K H ,n , , h(zi ) = e+
i K H ,n , , and%n = y %K H ,n , . The

problem (22) is therefore equivalent to

min
, ! Rn

, + K H ,n MK H ,n , %2y+ MK H ,n , + 4& µ , + K H ,n ,.

By [Boyd and Vandenberghe, 2004, Ex. 4.22], this problem is solved by:

, " := ( K H ,n M K H ,n + 4& µ K H ,n )  K H ,n My

18The fact that for any matrixX : X (X $ X + !I )# 1 = XX $ (X $ X + !I ), and thatK n = K 1/ 2
n K 1/ 2

n

andK 1/ 2
n is symmetric.
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L.3 Proof of Lemma 11

Proof. Under these assumptions we have:

&T h&2
2 = a+

I Vm aI %2
*

i ( m<j

ai aj E[E[ei (x) | z]E[ej (x) | z]] + E

F

G
H

A

B
*

j>m

aj E[ej (x) | z]

C

D

2
I

J
K

* a+
I Vm aI %2

*

i ( m<j

|ai aj | |E[E[ei (x) | z]E[ej (x) | z]]|

* a+
I Vm aI %2

*

i ( m<j

|ai aj |c +m

* +m &aI &2
2 %2c +m

*

i ( m

|ai |
6 *

j>m

a2
j

* +m &aI &2
2 %2c +m

.
&m +1 B

*

i ( m

|ai |

* +m &aI &2
2 %2c +m

.
&m +1 B

6 *

i ( m

a2
i

* +m &aI &2
2 %2c +m

.
&m +1 B &aI &2

Thus if&T h&2 ( ) , then by solving the above quadratic inequality and using the fact that(a + b)2 (
2a2 + 2b2, we have for allm:

&aI &2
2 (

4) 2

+m
+ 4c2&m +1 B

Moreover, observe that by the RKHS norm bound:

&h&2
2 =

*

j ! J

a2
j ( & aI &2

2 + &m B

Thus we can bound:

+" () )2 = min
h:' T h ' 2

2 ( &2
&h&2 ( min

m ! N+

4) 2

+m
+ (4 c2 + 1) &m +1 B

M Proofs from Section5 and Appendix F

M.1 Proof of Corollary 3

Proof. Let H = {! ", x " : " ' Rd} and&h&H = &" &1. Moreover, suppose thath0 is s-sparse. Then
if h ' HB n,$,% , then:

)n,' /& + &"0&1 * & ö" &1 = &"0 + 2&1 = &"0 + 2S&1 + &2Sc &1 * & "0&1 % &2S&1 + &2Sc &1

Thus:

&2&1 ( 2&2S&1 + )n,' /& ( 2
2

s&2S&2 + )n,' /& ( 2
2

s&2&2 + )n,' /& ( 2
2

s
.

2+ V 2 + )n,' /&

Moreover, observe that:

&T(h %h0)&2 =
.

E[!2,E[x | z]"2] =
2

2+ V 2

Thus we have:
T(h %h0)

&T(h %h0)&2
=

p*

i =1

2i2
2+ V 2

E[xi | z]
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Thus we can write T (h# h0 )
' T (h# h0 ) ' 2

as
- p

i =1 wi f i , with f i ' F U and:

&w&1 =
&2&12
2+ V 2

( 2
2

s
.

+
)n,'

&
1

&T(h %h0)&2
.

Thus: T (h# h0 )
' T (h# h0 ) ' 2

' span- (FU ) for / = 2
(

s
( + &n,%

"
1

' T (h# h0 ) ' 2
.

Moreover, observe that by the triangle inequality:

&h0&H % &öh&H = &"0&1 % &ö" &1 ( & "0 % ö" &1 = &2&1 ( 2
2

s
.

2+ V 2 + )n,' /&

Moreover, by standard results on the Rademacher complexity of linear function classes
(see e.g. Lemma 26.11 of [Shalev-Shwartz and Ben-David, 2014]), we have R(H B ) (

B
(

2 log(2 p)
n maxx !X &x&& andR(FU ) ( U

(
2 log(2 p)

n maxz!Z &z&& for FU = { z + ! #, z" :
# ' Rp, &#&1 ( U} . Thus invoking Theorem2:

&T(öh %h0)&2 (
'

2
2

s
.

+
)n,'

&
1

&T(h %h0)&2

)
á

1

2(B + 1)

2
log(2p)

n
+ )n,' + &

2
s
.

&T(h %h0)&2

3

The right hand side is upper bounded by the sum of the following four terms:

Q1 := 2
2

s
.

1

2(B + 1)

2
log(2p)

n
+ )n,'

3

Q2 :=
'

) n,'

&
1

&T(h %h0)&2

) 1

2(B + 1)

2
log(2p)

n
+ )n,'

3

Q3 := 2&
s
.

&T(h %h0)&2

Q4 := )n,'

2
s
.

If &T(h %h0)&2 *
(

s
( ) n,' and setting& ( (

8s , yields:

Q2 ( 8
1
&

2
.
s

1

2(B + 1)

2
log(2p)

n
+ )n,'

3

Q3 (
1
4

&T(h %h0)&2

Thus bringingQ3 on the left-hand-side and dividing by3/ 4, we have:

&T(h %h0)&2 (
4
3

(Q1 + Q2 + Q4) =
4
3

max
= 2

s
.

,
1
&

2
.
s

> 1

20 (B + 1)

2
log(2p)

n
+ 11)n,'

3

The result for the case whensupz!Z &z&2 ( R andFU = { z + ! #, z" : &#&2 ( U} , follows
along the exact same lines, but invoking the Lemma 26.10 of [Shalev-Shwartz and Ben-David, 2014],
instead of Lemma 26.11, in order to get thatR(FU ) ( U R*

n .

M.2 Proof of Propositions13and 14

Proposition 16. Consider an online linear optimization algorithm over a convex strategy spaceS
and consider the OFTRL algorithm with a1-strongly convex regularizer with respect to some norm
& á &on spaceS:

f t = arg min
f ! S

f +

A

B
*

* ( t

! * + ! t

C

D +
1
'

R(f )
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Let& á &" denote the dual norm of& á &andR = supf ! S R(f ) %inf f ! S R(f ). Then for anyf " ' S:

T*

t =1

(f t %f " )+ ! t (
R
'

+ '
T*

t =1

&! t %! t # 1&" %
1
4'

T*

t =1

&f t %f t # 1&2

Proof. The proof follows by observing that Proposition 7 inSyrgkanis et al.[2015] holds verbatim
for any convex strategy spaceS and not necessarily the simplex.

Proposition 17. Consider a minimax objective:min! ! ! maxw! W ! (", w ). Suppose that# , W are
convex sets and that! (", w ) is convex in" for everyw and concave in" for any w. Let & á &!
and& á &W be arbitrary norms in the corresponding spaces. Moreover, suppose that the following
Lipschitzness properties are satisÞed:

/ " ' # , w, w- ' W : &. ! ! (", w ) % . ! ! (", w -)&! ," ( L&w %w-&W

/ w ' W, ", " - ' # : &. w ! (", w ) % . w ! (" -, w)&W, " ( L&" %" -&W

where& á &! ," and& á &W, " correspond to the dual norms of& á &! , & á &W . Consider the algorithm
where at each iteration each player updates their strategy based on:

" t +1 = arg min
! ! !

" +

A

B
*

* ( t

. ! ! (" * , w* ) + . ! ! (" t , wt )

C

D +
1
'

Rmin (" )

wt +1 = arg max
w! W

wT

A

B
*

* ( t

. w ! (" * , w* ) + . w ! (" t , wt )

C

D %
1
'

Rmax (w)

such thatRmin is 1-strongly convex in the set# with respect to norm& á &! andRmax is 1-strongly
convex in the setW with respect to norm& á &W and with any step-size' ( 1

4L . Then the parameters
ø" = 1

T

- T
t =1 " t and øw = 1

T

- T
t =1 wt correspond to an2R !

+áT -approximate equilibrium and henceø" is

a 4R !
+T -approximate solution to the minimax objective, whereR is deÞned as:

R" := max
=

sup
! ! !

Rmin (" ) % inf
! ! !

Rmin (" ), sup
w! W

Rmax (w) % inf
w! W

Rmax (w)
>

Proof. The proposition is essentially a re-statement of Theorem 25 ofSyrgkanis et al.[2015] (which
in turn is an adaptation of Lemma 4 ofRakhlin and Sridharan[2013]), specialized to the case of the
OFTRL algorithm and to the case of a two-player convex-concave zero-sum game, which implies
that the if the sum of regrets of players is at most(, then the pair of average solutions corresponds
to an(-equilibrium (see e.g.Freund and Schapire[1999] and Lemma 4 ofRakhlin and Sridharan
[2013]).

Proof of Proposition 13: ! 1-ball adversary Let RE (x) =
- 2p

i =1 xi log(xi ). For the space# :=
{ 0 ' R2p : 0 * 0, &0&1 ( B } , the entropic regularizer is1B -strongly convex with respect to the! 1

norm and hence we can setRmin (0) = B R E (0). Similarly, for the spaceW := { w ' R2p : w *
0, &w&1 = 1 } , the entropic regularizer is1-strongly convex with respect to the! 1 norm and thus we
can setRmax (w) = RE (w). For this choice of regularizers, the update rules can be easily veriÞed to
have a closed form solution provided in Proposition13, by writing the Lagrangian of each OFTRL
optimization problem and invoking strong duality. Further, we can verify the lipschitzness conditions.
Since the dual of the! 1 norm is the! & norm,. ) ! (0, w) = En [vu+ ]w + µ

W and thus:

&. ) ! (0, w) % . ) ! (0, w-)&& = &En [vu+ ](w %w-)&& ( & En [vu+ ]&& &w %w-&1

&. w ! (0, w) % . w ! (0-, w)&& = &En [uv+ ](0 %0-)&& ( & En [vu+ ]&& &0 %0-&1

Thus we haveL = &En [uv+ ]&& . Finally, observe that:

sup
) ! !

B R E (0) % inf
) ! !

B R E (0) = B 2 log(B 8 1) + B log(2p)

sup
w! W

RE (w) % inf
w! W

RE (w) = log(2 p)
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Thus we can takeR" = B 2 log(B 8 1) + ( B + 1) log(2p). Thus if we set' = 1
4' En [vu & ]' '

, then we

have that afterT iterations,ø" = ø0+ % ø0# is an((T)-approximate solution to the minimax problem,
with

((T) = 16&En [vu+ ]&&
4B 2 log(B 8 1) + ( B + 1) log(2p)

T
.

Combining all the above with Proposition17yields the proof of Proposition13.

Proof of Proposition 14: ! 2-ball adversary For the case whenW := { # ' Rp : &#&2 ( U} ,
then we have that the squared norm regularizerRmax (#) = 1

2 &#&2
2 is 1-strongly convex with respect

to the! 2 norm and we can use& á &W = & á &2. The choice ofRmin is the same as in the case of
an! 1 adversary, as detailed in the previous paragraph. For this choice of regularizers, the update
rules can be easily veriÞed to have a closed form solution provided in Proposition14, by writing
the Lagrangian of each OFTRL optimization problem and invoking strong duality. Moreover, the
Lipschitzness conditions become:

&. ) ! (0, #) % . ) ! (0, #-)&& = &En [vz+ ](# %#-)&& ( & En [vz+ ]&& ,2&# %#-&2

&. # ! (0, #) % . # ! (0-, #)&2 = &En [zv+ ](0 %0-)&2 ( & En [zv+ ]&2,& &0 %0-&1

where&A&& ,2 = max i

( -
j A2

ij and&A&2,& =
( -

i maxj A2
ij . Thus we can take

L = max

L
M

N
max

i

6 *

j

En [vi zj ]2 +
6 *

i

max
j

En [zi vj ]2

O
P

Q

(
6 *

i

max
j

En [zi vj ]2 = &En [zvT ]&2,&

Finally, we also have that:

sup
# ! W

Rmax (#) % inf
# ! W

Rmax (#) (
1
2

U2

Thus we can takeR" = B 2 log(B 8 1) + B log(2p) + 1
2 U2. Thus if we set' = 1

4' En [zv & ]' 2 , '
,

then we have that afterT iterations,ø" = ø0+ % ø0# is an((T)-approximate solution to the minimax
problem, with

((T) = 16&En [zv+ ]&2,&
4B 2 log(B 8 1) + B log(2p) + U2/ 2

T
.

Combining all the above with Proposition17yields the proof of Proposition14.

N Proofs from Section7 and Appendix I

N.1 Proof of Theorem4

Observe that we can view the minimax problem as the solution to a convex-concave zero-sum game,
where the strategy of each player is a vector in ann-dimensional space, subject to complex constraints
imposed by the corresponding hypothesis. In particular, letA = { (f (z1), . . . , f (zn )) : f ' F} and
B = { (h(x1), . . . , h(zn )) : h ' H} . Then the minimax problem can be phrased as:

min
b! B

max
a! A

1
n

*

i

((yi %bi ) ai %a2
i ) = max

b! B
min
a! A

1
n

*

i

(a2
i %(yi %bi ) ai )

Moreover, we will denote with! (a, b) := 1
n

-
i (a

2
i %(yi %bi ) ai ), which is a loss that is concave

(in fact linear) inband convex ina. Moreover, our assumption onF implies thatA is a convex set.

Then the algorithm described in the statement of the theorem corresponds to solving this zero-sum
game via the following iterative algorithm: at every periodt = 1 , . . . , T, the adversary chooses a
vectorat based on the the follow the leader (FTL) algorithm, i.e.:

at = arg min
a! A

1
t %1

t # 1*

* =1

! (a, b* )
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and the learner choosesbt by best-responding to the current test function, i.e.:

bt = arg max
b! B

! (at , b)

The equivalent stems from the following two observations: First, for the adversary we can re-write
the FTL algorithm by completing the square as:

at = arg min
a! A

1
n

*

i

1
t %1

t # 1*

* =1

(a2
i %(yi %bit ) ai )

= arg min
a! A

1
n

*

i

1

a2
i %

1

yi %
1

t %1

t # 1*

* =1

bit

3

ai

3

= arg min
a! A

1
n

*

i

1

a2
i %

1
2

1

yi %
1

t %1

t # 1*

* =1

bit

33 2

which then is equivalent to the oracle call described in the statement of the theorem. Second for the
learner we have:

bt = arg max
b! B

! (at , b)

= arg max
b! B

1
n

*

i

bi ait

= arg max
b! B

1
n

*

i

bi |ait |sign (ait )

= arg max
b! B

1
n

*

i

|ait |Ez) Bernoulli( bi +1
2 ) [(2 zi %1) sign (ait )]

= arg max
b! B

1
n

*

i

|ait |
;

Prz) Bernoulli( bi +1
2 ) [(2 zi %1) = sign (ait )] %Prz) Bernoulli( bi +1

2 ) [(2 zi %1) -= sign (ait )]
<

= arg max
b! B

1
n

*

i

|ait |
;

2Prz) Bernoulli( bi +1
2 ) [(2 zi %1) = sign (ait )] %1

<

= arg max
b! B

1
n

*

i

|ait |Prz) Bernoulli( bi +1
2 ) [(2 zi %1) = sign (ait )]

= arg max
b! B

1
n

*

i

|ait |Prz) Bernoulli( bi +1
2 )

!
zi =

sign (ait ) + 1
2

"

= arg max
b! B

1
n

*

i

|ait |Prz) Bernoulli( bi +1
2 ) [zi = 1 { ait > 0} ]

which is exactly the oracle call described in the statement of the theorem.

Thus it remains to show that the vectorøb = 1
T

- T
t =1 bt is a solution to the minimax problem, which

would imply that the corresponding ensemble hypothesisøh = 1
T

- T
t =1 ht is also a solution to the

empirical minimax problem.

To achieve this it sufÞces to show that the FTL algorithm is a no-regret algorithm for the adversary.
Then we can invoke classic results on solving zero-sum games via no-regret dynamics [Freund and
Schapire, 1999]. Observe that the learner obviously has zero regret as it best-responds at each period.
Thus if we show that the FTL algorithm has((T)-regret afterT periods, thenøbis an((T)-approximate
solution to the minimax problem, invoking the results of [Freund and Schapire, 1999].

Hence, we now focus on the online learning problem that the adversary is facing and show that FTL
is a no-regret algorithm with regret rate((T) = 4log (T )

T . We will begin by invoking Lemma 2.1 of
[Shalev-Shwartz and Singer, 2007], which states that the regret of the FTL algorithm is bounded by:

((T) (
1
T

T*

t =1

(! (at , bt ) %! (at +1 , bt ))
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Thus it remains to bound the RHS.

Observe that the loss function! (á, b) is 2
n -strongly convex with respect the& á &2 norm on the spaceA,

sincea+ . 2
aa ! (a, b)a = 2

n &a&2
2. Moreover, observe that the loss function! (á, b) is also 4*

n -Lispchitz
with respect to the& á &2 norm on the spaceA, since

. ai ! (a, b) =
1
n

(2 ai %(yi %bi ))

and therefore:

&. a! (a, b)&2 =

6
1
n2

*

i

(yi %bi %2ai )2 =
1

2
n

6
1
n

*

i

(yi %bi %2ai )2 (
4

2
n

In the last inequality we used the fact|yi |, |h(xi )|, |f (zi )| ( 1.

Since! t is 2
n -strongly convex, we have thatL t =

- t
* =1 ! (á, b* ) is 2t

n strongly convex. Sinceat +1 is
the minimizer ofL t and the setA is a convex set, we have by strong convexity and the Þrst order
condition that:

L t (at ) * L t (at +1 ) + !at %at +1 , . aL t (at +1 )" +
t
n

&at %at +1 &2
2 * L t (at +1 ) +

t
n

&at %at +1 &2
2

Moreover, sinceat is a minimizer ofL t # 1 and invoking the Þrst order condition, in a similar way as
above, we have:

L t # 1(at +1 ) * L t # 1(at ) +
t
n

&at %at +1 &2
2

Adding the two inequalities and re-arranging we get:

! (at , bt ) %! (at +1 , bt ) *
2t
n

&at %at +1 &2
2

Invoking the lipschitzness of! t :

4
2

n
&at %at +1 &2 * ! (at , bt ) %! (at +1 , bt ) *

2t
n

&at %at +1 &2
2

Thus we have:

&at %at +1 &2 (
2
2

n
t

Moreover, by lipschitzness of! (á, b), we have:

! (at , bt ) %! (at +1 , bt ) (
4

2
n

&at %at +1 &2 (
8
t

Thus we get:

((T) (
8
T

T*

t =1

1
t

(
8(log(T) + 1)

T
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