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A Further Discussion on Related Work

Identibcation and estimation of endogenous regression problems via the method of instrumental
variables (IV) has a long history in econometrics and causal infer&meden and Turkington

199Q Angrist and Kruegerl991, Imbens and Angrist1994 Balke and Pearl1997 Angrist and

Krueger 2001, Stock and Trebbi2003, dating back to early works in empirical economi¥gright,

1928 (for more detailed exposition sedgrist and Pischke2008 Pear] 2009ha, Imbens and

Rubin, 2019). The most prevalent approach for estimating endogenous regression models with
instruments is assuming low-dimensional linear relationshipshéfx) = 'x," " and invoking the
two-stage-least-squares (2SLS) algorithm: the treatment is regressed on the instruments via a brst

stage linear regressior,# z to learn a modefdz) = !#,z" and subsequently the outcomés

regressed on the predicted treatments from the brst stage linear regression mod#l,fe). The
coefbcient in the bPnal regression is taken to be the estimdte of

A.1 Non-Parametric IV Regression in Econometrics and Statistics

Non-parametric and high-dimensional versions of the IV estimation problem have received great
attention by the econometrics and statistics community in the past two ded&zlesy| and Powell

2003 Blundell et al, 2007, Chen and Pouz®012 Chen and Christense®018 Hall et al, 2005
Horowitz, 2007, 2011, Darolles et al.2011, Chen and Pouz@009.

Sieve-based 2SLS Newey and Powel]2003 consider a non-parametric analogue of the 2SLS
regression, where the non-parametric mdugk) is approximated by a linear function on a growing
feature space, i.d(x) $! $(x),"" and subsequently, the conditional expectatiB[#(x) | z] are

also approximated via linear functioh$z) $ ! %(z), #". Then a 2SLS estimation method is applied

on these transformed feature spaces. The authors show asymptotic consistency of the resulting
estimator, assuming that the approximation error goes to zero.
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Sieve-based regularized minimum distance estimation Arguably the closest to our work is that

of Chen and Pouz§2017 (in particular their Theorem 4.1), who consider estimation of non-
parametric function classes and estimation via the method of sieves and a penalized minimum distance
estimator of the formminy iy E[E[y%h(x) | z]?]+ &R(h), whereR(h) is a regularizer. The authors
approximate the function class by linear functions in a growing feature space. Subsequently, they
also estimate the functian(z) = E[y %h(x) | z] based on another growing sieve.

Though it may seem at brst that the approach in that paper and ours are quite distinct, the population
limit of our objective function coincides with theirs. To see this, consider the simpliPed version of
our estimator presented i6)( where the function classes are already norm-constrained and no norm
based regularization is imposed. Moreover, for a moment consider the population version of this
estimator, i.e.

i | 0 2 — mi 0 0 2
E'?A” mgx.( h,f)%& & rlpllHn mng[(y % h(x))f (2) %f (2)7]

Observe that if is expressive enough (if(hg %h) ' F ), then the maximizing test function is
3E[y %h(x) | z] = 3E[ho(x) %h(x) | Z]. Then by the law of iterated expectations, the population
criterion belcomes:

# $
minE  (y 9%6h() 3Ely %h(x) | 21% SEly %h(x) | zF° = min ZE Ely%6n(x) | 21

Thus in the population limit and without norm regularization on the test fundtjaur criterion is
equivalent to the minimum distance criterion analyze@ihen and Pouzf2013. Another point of
similarity is that we prove convergence of the estimator in terms of the pseudo-metric, the projected
MSE debned in Section 4 @hen and Pouzf201] - and like that paper we require additional
conditions to relate the pseudo-metric to the true MSE.

The present paper differs in a number of ways: (i) the bPnite sample criterion is different; (ii) we
prove our results using localized Rademacher analysis which allows for weaker assumptions; (jii) we
consider a broader range of estimation approaches than linear sieves, necessitating more of a focus
on optimization.

Digging into the second poin€hen and Pouzf2017 take a more traditional parameter recovery
approach which requires several minimum eigenvalue conditions and several regularity conditions
to be satisbed for their estimation rate to hold (see e.g. their Assumptions 3.1, 3.2, 3.3, 4.1 and
C.1). This is analogous to a mean squared error proof in an exogenous linear regression setting, that
requires the minimum eigenvalue of the feature co-variance to be bounded away from zero. Moreover,
such parameter recovery methods seem limited to the growing sieve approach, since only then one
has a clear bnite dimensional parameter vector to work on for eachnbxed

In contrast we work with inPnite dimensional parameter spaces directly and our analysis makes no
further assumptions other than boundedness of the random variables and the conditional moment
restriction in order to provide a projected MSE rate. We do not require that the hypothesis space
be a convex set, nor that the moment is path-wise differentiable with resgecRlaxing these
assumptions is important, since they are violated in three of our leading examples: linear hypothesis
spaces with hard sparsity constraints or for neural network spaces or for tree based regressors.
Another benebt of the localized Rademacher analysis is that we do not require a preliminary proof
of consistency, which is typical of more classical approaches to MSE rates. Such proofs typically
require thah be larger than some constant before the convergence rate kicks in, so that the estimator
is within some small ball around the truth. This constant can sometimes be prohibitively large. Our
convergence rate is global and holds without any lower bound condition ®he sieve method is

most closely related to our RKHS section (and the expository sieve App&ndixhere essentially

we consider inPnite dimensional linear function spaces. However, unlike the sieve method, we do not
clip the eigenfunctions to a Pnite set that is growing, but rather impose an RKHS penalty. We show
that this approach has advantages in auto-tuning to the ill-posedness of the problem. Finally, we do
not require a bound on the ill-posedness of the problem in order to prove convergence rates in terms
of the pseudo-metric - this bound is only needed in post-processing to relate the pseudo-metric to the
MSE. By contrasChen and Pouzf2017 use the bounded ill-posedness condition (Assumption 4.1)

to prove convergence in the pseudo-metric.

As a concrete example of the differences in the analysis, we apply our main Th&doerthe
case whereH and F are growing sieves, equipped with the parameétenorms, i.e. H =
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% &

"$,(@":"" R F = {1#,%(3":#' R™}, &",$,(8"& = &&, &%, % (§"& =
&# &, for some bxed and growing feature mépgg, % (4. In that casée , will correspond to
the approximation error of the siedg that is used for the test function space and, if we choose
h- = argming,, & %ho&, then&T (h % ho)& ( & h: % he& =: (n, will correspond to
the approximation error of the sie$g that is used for approximating the modg)l. In that case,
Theoreml gives a bound 0® (), &'+ & + ' + (n), where"- is the!, norm of the parameter of the
projection ofhg on the sieve space for the model,am min, | g, &",$(3" %ho&. Moreover,)
is a bound on the critical radius &fy, andGs y, . Since both are bnite diraqensional linear fuslctions,

max{kn,mn} log(n) 3
o .

via standard covering arguments (see Corolgrywe can bound = O

Combined with ill-posedness conditions provided@ngn and Pouz®017, our results can thus
give an alternative proof to the results i@Hen and Pouz@®017 that i) do not make minimum
eigenvalue conditions, ii) provide adaptivity & &, without knowledge of it, thereby justifying
theoretically the use of the regularization teRth), that was mostly proposed for experimental
improvement in Chen and Pouz@013. We provide a more thorough exposition of how our main
theorem applies to the case of growing sieves in AppeBdix

The localized Rademacher analysis also allows us to consider hypothesis spaces that are not linear
sieves, such as neural nets and random forests. This introduces some new optimization difpculties,
as the estimator cannot be written in closed form (as it can for linear sieves). Our work gives
several solutions for these difpculties, via iterative brst order algorithms. Intuitively, our optimization
algorithms gradually and iteratively make gradient steps towards solving both optimization problems
(of regressing %h(x) onz and minimizingE[E[y %h(x) | z]?] overH), as opposed to calculating

full solutions of either problem. This formulation allows us to work with arbitrary hypothesis spaces
and not just linear sieves.

Tikhonov regularized minimum distance estimation The work of Hall et al, 2005 Darolles
et al, 2011 Horowitz, 2007, 2011], considers a Tikhonov regularized minimum distance estimator,
as opposed to a sieve-based approach. In particular, they consider the population criterion:

min &T (y %h)& + &h&s ) EEly %h(x) | 2 + &h&

This is equivalent to the minimum distance criterionGifen and Pouz{2017, albeit with an

added and crucidl, regularization penalty on the hypothesis. Ther Tikhonov regularization
achieves two objectives: i) it regularizes the estimate to avoid overbtting (as in the case of an
exogenous regression setting), ii) it protects against the ill-posedness of the inverse problems, by
avoiding estimates that put a lot of weight on the non-smooth eigenfunctions of the singular value
decompsition of the operatar.

Darolles et al[2011]] consider the closed form solution to the minimization problem, which takes the
form:
h =(&I+T T)"*T'r
wherer = Ty = E[y | zlandT" is the adjoint operator 6f, debned aéT " $)(x) = E[$(2) | x].
The authors further make minimal regularity assumptions that imply that the op&ratimits a
singular value decompositidiii, $i, %) | for some countable sét with1 = *o * *, * . |
$: X+ Rand% :Z + R,i.e.T$ = *;% andT % = *;3$;. Moreover, one can express thie
operator as: *
Th= *i1h, $"%
it
where thd," is the inner product associated with the correspontingetric spaces, i.éh, $" =
E[h(xX)$(x)] and!f, %" = E[f (2)%(z)]. Under these assumptions the optimal solution to the
population criterion can also be written as:
* * .
h' = &+7'*i2! r,% "9
it
Intuitively, the functions$;, % correspond roughly to the sieve functions that are used in the sieve
methods, e.gChen and Pouzf2013, albeit instead of clipping the functidmto be supported on the

3Thelog(n) factor can also be saved with a more careful analysis of the critical radius for bnite dimensional
linear function spaces (see Secth
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brstk,, eigenfunctions of the singular value decomposition, they impose a Tikhonov regularization,
which penalizes the large eigenfunctions in a smoother manner.

Darolles et al[2017]] take the latter approach to estimation by brst estimating the conditional operators
T andT" from samples and the conditional expectatiy | z], in a brst stage. They achieve this
using non-parametric kernel density estimation methods to estimate the dewsites p(z, x),
p(y,z)« p(z) andp(x). Subsequently they estimate the operafor$” in a plug-in manner, e.g.

Ph= " h(x)B5Ldx. Finally, they consider the plug-in estimaf: = (&l + P F)* 19",

The crucial assumption in this line of work (see dall et al.[2005, Darolles et al[2011]) is what
is known as thesource conditionwhere the true hypothedig is assumed to be smooth in the metric
space debned by the eigenfunctions of the opefiatdiore concretely:

¥ 1h,$;"2
% 2H ’
inl i

(source condition)

+ H L . .
This assumption has the crucial implication t&at %h& = O &M {#2}" thus providing a control
on the bias of the regularized estimate with respect to the MSE metric.

The decay of the singular valugs of T, is related to the rate of decay; that we analze ift.4. For
instance, if the operatdr has as right eigenfunctions the eigenfunctions of the ké¢nehen observe
that: Te = & % andE[E[e () | z]E[g (x) | z]] = E[(Te)(z)(Te)(2)] = &E[3$i(2)$; (2)]. Thus
we get tha€[E[e (x) | Z]E[e () | z]] = & and fori = j, E[E[e (X) | Z]E[g (X) | Z]] = 0. Thus
the conditions in Lemma1 are satisPed with,, = *2, andc = 0. Thus by imposing an RKHS
norm penalty and assuming the latter eigendecomposition, we can get rates of the form:

. ) 4)2
8R%h-& = min 5+ B&m+1
m! N: m

Moreover, observe thatth,g" = a and that iféh& ( B, then i i ( B and hence:

i$m ai2 ( &n B, where& are the eigenvalues of the kernel. In this notation, the source condition
- 2
is equivalent to: s;% <, . An RKHS norm bound implies that the function is smooth in the

metric space debned by the eigenfunction$ @ndB is a level of smoothness. However, the level

of smoothness is also governed by the eigendecay of the kérnel some sense, the eigendecay

of the kernel governs the numerator of the source condition, while the eignedecay of the operator
T governs the denominator. Our estimator adapts to these two quantities and automatically and
optimally balances them, by imposing an RKHS norm penalty. However, the two conditions are
slightly incomparable, even though they capture similar constraints.

A.2 High Dimensional IV Regression

Instrumental variable estimation with high dimensional sparse linear models was analyediief

et al, 2011, Fan and Liap2014. [Gautier et al.201] proposes a Dantzig selector analogue for
endogenous regression. Our work on sparse linear hypotheses provides a minimax formulation
alternative to the Dantzig selectorFgn and Liap2014 propose a variant of the optimally re-
weighted generalized method of moments in high-dimensions with hard sparsity. Our results apply to
the setting analyzed iFpn and Liap2014 and unlike Fan and Liap2014 our estimation algorithm

is computationally efbcient (séefor more details).

A.3 Non-Parametric IV Regression and Machine Learning

There is also a growing body of work in the machine learning literature on the non-parametric
instrumental variable regression probleraftford et al, 2017, Bennett et al.2019 Singh et al,
2019 Muandet et a].2019 2024.

Neural networks The seminal work oHartford et al[2017 provided a methodology for training
neural networks that solve the instrumental variable problem by taking a non-parametric analogue of
the two stage least squares method. A preliminary version of this wexki§ and Syrgkani2019g
proposed a minimax criterion for training neural networks that solve the IV problem (albeit, crucially,
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with no regularization on the test functions and no formal guarantees on estimation rates). It however,
does not provide statistical guarantees of the resulting estimator apart from a fully non-parametric
rate that grows exponentially with dimension. A crucial difference of our work froewjs and
Syrgkanis 201§ is that they donOt penalize the objective with the norm of the test function which is
the key idea that enables our fast rates (based on critical radiuk ¢finally, [Lewis and Syrgkanis

2019 only provides experimental results for neural nets, while here we provide experimental and
theoretical results for many other function classes of inteBestnett et al[2019 also considered a
minimax criterion with a variance penalty. Albeit the variance penalty they impose is not the second
moment of the test functions and depends on a preliminary estimate of the true model. Moreover,
they only show asymptotic consistency of their estimate and not bnite sample rates and primarily
focus on neural network applications (see Sec@idor more details).

Reproducing kernel function spaces Singh et al[2019 consider a RKHS analogue bfartford

et al.[2017, where the hypothesis spabdall in an RKHS and the conditional distribution Xf
conditional onZ is represented via a conditional kernel mean embedding. They offer very strong
Pnite RKHS-norm rates on the estimatedvhich typically imply sup-norm rates of the recovered
function. Albeit, we focus on projected MSE and MSE rates and achieve faster rates as a function of
the eigendecay of the kernel and the degree of ill-posedness. Moreover, the \Bingloet al[2019

makes several strongprior assumptions, that control the smoothness of the function within the
kernel, assumptions that are typical of RKHS norm guarantees in kernel ridge regr&siomipetto

and De Vitg 2007, but which are not required for the weaker MSE metric. In essence, the prior
condition imposes that the RKHS norm of error of the projection of the true function on ttde top

- 2
eigenfunctions&(l %P;)fo& = >3 a—lj + 0asJ goes to inbnity. This is not the case for all

functions in the RKHS, which only implies that thg-norm of the error of these projections vanishes,

ie. &1 %P))fo& =, a? % o

RKHS and neural network training Muandet et al[2019 also propose a method that is very
related to the second moment penalized method that we propose, albeit the motivation stems from
a different dual formulation of the two-stage-least-squares problem presentddrifofd et al,

2017 and similar to Bennett et al.2019 only offer asymptotic consistency of the estimator and
only focus on RKHS function spaces. Finaliuandet et al[202( consider the version of the
minimax criterion that does not impose the second moment penafty amd make the important
observation that for RKHS function spaces, the internal maximization takes a closed form, leading to
a pairwise sample criterion (see Equat{@8) and Equatior{15)). Moreover, they focus primarily

on hypothesis testing as opposed to estimation. The un-penalized criterion can have sub-optimal
convergence guarantees, as it does not posses the property that as the hypothesis of the learner gets
close to the truth, then the adversary is testing smaller functions in terms of variance. The inability
to achieve the fast rates attained via the critical radius was the main reason why we introduced the
second moment penalty. The suboptimality of the un-penalized kernel based criterion was also proven
in the context of hypothesis testing Balasubramanian et 42017, who also show that a form of
second moment penalization can yield hypothesis tests with optimal power, when the alternative is
very close to the null. Moreover, for RKHS, we show that the penalized method still admits a closed
form solution, albeit now the closed form depends on the inverse of a kernel matrix, which makes it
less amenable to gradient training as we discu$s in

B Beyond the IV Moments

Our results easily extend to arbitrary moments that are linelanivhich can capture several other
problems in econometrics and causal inference, but for simplicity of exposition we focus on the case
of moments of the forny % h(x). Moreover, our results can also be extended to non-linear and
non-smooth moment(y; ra(x)) , albeit in that case our convergence rates will be with respect to the

distance metricd(R, h) = E[E[%(y; R(X)) %%y; h(x)) | z]2] as opposed to the projected MSE
distance. For instance, in the case _gxquantilg IV regressiondy; h(x)) = a%l{y ( h(x)} and
the distance metric corresponds tff, hg) =  E[E[L{y ( h(X)} %, | z]4].
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C Supplementary Discussion of Main Theorems

C.1 Adaptivity of Regularized Estimator

Suppose that we know that fBr, U = 1, we have that functions iHg , Fy have ranges iff6l, 1] as
their inputs range iiXX andZ correspondingly. Then our Theorem requires that we&#t:) 2 and
U * 2&4L2 +27), where) 2 depends on the critical radius of the function clBgsandG,;. Observe
that none of these values depend on the norm of the benchmark hyp@he&is which can be
arbitrary and not constrained by our theorem. For instance, if we knew that the truehmpodél
andT(h%hg) 'F |2 pyn, 2 then we can apply the latter theorem to get rates of the form:

+ % , &
O ) max 1, &hoé&;

with & = )2 andp = 2)2(4L2 + 27). This hyperparameter tuning only requires knowledge of the
critical radius of the function class&g adnH; and the Lipschitz constant of the operaiqrbut
does not require knowledge of the norm of the true maétgg , nor upper bounds on it. If the
true model does not fall in the hypothesls then observe that we also require knowledge of the
unconstrained approximation error, i.e. if we knew that:

inf & %ho& ( (s

and thafl (h %hg) 'F | h#n,,, » then we can chooge* (, to get rates of the form:
+ % & ,
O )max 1,&-& + (,

whereh- = arginf ,,; & %hy&. Again we do not require knowledge of the norm of the uncon-
strained projectiongh- &, , just bounds on the approximation error of the unconstrained function
space. Then the regularized estimator adapts to the norm of the projection of the true middel on
These results are inline with recent work on statistical learning thé@yZ and Mendelsp2017,

2019 for square losses and extend these qualitative insights to the minimax objectives that we deal
with.

C.2 Critical Radius and Rademacher Complexity via Covering

The critical radius of a function class is characterized to within a constant factor by itOs empirical
localized Rademacher critical radius, which subsequently is chracterized by the empirical entropy
integral. The empirical Rademacher complexity of a function das¥ + [%1, 1], for a given set
of samplesS = {v;}.; is debPned as: /

0

*

1
Rs();G) = Eqopr, sup  —  (i9(vi)
9!G ' g' 20 (&N i

The empirical critical radius is debned as any solui?,om:

Rs():G) ( )?
Proposition 14.1 ofVainwright[2019 shows that w.p1%-,
1 2 3
: log(l/-
=0 H+ 29 ®)

Thus we can choosein our main theorems based on the empirical critical rafius

Moreover, an upper bound on the empirical critical radius can be obtained via the empirical covering
integral dePned as follows. An empiriqatover ofG, is any function clas&, such that for all
0'G,infgic. 805,%098%n ( (. We denote withN ((, G, S) as the size of the smallest empirical
(-cover of G. The empirical metric entropy d& is debned abl ((, G, S) = log(N((, G,S)). An
empirical) -slice of Gis debned a6s¢ = {9' G : &&n ( )}. Then the empirical critical radius

of Gis upper bounded by any solution to the inequality:

6 & 2
H(( Gse.S)
we A 5 ©)
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Observe that a conservative upper boundpnomes from replacin@s ¢ inside the integral with

G, i.e. when we do not restrict the function class to be in an empiyisiice, when calculating

itOs empirical metric entropy. For many function classes (e.g. paramelrédls, RKHS, high-
dimensional sparse parametric spaces, VC-subgraph classes) this still yields tight results. For some
other cases, such &g-balls centered around a sparse parameter, this can be loose.

When we make this relaxation, then observe that we can derive an upper bound on the critical radius
of Gz u , as a function of the empirical metric entropytéfandF . Observe that iH ,is an empirical
(-cover of H andF,is an empirical(-cover of Fy, then sinceH contains functions uniformly
bounded %1, 1], we have that:

" inff . &(ho % h)f 9% (h %h )Y & ( 28ho%he &y + 2 &F 0%V & ( 4(

Thus, the product of these two spaces ig-@over of the function clasg debned in Equatiors].
Hence, the empirical metric entropy Gfsatisbes:

H(( Gu.S) ( H((4Hg,S)+ H((/4Fu,S)
Thus by applying Proposition 14.1 @fainwright[2019 we get the following corollary.

Corollary 5. Suppose thaf, satispes the inequality:
0 &

H((/ 4,Hos,S) + H((/4,F3U,S)d(( )?
20

818 n
' )

Thenw.p1%-,)n ( O P, + % , where) , is the maximum of the critical radii df 3,
Gy andGsy .

For instance, iH andF is aSSl(Imed to)be a VC-subgraph class with constant VC dimension, then the
above is satisped fgh, = 0 1090

n

C.3 Solving the Min-Max Optimization Problem

In this section we outline some strategies for addressing the empirical min-max problem required by
the estimators described in Equatigdsand(7). In subsequent sections, we will present instances
of these optimization approaches for each of the function classes that we consider.

First observe that if the hypothesis space can be parameterizéa;d3, such that the moment
%y; h(x;")) is convex in" and the inner optimization problem is solvable in closed form then we
can solve the empirical problem via subgradient descent: i.e. letting

f-(gh) = argsup! n(h,f)%&"( f),
fIF
"o 1= "t %" (B [f-(zh(X; ). vh(G )T+ B R(M(E")))
where” , R are the regularizers dnandh correspondingly. Aftefl iterations, the average parameter
D= Ti th1 ", will correspondtoa® T# 2" approximate solution to the min-max problem. This

approximate solution wi|l satisfy the same guarantedd mesented in Theorethand Theoren?,
augmented by an ext@ T#2" additive factor.

Many times, even if the hypothesis space is not parameterizable by a Pnite dimensional parameter
vector”, universally, we can invoke characterizations (typically referred remesenter theorens

that prove that the empirical solution can always be expressed in terms of a bnite set of parameters
(many times of the order of the number of samples). This is for instance the casd-vwdratH

belong to a Reproducing Kernel Hilbert space, as we will see in Seétibmsuch settings, we will

see that even the overall min-max optimization problem can be expressed in closed form, involving
only matrix inversions and mutliplications, with matrices of size of the ord@?of

Since the min-max problem does not have a smooth gradient, one can also benebt by invoking
algorithms that are tailored to saddle point problems. These improvements typically assume some
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structure on the inner optimization problem. For instance, if the funétioan be parameterizedd as

f (4 w) such that the inner maximization problem is concaw ithen faster thaif # / 2 optimization

rates can be achieved. We will see examples of such settings in the high-dimensional linear function
class setting in Sectidh The following set of papers provide examples of algorithms that achieve
T#1 approximation rates (see e.flesterov[2003, Nemirovski[2004, Rakhlin and Sridharan
[2013, Mokhtari et al.[2019).

One simple such algorithm is the simultaneous optimistic mirror descent algorithm proposed in
Rakhlin and Sridharaf2013 and also recently analyzed by several papers, both theoretically and
empirically, in the context of non-convex optimization problems (seel®agkalakis et al[2017,
Mertikopoulos et al[201§). In this algorithm, instead of fully solving the internal optimization
problem, we only take gradient steps. However, it modibes the gradient descent algorithm to
incorporate a notion adptimism(i.e. that the next gradient will look similar to the last gradient). In
particular, if we use the short-hand notatiop(",w) :=! ,(h(§"),f (aw)), then in the simpliPed
setting where we have no regularization"ow, the algorithm is described via the following update
dynamics:

"ir1 "t %2 . ! n("t-Wt)+ ol n("t#lth#l)
Wier = We+2" 0 w! n ("o, W) %" w! (M1, Wi 1)

Convex constraints chandw can be easily incorporated via projection steps and we defeakblin
and Sridhara2013 for the formal depPnition of the algorithm in that setting. Similarly, for the
regularized versions one would simply replace with its regularized counterparts.

Unlike the sub-gradient descent approach, the simultaneous optimistic gradient dynamics, with the
regularized version of our estimator, can also be implemented in a stochastic gradient manner, where
a mini-batch of samples are drawn at each step (with replacement), from the empirical set of samples
and! , is replaced with the empirical expectation over that sub-sample. This can enable applications
where storing all the dataset in-memory is prohibitive. Moreover, this algorithm has variants that have
been proven benebcial for neural nets (see, e.g. the Optimistic Adam algoritbaskdlakis et al.

[2017, also used in the related work Bennett et al[2019 in a generalized method of moments
setup). Properties of simultaneous gradient dynamics in non-convex/non-concave settings have also
been a topic of recent interest in the machine learning community and recent techinques from this
line of work can be invoked to empirically solve the optimization problem (seelmgt al.[2019,
Nouiehed et al[2019, Thekumparampil et a[2019, Yang et al[2020, Lin et al.[202Q).

C.4 From Projected MSE to MSE: Measure of lll-Posedness

If we want to get a bound on the RMSE Bfi.e. & %ho&, then we need to bound the quantity:

+()= sup & %h- &
hiH g T(h#h ) 2( &

In fact, it sufbces to bound the measure of ill-posedness of the op@ratith respect to the function
classHg, dePned as:
& %h- &
+= sup ————.
hH g & (h%h-)&

Both of these measures have been used in the literature on conditional moment models. For instance,
Chen and Pouzf2017 debnes both of these measures for the case whgres a space of growing
linear sieves. In that case, the second measusetypically referred to as theieve measure of
ill-posednessThen observe that Theoretimplies that:

8A%h- & ( +&T(A%h-)& ( O (+ ) + +&T (h- %hg)&) ( O (+)n + +&- %ho&)
which by a triangle inequality also implies that:
&R %ho& ( O (+)n + (++1) & %ho&)

Choosingh- =argmin,,y ., ( g & %ho& yields the bound:
' )

8A%ho& ( O +)y +(++1) thin_fh, & %ho&

H
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Subsequently one can appropriately chddsaendB so as to trade-off the ill-posedness constant and
the bias term.

Moreover, we show that when we have a bounded ill-posedness measure, then we can prove a more
convenient version of Theorefly that only requires bounds on the critical radius of the centered
function classesta(Hg %h-) = {r(h%h-) : h'"H g,r ' [0,1]} andsta(T(H % h-)) =
{T(h%h): h"'"H g,r" [0,1]}, as opposed to the spaGethat contains products of these
functions.

Theorem 6. LetF be a symmetric and star-convex set of test functions and consider the estimator
in Equation(4). Lethy be any hypothesis (not necessarilyHr) that satispes the Conditional
Moment(1) and suppose thdi satisbes that:

inf &n%hoge ( (n

and leth- = arginf ,,; & %ho&. Moreover, suppose that:
/h'H , min & %T(h%h)& ( 'n

L2"h#hy "3

Assume that functions iHg andF 3y have uniformly bounded ranges[#tl, 1] and that:

log(cy/- )

) =)t ' nt(+ o n

for universal constantep, ¢1, and), an upper bound on the critical radii of the clasdes, and

sta(Hg %h-):= {r (h%h-):h%h-'H g,r"' [0,1]}
sta(T(Hg %h-)) = {rfn :h%h 'H g,r' [0,1]}

wheref, =argmin; . & %T(h%h)&. IfO()%) * &* )2/U andO()?) * p* 28&4L? +
27U/B ), thenf satispes w.pl %3-:

+ 1
& %ho& = O +?) max{1, & &}

C.5 Minimax Optimality of Estimation Rate

In this section we take the viewpoint of establishing minimax optimal rates for the estimation problem

of interest and discuss under which circumstances the upper bound we provide will typically be
tight (i.e. achieving the statistically best possible projected RMSE). Suppose that the only prior
assumptions we are willing to make about our data generating process is that it satisPes the moment
condition, thathg ' H and thatTy, ' T for some function claskl and linear operator class.
Moreover, lefF := {Th: T'T ,h'H} . Whatis the minimax estimation rate, with respect to the
projected MSE norm, achievable in this setting? More concreteld (bt T) be any distribution
consistent with functiom, linear operatom and conditional moment conditiohh = E[y | z]. Then

for any estimatoﬁ_, that takes as input a training samfef sizen, drawn i.i.d. fromD (h, T), and

returns a functimﬁs, we want to lower bound the minimax optimal rate:
4 5

. N ~\ 0 2
mﬁln nounaX - Es) b (ho.To)n &To(As %ho)&

If the spacel contains the identity, then this is lower bounded by the RMSE rates of a non-parametric
regression problem over hypothesis spicelhus by standard results on regression problems, the
critical radius ofH is insurmountable for many clasgdsof interest (see e.dMassar{2000, Bartlett

et al.[2003, Rakhlin et al[2017.

Moreover, suppose that there exist$ & T such that: for alf there existdh ' H , such that
Th=f,i.e.T isthe worst mapping that allows one to span alFofThen even if we kneWw = Ty,
we could not bypass the critical radiusffor many classeb of interest (see e.Bartlett et al.
[2009, Rakhlin et al[2017). More generally, we can lower bound the minimax risk as:

4 5

max min max E o &To(Rs %ho)&2
maxmin max Es) o (no.To) o(As %ho)&
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LetF+ = {Th:h'H} . Then the above can be re-written:
4 5
) e o )
pgﬁxfg;lrl max Es) p(ro)n & %f0&

whereD (f) is any distribution that satisp&§y | z] = fo. This is the minimax lower bound for

the regression problem of predictizggrom z, assuming thaE[y | z] ' F 1. Thus we have that

the minimax rate is at leagtaxr ) (Ft). If we knew that there was a Pnite setkofepresentative

linear operatorg,...,Tx in T, such thatr = F, 0...0Fy,_, then observe that the critical
radius ofF is at mostO(log(k)) more than the maximum critical radius of each of Ehe. Thus

the only case that remains open where our upper bound might not be providing tight results is when
there is not such bnite small set of representative operatdrs in many of our settings, we will

have tha) (F) # ) (H), which is achieved for the single identity operaloe |. The case where

our upper bound is loose, is essentially the case when knowing the operator, or some equivalence
class of the operator, can signibcantly reduce the sample complexity of the problem. Potentially
in such settings btting a Prst stage modeT db identify the equivalence class or a Pnite number

of viable equivalence classes and focus only on a remaining &etarididaté=+, 0 ... OF 1, in

a second stage can be benebcial. However, in most of our applications this setting does not arise.
One for instance can follow techniques similar to aggregation algoritRaklin et al[2017, that

applies our minimax estimator on é&mpartition of the original hypothesid and then aggregates the
resulting winning hypothesis from each partition. However, this would typically be a computationally
inefpbcient algorithm.

D Application: Growing Linear Sieves

Consider the case wheke andF are growing linear sieves, i.e.

% &
H=Hyi= 1"$,(3":" " R,
F=Fni= {#%(@" :# R™},

equipped with norm&!", $,(3"& = &' &, &%, %, (3"8& = &#&, for some known and growing
feature map$,(3, % (3.

Moreover, we denote with, the approximation error of the sie® that is used for the test function
space, i.e. foralh,h- "H :
fiIan & %T(h%h )& ( 'n

and, let(,, the approximation error of the sie$g used for the model, i.e.:
inf & %ho& ( (n

In that case, applying Theorebrwith h- = arginf ,,,; & %ho&, gives a bound w.pl %- of:
11 2 3 3
&r(A%ho)& ( O o+ (n+ % max{1, & &} + '

where"- is the!, norm of the parameter that correspond&to

Moreover, ), is a bound on the critical radius d¢fy and Gz . Since both are Ppnite di-
mensionat linear functions, )via standard covering arguments (see Corb)lawe can bound

)o = O Txtknma}logn) e also now provide a more intricate argument that removes

thelog(n) from this rate. Observe thé&t, is a simple linear model space and therefore existing
results directly apply to show that the critical radiugef is at most To (see e.g. Example 13.5 of
Wainwright[2019). The function spac€&s y is a bit more subtle. We will in fact bound the critical
radius of the following larger class:

Geu = {(%2)+! " %", $n(X)"#,%(2)":" " R #' R™ & %".& ( B, &#& ( U}

We will use the empirical covering integral bound on the critical radius, presented in Eq(f@tion
Thus we need to bound the metric entropy of the function d&ss()) = {g' Gu : &&n ( )}.
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Let! , denote then 1 k, matrix whose -th row corresponds to the vecté, (xi) and similarly" ,,.
Observe that the norm empirical, norm can then be written as:

& 96" 30 (9714, %, (9" = 03 )ﬁ&z& e
Thus!,,, debnes a norm on the space debned by the Hadamard (coordinate-wise) yr&duct

of two vectorsvy, v, in rang€! ) andrangg" ), correspondingly, i.e&/; 3Vv,& = ‘“*Ziﬁ"“

Moreover,Gs i ()) is isomorphic to g -ball in this space. Moreover, observe that the dimension of
the spacdvy; 3v, : v ' rang€! ),v> ' rangd" )} is at mostrank(! ) rank(" ) ( kn, amp.
Therefore by the volumetric argument presented in Example SMaariwright[2019, we get that

for any set of sampleS of sizen, log(H ((, Gsu ()),S) ( ko mp log 1+ %;'. Moreover, observe
that:
0 : ? kn mMp © &6 '42)f
. log(H ((; Gs,u ()), S)d( ( . log 1+ T d(
1
() k"% log 1+§du=c) Kn Mo
0 1
()

for some constart. Thus Equatiorf9) is satisbed fof = O kTm . Combining all these we

get a projected MSE rate W.Pl%z- of:

2__ 3 3
+ '+ (n+ 7|Og(:/_ ) max{1, & &}

&T (B %ho)& = O Kn My

Invoking standard bounds on the approximation error of classical sieves (e.g. wavelets) and optimally
balancingk, , my, yields concrete rates (see e@hen and Pouz[2017 for particular approximation
rates of known sieves).

Combined with ill-posedness conditions provided@ngn and Pouz®017, our results can thus

give an alternative proof to the results i@Hen and Pouz@®017 that i) do not make minimum
eigenvalue conditions, ii) provide adaptivity &- &, without knowledge of it, thereby justifying
theoretically the use of the regularization teRth), that was mostly proposed for experimental
improvement in €Chen and Pouzd®014. For instance, gneconcrete ill-ppsedness condition is
that&min E E[$n(X) | ZIE[$n(X) | Z]*  * .n and&max E % (X)% (X)*  ( *n. Then the
ill-posedness constant is upper boundediby= *,/. ,. Moreover, if one assumes a bound on
ill-posedness, then Theoreérequires) to be an upper bound of simpler function spaces, that
all c(orrespond tcb simple linear function spaces in Pnite dimensions. Thus a smaller bound of

o mxdkmal gyfpces, leading to an error wp%- of the form:

1 12 2 3 3

8ﬁ%h0&2:0 +n2 M+'n % max{l,&"v-&g}

, +(n+

E Application: Reproducing Kernel Hilbert Spaces

In this section we deal with the case whéggdies in a reproducing kernel Hilbert space (RKHE) ,,
with kernelKy : X 1 X + R andThg lies in another RKH$H . with kernelKg : Z21Z + R.
We present the three components required to apply our general theory.

First we characterize the set of test functions that are sufpbcient to satisfy the requirement that
T(h%hp) ' F y; under non-parametric assumptions on the conditional demp$ity| z) then we

can haveKy = Kg. Second, by recent results in statistical learning theory, the critical radius of
the function classes andG can be characterized as a function of ¢igendecay of the kernkl

and the product kerneék ((x,z),(x",z)) = K(x,x") &K (z,7z) and in the worst-case is of the
order ofn# ¥4, Combining these two facts, we can then apply Theoteto get a bound on the
estimation error of the minimax or regularized minimax estimator. Finally, we show that for this set
of test functions and hypothesis spadbg, empirical min-max optimization problem can be solved in
closed formin particular the inner maximization problem can be shown to correspond roughly to a
regularized version of a pairwise metric of the formij %K (zi,2)%, where% = %y;;h(x;)).
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E.1 Characterization of Sufpcient Test Functions

In general, it sufbces to assume that the linear opeTatsregular enough that it satisbes that for any
h'H ,wehavethaTh' Hg,. for some known kerndl ¢ and that it is ar. -Lipschitz operator
with respect to the pair of RKHS norndsag , &a&, . Then observe that we satisfy the requirement
thatT(h %h-)'"F |2 pup,- 2, if we takeF = Hg . . We now present two complementary sets of
sufpcient conditions for which the aforementioned property holds.

The brst set of conditions applies to a generic function dtas:d asks principally thai(x|9
belongs to a common RKHS for eaxh
Lemma 7. Suppose that, for each p(x|g is ar) element of an RKHSx . andh ' H satisbes

Ih(X)] ( /(x)&8&; forsome/ : X + R.IFL! /(x)&(x|8&, dx < , ,thenTh' Hg, with
& h&.. ( L&h&;.

Proof. For any nonnegativi, JensenOs inequality implies that
« «
&Th& . = & h(x)p(x|gdx& (  |h(x)|&(x|9&  dx. (10)
The same resultlQ) holds for arbitrary signeth due to the decomposition = h, %h; for

h. (x) = max( h(x), 0) andhy (x) = max( %h(x), 0), the identity|h(x)| = |h+ (X)| + |hx (x)|, and
the triangle inequalit®T h& . (& Thy & . + & hy & . .

Now consider any ' H satisfying|h(x)| ( / (x)&&, for some/ : X + R By our inequality
(10), we have )
0

&The, (&h&: | (X)&P(X1d&., dx = L&N&.
O

The second set of conditions applies wlielnelongs to a translation-invariant RKHS and ensures
that Th belongs to the same RKHS. Suppose that the kéfneglx,y) = k(x %y). Moreover,
suppose that(x | z) = 0(x %z). Then the following lemma states thBh ' Hyx , and hence also
T(h%h-)"' Hg, foranyh,h-' Hg,, .

Lemma 8. Suppose the conditional distribution Xf givenZ = z has continuous densify(x|z) =

0(x %z) and thatK 5 (X,y) = k(x %Y) for k positive debnite and continuous. If the generalized
Fourier transform ok is continuous oiR%\{ 0}, thenTh"' Hyk , forallh' Hg, with& hé&, (
L&&,, forL = &B& .

Proof. Fixanyh' Hg . By [Wendland2004 Thm. 10.21]&h&,, = &Q/- 5&2 <, . Moreover,
sinceOis inL*, the Hausdorff-Young inequality implies that L% . Hence, sincd h = h 40,
0 0

&Th& = Th(1)?/R(1)dl= A(1)%6(1)*/R(1)d1 (& 0683 &R/ R& = L%&n& <, ,
sothatTh' Hg, by[Wendland2004 Thm. 10.21]. O

Thus in Theorem. we canuséd = F = Hy for K = Ky . Moreover, we can s& to be an upper
bound on the squared RKSH normluf, i.e. &0&; ( B so that we can takie- = ho and have
&T (h- %hg)& =0, i.e. zero bias. Moreover, by LemrBave also know tha&T hy& ( LB for
some constarit. Thus we can séfl = 2LB in Theoreml and have that Equatiqi®) holds with
'n =0. Thus by Theorem, we can get that the estirréator in Equatidhgatispes w.pl % 3-:

& (A %ho)& ()n+ X))

where), is an up%er bound on the critical radii B g andGs , which simplify to:
Fau = o/(f)'HK:&‘&%(GLB .
G = (x.2)+ (h(x)%ho(x)) T(h%ho)(2) : h* Hi,&h %ho&k ( B

Similar rates can also be established for the regularized estimator analogue in Thewotigout
explicit knowledge oB.
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E.2 Critical Radius of F3y and G

We now turn to analyze the critical radii 8fzy andGs . We brst show that these function spaces are
also RKHS with appropriate kernels and have bounded RKHS norms. This is trivial,foMoreover,
observe that the spag , contains the product of two functioh$ , whereh : X + [%1, 1] and
f:Z+ [%l1]and suchthah'H andf = Th'F . Thus the spac®, with inner product
Ihf,hf g = th,h™y If,f ", also admits a reproducing kernel, debned as (see Proposition 12.2
of Wainwright[2019):

Ke((x;2), (x;2)) = Kn(x,x)KF (z,2)

Moreover,&nf & = &&; & & . Thus ifh, satispegh&, ( B, then by LemmaB, &Th& (
L&n& ( LB for some constarit and&hf & ( LB 2.

Assuming that the RKHS spacEsandG, also have a sufpbciently fast eigendecay then existing results
in statistical learning theory also bound the generalization &ainwright[2019. In particular,
Corollary 14.2 ofWainwright[2019, shows that for any RKHS&lk , if we let

HR = {h" Hg :8h& ( B},
then we can bound the localized Rademacher and empirical Rademacher complexity as:

2 8w 2 8%

ROHE)( B 27 min(&.)%) RsOHB)( B 20 min{gf,)?)
j=1 i=1

whereg&; are the eigenvalues of the kernel a&ﬁiare the empirical eigenvalues of the empirical

kernel matrixK debned a& ; = K (x;, Xj)/n . Moreover, the unrestricted Rademacher complexity
is upper bounded as (see Lemma 26.18ldlev-Shwartz and Ben-Da\id014):
1 2 3

R(HE)( O B maxx!an(x,X)

<y 4)

maxysx K (xx) , to get a non-parametric

2__
Thus in the worst case we can take= O B -

rate of convergenct However, for many kernels, the eigendecay will be sufbciently fast) thadll
not be binding in the minimum. For instance, for the Gaussian kernel in one d(imension on the domain

[0, 1], with bandwidth ofL, i.e. K (x,x) = " “#" wehavetha), = 0 B 90" (see
Example 14.4 oWainwright[2019).

Data-adaptive estimation Moreover, by Equatioli8), we can choosg in Theoreml based on
the empirical critical radius. Observe that the empirical eigenvalues are directly computable from

the data and hence, we can calculate a{iata—adaptive quntihd choosg in Theoreml, based

on this data-adaptive quantity plus@n ") term. Moreover, if we use the regularized

estimator, then we also do not require knowledgB pfvhich leads to a very data-adaptive estimation
scheme. The only thing required is knowledge of an upper bound on the Lipschitz cdnstiathie
operatorT with respect to the RKHS norm.

E.3 Closed-Form Solution to Optimization Problem

Finally, we show that the optimization problem that debnes the estimator in Eqétican be
computed in closed form. We present the results for the constrained estimator, but exact analogues
also hold for the regularized version. The proof can be found in Appdndix
t | |
‘!‘Observe that: K (x,x) =  _ !jg(x)* and therefore: | !j = | !jEx[g(x)’] =

Ex[ J.!:l Lig (x)%] = Ex[K (x,x)] ! maxxx K (x,x). Thus in the worst case, whén " "2 for mostj,
we still recover the non-localized from the localized bounds.
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Proposition 9 (Closed-form maximization)Supposé- is an RKHS with kerndk equipped with
the canonical RKHS norag& = &ag . Then for anyh

72& 8é,n

1
— o Ky 2( Ky + 1)F 1K) 2%, (11)

n(h,f)2%& & & +
fS!lép n(h, )% & . 18

1
@O/chn( U Kn+ 1) 10

n&?
whereK n = (K (zi,2)){j -, is the empirical kernel matrix an, = ( %(%(yi s hOG L, .

We note that if we did not enforce the extra, norm constraintofi (i.e.) +, ,then the above

inner optimization problem simplibes to:
*

sup ! n(n1)%88 &, = =% Kn% = 5 %y h(x)K (@20 :h(x) (12)

fIE F 4& 4& n? ij
i.e. we get a pair-wise residual loss, weighted by a kernel matrix that is only a function of the
conditioning set.

Thus the solutiof of the estimator in Equatior is equivalent to:

“ 1 :
A =argmin —% M%, + p&h& =argmin % M%, + 4 &8n&,
hH  4& hiH

whereM := K%’z(nﬁ’ﬁK o+ 1)#1K Y2 Finally, we show that this outer maximization also has a

closed form solution. See Appendix? for the proof.

Proposition 10(Closed-form minimization) Suppose that andF are the RKHSes of the kernels
Ku andK g, equipped with the canonical RKHS nor&é& = &ag, and&ag& = &ag, . Debne
the empirical kernel matricelS  n = (Ky (Xi, X)) {]j -, andKe n = (Ke(z,7)) {]j -1 - Thenthe
following estimator is an optimizer of Equatig#):
*Nn
A= v i Ke (X, 8 v = (KpnMKyn +4 &pKy n) Ky nMy
i=1

forM = Ké’ﬁ(nﬁ’?KF,n + I)“Ké’ﬁ ) Ken(s2zKen + 1)*TandA is the Moore-Penrose
pseudoinverse of a matri.

Hyper-parameter tuning Observe that Theorethstates that as long as the regularization strength
satispes thatp = #( ) *L?), then this estimator will provide results that automatically scale with the
RKHS norm of true hypothests. Moreover, the regularization hyperparame&ei can also be
tuned in practice by evaluating the loss funct¥hM %, on a left-out sample, with parameters)

set to the appropriate ones for the size of that sample.

Low-Rank Approximation and NystromOs Method The solution to the empirical optimization
problem requires inverting am1 n kernel matrix, which takes tim@(n?). This can be prohibitive

for moderate sample sizes of the order of tens of thousands. We note here that one can construct
very good approximations to the solution in Propositirby considering low-rank approximations

of the kernel matri¥< . We present here one such low-rank approximation, based on NystromOs
method, but we note that the plethora of recent literature on low-rank kernel approximation methods
are applicable to our problem too (see &kgmar et al[2013, Bach and Jordaf2003, Musco and
Musco[2017, Oglic and GSrtnef2017).

Suppose that we can express our kernel matricésas andKy n asKy , = DD* andKy , =
VV*, whereD andV are of dimensiona 1 r and such that we can express Keenel rowof any
new test sample as:

(KH(Xl,X),...,KH(Xn,X)): V$(X)

for somer -dimensional vecto$(x). Then we can expresgx) = $(x)* V* a-. If we then debne
. = V7", .. Then we can re-write the closed form solutions to the min and max problems as follows:
' ) ' ) #1
U 1 U
& &, = %D —D'D+I D* %,

n(h,f)2%& & & +
Sp En(n1)7%& & &, + o a8, n)?
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Figure 5: Estimated functions based on our minimax estimator for different true functions. We use an
rbf kernel with parameter = .1 and1000samples. We chose critical radius paramgters/n 4

and the regularization hyper-parametds chosen via k-fold cross-validation. The data generating
processwasx = .6z+ .4u+ ) andy = hg(x)+ u+ (andz,u# N(0,2)and(,) # N(0,.1).

+ 1
and ifwe letQ := -3,D*D + | *1andA = V* D, then:

+ + VH#1 +
AQA™ +4 &l AQD "y
$(x)*.

Observe that every matrix calculation in the above expressions requires time &@mas<) to be
computed. Thusif 5 n, we have massively reduced the computation time f#gm?) to O(nr?),
making the method practical even very large data regimes.

A(x) :

Even thouglr in the worst-case can be of sieg we can typically well-approximate the kernel
matrices withr 5 n. One popular approach for achieving this is NystromOs method, which essentially
sub-samples a set ofpoints and uses the normalized kernel distances with respect to this subset
of points adD andV, respectively. In particular, 1& denote am 1 r matrix whosd -th column
contains dl in positionj for some randomly sampled indgx ThenKS is ann 1 r sub-matrix

of K, where a subse of the columns oK are chosen at randoPrThen we can approximate
viaVV*, whereV = KSM Y2 andM = (S*KS)* (i.e.V is contains normalized kernel-based
similarities to the subs& of r randomly chosen points). Moreover, for any new test point, we can
set$(x) = MY 2(Ky (i, X))ir s.

E.4 Bounds on llI-Posedness Measure

The results so far in the section provide bounds on the projected RMSE. In this last section, we show
that under further assumptions on the strength of the instrument (i.e. the correlatiemdz), then

the projected RMSE rates also imply rates for the RMSE. We give an example such set of conditions,
mostly as an example of a sufbcient set of assumptions that lead to RMSE rates and in order to
provide qualitative insights on what RMSE rates one can expect in different regimes of the instrument
strength and the eigendecay of the kernel. In this section we will assume that theHs{zaakso
augmented with a hard constraint on the RKHS norm,Hes HE = {h' Hyx :&é& ( B}.
Assuming&ho& ( B this does not change the statistical guarantees and moreover the closed
form optimization theorems, can easily be amended to incorporate a hard constraint on top of the

5Several sampling strategies have been proposed in the literature to improve upon pure uniform sampling
(see e.gKumar et al[2013, Musco and Musc§2017, Oglic and GSrtnef2017). One popular practical and
simple method is to perform some version of unsupervised clustering of the samples, such as kmeans clustering,
and choosing the points as the cluster centroids.
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RMSE on Train: 0.264, R2 on train: 0.86 RMSE on Train: 0.398, R2 on train: 0.72 RMSE on Train: 2.194, R2 on train: 0.94
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Figure 6: Estimates based on Nystrom approximation, 8@hystrom samples, for the same dgp
and parameter setup as in Fige

regularization (due to the equivalent between hard constraints and regularization). Imposing this hard
constraint will simplify the analysis of this sectién.

By MercerOs theorem we can express any functlon in the RKHSN terms of the eigenfunctions
of the kernel:
h="ag
it
withg : X + R such tha€[eg (x)?] = 1 andE[e (x)  (x)] = 0 andJ a countable set. Moreover,

we haveghé&s = i a, and&hé& = i ( B. Thus we have tha&h&, ( B implies that
forallm' N+. i$m a, ( &nB. Moreover we have:
&Th&; = aa; E[E[e (x) | zIE[g (x) | Z]].
ij1J
Foranym' N., letl := {1,...,m},e =(e€1,...,en),q =(az,...,am) and:

Vi = E[E[er (x) | Z]E[e (X) | 2] ]

and suppose th&qi, (Vim) * +n, i.e. that these Pnite eigenfunctions maintain some fraction of
their independent components, even when they are smoothened through the conditional expectation
p(x | z). Furthermore suppose that foralf m <j : |E[E[e (X) | z]E[g (X) | z]]l ( . m ( CHm

(for some constard), i.e. the smoothening performed by the conditional expectation does not ruin

a lot the orthogonality of the brat eigenfunctions with eigenfunctions for indices larger than
Observe that if we had a perfect instrument, zevas perfectly correlated witk, thenVy, = I, and

E[E[ei (x) | z]E[g (x) | z]] = Ele (x)g (X)] = 0. Thus for a perfect instrumen, =1 and. , = 0.
Therefore the latter requirements are implicit assumptions on the strength of the instfuwient.

show that under these assumptions, we can bound the measure of ill-posedness as follows.

Lemma 11. Suppose thaktmin (Vm) * +n and for some constamwt> 0, foralli ( m<j ,
|E[E[e: (x) | z]E[& (x) | Z]Il ( ¢ Hm
Then: ‘ )2 )
. 4
+(0)>:= max && ( min —— +(4c+1)B&n+
0= max &ng( min -+ ) B&m1

The optimal choice ofn- roughly solves the equatiof, &n+1 = )?/B . If for instance&y, ( m#P
forb> 1, and+, * m*2fora> 0, then:m- # )2/(a+ b) Ieadmg to a rate of:

%h 8Q 0] )b/(a+b)

5We note that the proof of Theoremimplies that even without a hard constraint, with high probability
$AZ 1S ho$2 + =Y. Thus the results of this section hold Br= $ho$; + & even without the
extra hard constraint.

"Potentially the strongest assumption of these is#hat $.. This could be avoided by restricting the
hypothesis spadd s to only be supported on the brsteigenfunctions. However, this would require being
able to diagonalize the kernel and also to tune the estimator to the unknown paraneters
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We see that the RMSE rate is of a slower order than the projected MSE r&fg hids an exponential
eigendecay, i.e&, # 2™ (e.g. such as in the case of a Gaussian kernel);antl m” 2, then
m- # log(1/) ?) and we get:

<

8 %h. & = O ) (log(L/) ))¥ 2

Thus we only get a logarithmic increase in the RMSE rate as compared to the ,Projected RMSE
rate. However, we note that if alsg, # 272™ and&y, # 2*P™, then we get rates @ )@+’

by settingsm- # log(1/) # (@* D), Finally, in the severely ill-posed setup, whefe # 2™ and
&n # m*P then we haven. # log(l/) ?) and:
' )

1
log(1/) )°

leading to a very slow rate of convergence that will typically be of the ordé&f &dg(n).

& %h.& = O

Observe that we achieve the rate for the optimal choiae ofvithout the need to tune our algorithm.

The RKHS norm penalty implicitly clips the weight that our functions can put on eigenfunctions with
large index and hence controls the measure of ill-posedness for whatever is the decay rates of the
eigenvalueg,, and+;,.

F Application: High-Dimensional Sparse Linear Function Spaces

In this section we deal with high-dimensional linear function classes, i.e. the caseXwyieé RP

forp 7 nandhg(x) = !"o,Xx". We will address the case when the functigris assumed to be
sparse, i.e&'08& = {j ' [pl:1"j|> O} ( s. We will be denoting witrs the subset of coordinates

of "o that are non-zero and with® its complement. For simplicity of exposition we will also assume
thatE[x; | z] = '#,2", though most of the results of this section also extend to the case where
E[xi | z] ' F i for someF; with small Rademacher complexity. We provide two sets of results,
dependent on whether we make further minimum eigenvalue assumptions on the covariance matrix
of the random variableB[x; | z].

F.1 Hard Sparsity Constraints without Minimum Eigenvalue

In the Prst result, we apply Theorelrto show that even without any further assumptions on the
eigenvalues of the covariance matrix

V = E[E[x | ZJE[X | ] ],

we can attain fast rates of the ordemdf! 2 that are logarithmic i and only linear in the sparsity

of hg and the sparsity of the conditional expectation functioi$x; | z]. Albeit the optimization
problem we need to solve to get these rates is non-convex and has running time that is exponential in
r,s. This setting covers and extends the linear moment case of the setting analyZad anfl Liap

2014; albeit we only provide RMSE and projected RMSE rates.

Corollary 12. Suppose thdig(x) = "o, x" with&' o0& ( sandE[x; | z] = #, 2" with &# (& ( .
Then letH consist of alls-sparse linear functions of andF consist of all(s ar)-sparse linear
functions ofz with coefbcients iffol, 1]. in p dimensions with onlg non-zero coefpbcients aid
consists of linear functions ipdimensions witl non-zero coefpcients. Then the estimator presented
in Equation(4), satisbes that w.[d. %- :
12 2 3

rslog(pn) N log(V-)

n n

&T (A %hg)& ( O

The proof follows immediately from the fact that the metric entropy®fsparse linear functions
in p-dimensions, with coefbcien{s jB6l, 1] is 9f the order ofO (r s log(p/()). Thus we can invoke

Corollary5 to get a bound 0O rs'%w on the critical radii of classeSs;y andGs y and

apply Theoreni.
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F.2 !;-Relaxation under Minimum Eigenvalue Condition

In the second set of results we assume a restricted minimum eigenvaluwnahe matrixy and

apply Theoren?® to get fast rates of the order of /2, that also scale logarithmically i linearly

inr,s and. # 1. Moreover, the optimization problem required is now a convex problem as we replace
the hard sparsity constraint with &pconstraint. This dichotomy of computationally efpcient vs
computationally hard estimation dependent on whether we make minimum eigenvalue assumptions
is a well established result in exogenous regression problghenp et al.2014 and hence we
provide here analogous positive results for the endogenous regression setup. We also note that without
the minimum eigenvalue condition, our Theorérstill provides slow rates of the order of /4,

for computationally efpcient estimators that replace the hard sparsity constraint witinarm
constraint. Our results based on theconstraint are also closely related to the workGatutier

et al.[2017], who analyzes an endogenous analogue of the Dantzig selector. Our work proposes an
alternative to the Dantzig selector that enjoys similar estimation rate guarantees.

Corollary 3. Suppose thahg(x) = "o, X" with &08 ( sand&'o& ( B and&'o& ( 1.
Moreover, suppose th&[x; | z] = #g, 2", with#; ' RP and&#,& ( U and that the co-variance
matrixV satisbes the following restricted eigenvalue condition:

/2" RPSt&25c& (&25& +2 )y :2VV2* . &2&

ThenletH = {x +! ", x":" ' RP},&" a"& = &'&,Fy = {z+! #,2":#' RP && ( U}
and&%#,a"& = &#& . Then the estimator presented in Equat{@hwith & ( é, satispes that w.p.
1%-:

1 = so 1 33
&T(A%ho)& ( O max 1, ég s

(B+U+1)

2 2
log(p) ,  log(p/-)
n n

If instead we assume thé&#)& ( U andsup,; && ( R then by settingry = {z + ! #,2":
&t& ( U} and&#,a"& = &#&, we have:
1 - > 2 71 2

2 33
1 S (B +1) loglp) , YR, Iog(:/-)

=X - >
&T (A %hp)& ( O max 1,&s . o =

Second order infBuence fromE[x; | z] model complexity Notably, observe that in the case of
&t & (U, we note that if one wants to learn the t#avith respect to thé, norm or the functions

E[x; | z] with respect to the RMSE, then the best rate one can achieve (by standard results for
statistical learning with the square loss), even when,one afsumm@gt && ( R and that

E[zz*] has minimum eigenvalue of at leastis: min %T, %’ Y47 For largep 7 n the

Prst rate is vacuous. Thus we see that even though we canngt accurately learn the conditional
expectation functions atH n rate, we can still estimate, at al/ n rate, assuming thdi is

sparse. Therefore, the minimax approach offers some form of robustness to nuisance parameters,
reminiscent of the type of robustness of Neyman orthogonal methods (se€leegndzhukov et al.

2019).

F.3 Solving the!;-Relaxation Optimization Problem via First-Order Methods

The estimator presented in CorolleByequire solving optimization problems of the form:

i ! %" X" " 3
Lmin #:rgg:(lxu.En [(y %!, x")z] , #" + P& & (13)

for someR, n and for norm& a &ither& &4 &or & & & (in the constrained estimatar= 0; while
in the regularizedk = , -though in practice we can set it to some large value for stability of the
optimization process). Observe that inner optimization simplipes to:

H n n 111
05 1 H
:_mllllrg B&E” [((y%!",x")z]& + U&&]
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where& a &is the dual norm o& a &i.e. thel g norm in the case whei& a &s the!; norm and the
I'> norm in the case whe& a &s the!, norm). One approach to solving these optimization problems
is using projected sub-gradient descent:

#, = argmax!E, [(y % !"¢,x")z],#"
##( U

: # . $ <
1= $ o+ Ea XZ'# % sion ()

$(")= argmin & %" &

1% 1% (B

Moreover, for both ; and!> norm, the solution te# can be easily found in closed forfnAfter

O(1/( ?) iterations and fot = #( (), we will have that?= Ti thl "t, Is an(-approximate solution
to the optimization problem.

Improved Iteration Complexity with Optimistic FTRL Dynamics The sub-gradient descent
approach has two caveats: i) the ratel§f’ is considerably slow and would require a large number

of iterations to converge to a reasonable solution, ii) the gradient does not admit an unbiased stochastic
version (due to the non-linearity introduced by Hrg max operation that debnég), and therefore

the algorithm does not admit a stochastic variant, which is useful for large samples. We can improve
the error rate by invoking algorithms that address non-smooth optimization problems that take the
form of a min-max objective of some underlying smooth loss.

First, we show that we can remove the non-smoothness of;tihegularization by lifting the
parametel' to a2p-dimensional positive orthant. Consider two vectdts0* * 0 and then setting

"= 0" %0%, with0 = (0*;0%) and&8& ( B. Observe that for any feasibfe the solution

0" ="1"i > 0} andof = " 1{"; ( 0} is still feasible and achieves the same objective. Moreover,
any solution0, maps to a feasible solutidn(since&'& (& 0. %04 & (& 0" & + &% & ( B)

and thus the two optimization programs have the same optimal solutions. Then, if we dePne with
v = ( X; %x), then the optimization problem can be re-stated as:

min max !(0,#)
)$0:") 1 (B#:#( U

where:
*2p
1(0,#) .= #'Enlzy]%# En[zv 10+ u O
i=1
This falls exactly into the class of problems analyzed in a line of work on bi-linear minimax opti-
mization, starting from the seminal work Niestero{20093. For instance, we can view the problem
as a two-player bi-linear zero-sum game and invoke the Optimistic Follow-the-Regularized-Leader
(OFTRL) or Optimistic Mirror Descent (OMD) paradigm Biakhlin and Sridharaf2013, Syrgkanis
et al.[2019, to bnd an(-approximate solution fod in O(1/() iterations. The algorithm repeats for

T iterations the updates:
*

. 1
O+1 = argmin 1(0,#:) + 1(0,#) + ~Rmin (0)
)$07) (B u
#+1 = argmax 1(0«,#) + !(Ot,#)%,}Rmax (#)

#UH (U

andreturn®= X [ 0,#= 1 [ #.° We note that if we did not double count the last

periodOs loss and we usdi, (X) = Rmax (X) = 38x&3, then this would correspond to running

8For the case of th& norm: & = Ue, sign (En [y#%:,x&8z, 1), withi, = arg max ; |En [(Yy#% ¢, X8 z]|.
For the case of thés norm: & = En[(y # % (,x&z] aU/ $E. [(y # % «, x&Z]$

°Finally, if we want to compare wits-sparse solutions and we want to enhance sparsity of the returned
solution, then we can always truncate to zero at the end of training any coordirfate of # @ that was
smaller tharl/ (sn* 2* #). This can introduce an extra lower order approximation error of at fidost’ 2* # in
our projected MSE theorem, since by this shrinkage procedure, the error with respect to a sparse saation
only increase on the non-zero entries gfand it can only increase by at mdst(sn® 2* #) on every such entry.
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simultaneous gradient descent dynamics for both paran@térdvioreover, the paramete@s# can
be thought as primal and dual solutions and we can use the duality gap as a certibcate for convergence
of the algorithm°

tol = max !(6,#)% m|n '(Oﬂ)
#r#( U )

This approach addresses both prg@blems with projected sub-gradient descent: i) as we will show
below, the iteration complexity i® (B + U?)log(B p)/( , instead ofl/( ?, ii) the per-iteration

lossed (0, #), ! (O, #) in the FTRL formulation can be replaced with unbiased estimates, while still
maintaining theoretical guarantees and therefore the algorithm admits a stochastic analogue which
makes it scalable to very large data séts.

To instantiate this paradigm we need to bnd appropriate regularizers for the strategy spaces of the
two players. Below we outline two concrete such algorithms for the two cases of the néramaf
provide worst-case convergence rates.

I,1-ball adversary Forthe case whe®#& = &#&;, we can further simplify the problem by showing
that the inner optimization can be performed ov@palimensional simplex. If we lat = ( z; %z),
then we can re-write the optimization problem as:

1(0,w) := w*" En[uy] %w" E,[uv']0+

min max !(0,w)
)$0:' ) 1(Bw:!'w' =1

Since both player strategi@sw are constrained to be in dp-ball, we can get iteration complexity
that only grows logarithmically with the dimensiqn if for each player we use OFTRL with an

entropic regularizer: i.eRmin (X) = Rmax (X) = szl X; log(x;), denotes the negative entropy.
Proposition 13. Consider the algorithm that far=1,...,T, sets:
= >
# u& wyg # ue w . B
Bt = O #2 (#Enviu®t wil+ §)+ & (#En[viu® wisal+ §) Oix1 = Ht41 MIn 1’@
& & W
Wit+1 = Wit 92+ En[(Y#){ V) Uil# +En [(Y#) 1% 1V) Uil Wisp = 7&5«;11&1

Wlthe. #1 = B0 =1le andwi g1 = Wwio = 1/(2p) and returns@ = Ti th1 O;. Then for

— 1 12

4B2log(B 8 1) + (B + 1) log(2p)
(

iterations, the parametef = 8" %@ is an (-approximate solution to the minimax problem in
Equation(13).

T =16&E,[vu’ 1&

Moreover, every update step requires computation @¢rain{n p, p’}).'® Using techniques for
sparse gradient updates, one could also potentially improve the iteration complexity to not depend
linearly on the dimensiop (see e.gLangford et al[2009, Duchi et al.[2004, Duchi and Singer
[2009, McMahan[2017]), but we defer such approaches to future work.

I particular,gand& are ar)-equilibrium of the zero-sum game.

\We note that the fast rate &f) will deteriorate with the size of the mini-batch, butA 2 rate is always
achievable and the step-sizeshould be appropriately tuned to account for the mini-batch sampling noise.

2For a matrixA, we denote wittbA$ = max; |Aj |

BIf p n, then at every iteration we can calculand’) = v0) aw, for each qample(” which takes
O(n &p) time; and then update eaéh +1 based on the quantif, [viu® wi] = r} ' (”m(” fp<n,

then we can calculate, = E,[vu® ] ahead of time and at each period calcuadv; u® wt] = (' w)i; which
would requireO(p?) time.
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Figure 7: Estimates based on minimax estimator proposed in PropakRidihe left bgure depicts

thep = 2000 estimated coefbcients compared to the true coefbcients; we also include the coefbcients
of i) a direct lasso regression to portray the importance of dealing with the endogeneity problem
(Lasso), ii) a two-stage lasso regression where we regresxeactz and then regresson E[x | Z],

all regressions performed with lasso where the brst stage regularization was 0x&dand the

Pnal stage was chosen via cross-validation (2SLasso), iii) the algorithm in Propdsi{SparselV),

iv) a stochastic variant of the algorithm in Propositit®where a mini-batch 010 samples is used

at each iteration (StochasticSparselV). The right pictures depicts the coefbcients of the dual test
function learned by the adversary at equilibrium, which is of the fdr(z) = ip:l (w; %wi# )zi.

The data generating process wasz,u ' RP, x = z+ u,y = Ix+ u,"", z,u# N(O,lg),
"=(1,%1,0,...,0), p=2000.

I,-ball adversary For the case whe&8#& = &#&, then we can uUsBmax (#) = %&#&2, which

leads to an alternative update rule for the maximizing player. In this case, the update of the maximizing
player is essentially optimistic gradient descent, modulo the normalization so as to respgctdha
constraint.

Proposition 14. Consider the algorithm thatfar=1,...,T, sets:

= >
Bit+1 = Bt 9#2éi (# En [viz® #]+ %)Jr é‘i (# En [viz® #es a ¥ 57) Ot+1 = Bt41 min 1, B
’ ’ _ &Ba& S
fre = e 2 En[(y %07 v) 2] %' Enl(y %07, V) 2] #41 = e Min 1, —
&#-Hl 82
with @ 41 = 9,0 = 1/e and#; 1 = #, = 0. Thenfor = W,“ after

4B?log(B 8 1) + B log(2p) + U?/2
( .

iterations, the parametef = 8" % @ is an (-approximate solution to the minimax problem in
Equation(13).

T =168&E,[zV" 1&.s

Observe that ify; ' [%H,H] then the quantity&E,[zv* & ¢ & can be upper bounded by
H E,[&8&], which under the assumptions of Coroll&@s at most a constant.

F.4 Bounds on lll-Posedness Measure
Leth(x) = !",x", ho(x) = !"g,x" and2 = " %"(. Then observe that we have:
&T(h%ho)& = 2* E#E[x | ZIE[x | z]* $2 = 2"V 2* &min(V)828&
where we remind that .= E AE[X |$z]E[x | z]*  and&min (V) denotes the minimum eigenvalue of
V. Moreover, if we le% = E xx* then:
& %h& = 2* E#xx+ $2 ( &max (%)828&2
Thus we see that the measure of iII—posedréess can be upper bounded as:

max (%)

* ( &min (V)

!7
YFor a matrixA, we denote witthA S, = ; max; A2
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Thus assuming that these eigenvalues are upper and lower bounded correspondingly, then the results

of this section extend also to RMSE guarantees for the recoteaed not just projected RMSE
guarantees, at the cost of an extra multiplicative factar. of

Moreover, we note that in both our hard sparsity &nelaxed estimators we have further constraints
on the vector and thus we only require the minimum and maximum eigenvalue to be bounded
subject to these constraints. For instance, in the case of hard sparsity, we knusth@s-sparse
vector. Thus it sufbces to require the minimum eigenvalué ahd the maximum eigenvalue %to

be bounded only for sucPs-sparse vectors (i.e. they should hold for2dll 2s square sub-matrices

of %vandV). Similarly, for the!; based estimators we know that the ve@dalls in a restricted
cone, such that most of thhe norm of2 is concentrated on trecoordinates of the true coefbciént

Thus we solely need th&mnin and&max constraints to be valid only in this restricted cone of vectors.

G Application: Shape Constrained Functions

In this section, we consider the case wixeh [0, 1] and we make shape constraintstgn We look
at both monotonicity/total variation bound constraints and convexity constraints.

G.1 Monotone functions and functions with small total variation

Consider the case whém is a function with range if0, 1] and of bounded total variatioB,V (hg) (

1.15 We letH := BV (1) denote the latter class of functions. Moreover, we assume that the operator
T satisbes thal h is a monotone non-decreasing (or non-increasing) functianfof any monotone
non-decreasing (or non-increasing) functfoof x. Total variation function classes in linear inverse
problems with a known linear operator have also been recently analyzgel blamo and Munk
[2019 and a minimax loss based estimator was also considered, similar in spirit to our general
framework.

Observe that any functidm with range in[0, 1] and total variation at modgt can be written as the
difference of two non-decreasing functidms, hx with ranges ir{0, 1], i.e.h = hy %hy . Thus we

note that our assumption dnimplies thatifth' BV (1), thenTh = Thy %Thy = f. %fx, where

f+ andfy are monotone non-decreasing functionflirL]. ThusTh' BV (1) andT (h %ho) '

BV (2). Thus in order to apply our main theorems, it sufbces to Eake BV (2), i.e. the class of
functions that can be expressed as the difference of two monotone non-decreasing functions with
range in[0, 2]. Alternatively, we could also debne the norm of a function in the function classes

F andH as the total variation, which would enable the regularized estimator to adapt to the total
variation of the true hypothesis. For simplicity, we assume a known upper bound.

Furthermore, we note that by standard results in statistical learning theory (see e.g. exercise 18, p.153
of Vaart and Wellnef199q or excercise 3.6.7 dbine and Nick[2019), that the class of monotone
functions with range irf0, 2] have metric entropy of the order Gf1/( ). Thus the same holds for
the classBV (2), leading to a critical radius of, = O n*¥3" by invoking Corollary5. Thus
by applying our Theoreni, we get that the corresponding estimators presented in these sections,
whenH = BV (1) andF = BV (2) (and no norm constraints, which can be emulated by setting
B=U=, ), satisfywp.1%-:
1 2 3

1 N log(l/-)

&1 (R%ho)& = O 5 .

The latter rate matches known lower bounds on the achievable RMSE for monotone functions even in
the case of exogenous regression probl@matterjee et a[2019.

Efbciently solving the optimization problem We can solve the empirical optimization problem

by using piece-wise constant monotone functions (or piece-wise linear), i.e. when running the
estimator om samples, we can describe the functionia a2n-dimensional vectot = ("*;"#),
suchthatl * "7 * ...* "% * Qandl* "] * ...* "# * 06 Let# describe the set of

150ur results easily extend to arbitrary intervals [a, b] and range§# H, H ], though we restrict t§0, 1]
for simplicity of exposition.

161f we want to enforce a monotone non-decreasinthen we can sét* = 0 and similarly, for a monotone
non-increasing algorithm® = 0.
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— et — et
true true

(a) Isotonic Regression ( x (b) Isotonic IV (c) Lipschitz Isotonic IV

Figure 8: Estimated functions based on our minimax estimator under monotonicity constraints. The
prst bPgure depicts a direct isotonic regression that ignores endogeneity. The second Pgure depics our
isotonic IV regression, without any lipschitz constraints and the Pnal bPgure depicts our isotonic IV
regression with Lipschitzness constraints. The data generating procedgmdss x2 1{x > 0},

X =.6z+ .4u+) andy = hp(x)+ u+ (andz,u# N(0,2)and(,) # N(O,.1). (n = 1000)

that satisfy these constraints. Similarly, we can desdrib& a vectow = (w* ;w*), such that
2% wp * ... wh* 0and2* wi * ...* wf * 0. LetW describe the set of that satisfy
these constraints.

Then for every samplg if we let gy (i) be the rank of samplie(i.e. samplei has they (i) highestx),
when we order all samples basedxarwe can seh(x;) = ";x(i) %"# o ()" Similarly, if we letq, (i)
be the rank of samplie when we order all samples basedmmnve can set (z) = qz(l) /owq (i)
For simplicity of exposition and w.l.0.g. we will assume that samples are ordered in tesmisenf

O (i) = i. Thus we can simplify the optimization problem in Theorgmas:
* *Nn
min max ~ (y; %("" %"F)(WE %W ) %& (W %w)?
I owl W 0z (i) 0z (i) I I

i i=1
where the conclusions of the theorem hol&if 1. Since the loss:

* *Nn
Iw) = (v % %)W, gy %W ) %E&  (w %w! )
i i=1
is convex in" and concave imv and the spaces, W are convex sets, we can solve this problem by
running S|multaneous prOJected gradient descent fandw separately and returning the average
solutions, i.e.: fot = LT

=8 ("% (e 1, Weg 1))

W= S wWegr+ " ow! (M1, Wes 1))
and return®= % ) thl ".. After O(n/( ?) iterations this would return aftapproximate solution to
the minimax problem. Each iteration step would require running a projection on the gpagesif
we let”' R2", then we need to bnd a solution to the problem:

ni* (n—+ 0/n+)2+(n:-# o/u#)Z
’n i 70 i 70
[

Since the objective and the constraints decompose for the two parts of the vector, this corresponds to
running two isotonic regressions fof and"{ with observation§; and* . Thus each problem
can be solved via the well-known Pool-Adjacent-Violator (PAV) algorithm, which req(@s
computation time. Similarly, we can deal with the projectiormof Thus each iteration of the
simultaneous projected gradient descent algorithm requires four calls to the PAV algorithm. If we
further want to impose Lipschitzness constraints on our estimates, then we can instead use the
Lipschitz-PAV algorithm (se&eganova and Wilbuf2009, Kakade et al[2011]) to project onto
spacest andW that are augmented with lipschitzness constraints,&(g."" %" ( L(x; %x;)

foralli ( j. Albeit the LPAV algorithm requires computation ©{n?).
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Generality of computational approach We note that the above approach of solving the endoge-
nous regression problem with shape constraints via our minimax estimator essentially applies to any
type of shape constraints and reduces the minimax problem to a standard square loss problem subject
to the same shape constraints (assuming thatibathdF satisfy the same shape constraints; i.e.

that these constraints are invariant to the application of the opératdtus to solve the minimax
problem we simply require an oracle for the square loss problem. In the the setting described in this
section we used the PAV and LPAV algorithm as such oracles. In the next section we will be using a
guadratic optimization subject to linear constraints solver as our oracle.

lll-posedness We note that the recent work @hetverikov and Wilhelnf2017, shows that when
X,z " [0, 1] and the distributions of andz have full support and lower-bounded density, then for
any functionh, that is, -gpproximately monotone and continuously differentiable, &eh& *
L1&n& , whereg€h& = X"f h(x)2dx, for some0 < x 1 <X » < 1. The result requires several more
regularity conditions on the operatbrand the constant depends on constants in these regularity
conditions (e.g. the lower bound on the density, the quaniitiesnd1%x,, the constant , etc). Thus
under these further regularity conditions, we have that forranhat is, -approximately constant
and forh being a monotone functiofil (h %h-)& * 18&h& . Thus our bound o&T (h %h-)&

also implies a bound o&h %h- & . This claim, roughly recovers the main estimation rate result of
Chetverikov and Wilhelnj2017.

G.2 Convex functions

In this section we consider the case whmgns assumed to be a convex function@)1], &-Lipschitz

and with range iff0, 1]. Moreover, we asusme that the linear operdi@atispes that for any convex
&-Lipschitz functionh, Th is also convex ané-Lipschitz. Observe that if is a symmetric density,

i.e. Th = h 30 (where3 denotes the convolution operator), for some conditional density function
0, then we havéTh)~(z) = (h™)30* 0, sinceh(x) * 0andO(x) * Ofor all x. Thus any such
symmetric density satispPes our constraints.

The work of Bronshtein[1976 shows that the metric entropy this function class, even indthe
dimensional hypercube, with respect to te norm, and therefore also with respect to thg norm,

is of the order of* ¥ 2 (see also the recent work @Guntuboyina and Sef2019). Thus we get
that by invoking Corollang, for d = 1, we can choos, in Theoreml in the order ofO(n? ®),
leading to the corollary that the estimator in Theorgrfor the case wheHl is the space of convex,
&-Lipscthiz functions with range if0, 1] andF is the space of differences of two convex functions,
eaché&-Lipschitz and with range ifD, 1, then V\ip.l %-: 5 3

1 N log(1/-)

&1 (R%ho)& = O .

Solving the optimization problem Moreover, we can address the optimization problem in manner
similar to the previous section. We can choose estimators that optimize over piece-wise linear
functions and hence can be uniquely determined by their values am shenples, i.e. we can

describeh by an-dimensional vectot, such thah(x;) = "¢, (i) (whereq,(i) as debned in the
previous section). Similarly, we can descifoéF via a2n-dimensional vectow = (w* ;w#),
such thaf (z) = W;Z(i) %Wgz(i). Subsequently, we can apply the simultaneous projected gradient
descent approach, which reduces the minimax optimization problem to solving the projection problem.
Observe that we can describe the constraints that describe the Veatadw as linear constraints.
Using the same idea as the one described in Example 13V&iofwright[2019, we can express the
convexity constraint as the existence of a subgradient, i.e. there must exist sub-gnadiénts” '
R" such that for all,j ' [n]:

TR LX) PX gy

+ % + + "
: AT 0 .
Wi WE L Zgea ) SZgp )

# # # n

Wi W Zge gy %Zg)

This is a set of linear constraints bfw* ,w* ,u,u*,u* . Moreover, the lipschitz constraints
corresponds to another set of linear constraints, fdr'al[n]:

P&z 1ny) WX ) i %71 &Ky KoXgp(y))

40



RMSE on Train: 0.422 RMSE on Train: 0.301 RMSE on Train: 0.260

— est 35

10 1 ayy
1 A N 2 —
05 ~—7 X yx
— est N N est
ve Tl - true

=3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -4 -2 0 2 4

(a) Bounded TV (b) Bounded TV and-Lipschitz (c) Convex and.-Lipschitz

Figure 9: Estimated functions based on our minimax estimator for different sets of shape constraints.
In the last Pgure we also depict the direct regression estimate subject to the same constraints, i.e.
if we regresseg onx, ignoring endogeneity. The data generating process i) = [x| and
Xx=.5z+ .5u+ ) andy = ho(x)+ u+ (andz,u# N(0,2)and(,) # N(O,.1). (n = 1000)

and similarly forw* ,w# . Thus projecting onto ont4 or W, corresponds to a convex quadratic
optimization problem witl2n variables and(n?) linear constraints. Therefore, we can compute
such projections in polynomial time at every iteration of the simultaneous projected gradient descent
algorithm. In practice, one can achieve substantial speedup by subsampling a Setropoints and
restricting the curve to a piece-wise linear function in between these points. This would reduce the
number of variables and constraint2®andO(s?), correspondingly.

H Neural Networks

In this section we describe how one can apply the theoretical bndings from the previous sections
to understand how to train neural networks that solve the conditional moment problem. We will
consider the case when our true functlgncan be represented (or well-approximated) by a deep
neural network function ok, for some given domain specibc network architecture, and we will
represent it abg(x) = hy,(x), where" are the weights of the neural net. Moreover, we will assume

that the linear operatdr, satisbes that for any set of weightsve have thaf h, belongs to a set of
functions that can be represented (or well-approximated) as another deep neural network architecture,
and we will denote these functionsfag(z), wherew are the weights of the neural net.

Adversarial GMM Networks (AGMM)  Thus we can apply our general approach presented in
Theoreml and consider the estimator: 3

fw(z)? +pén & (14)

*
0= argmin supE, [%(Yyi; hi (xi))fw(2)] %& & & + n2
! w i
where&, 4, U,) are hyperparameters that need to satisfy the conditions of the theorem. In particular,
if we know that the neural nets , f,, output functions ir{0, 1], then we can choodgd = B =1,
&=)2,u=2)2(4L? +27), whereL is a bound on the lipschitzness of the operdtawith respect
to the two function space norms ajds a bound on the critical radius of the function spa€gsand
G, 2. Then problem takes the form:
*
9= arg min SUDEA 941 ; 1y () (2)] %) 8w %~ fu(z)+ ¢)8n &
! w i
for some constant > 1 that depends on the lipschitzness of the operatdvioreover, theoretically
we can set the critical radigsby invoking Corollary5, and using existing results on the pseudo-
dimension of the neural network architecture, for which there exist known boAmid®ny and
Bartlett[2009 that scale with the number of nodes and edges of the neural net. Moreover, one can
also use the recent work Bfrtlett et al[2017, Golowich et al[2018, to provide size independent
bounds on the critical radius of these classes, that only depend on spectral properties of the learned
weight matrices of the neural nets.

The work ofBennett et al[2019 also proposed the use of second moment penalization of the test
function, albeit from a different perspective. In particular, their approach stems from a reasoning
based on the optimally weighted GMM estimator. In this work we show that second moment
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penalization arises also when one wants to achieve fast rates of convergence in terms of mean squared
error of the learned function. Moreover, the regularization present&kimmett et al[2019 is
not a simple second moment penalization, but the second moment of each sample is re-weighted
based on the moment evaluated at a preliminary estimatei@f | fw(z)2%yi; h:(xi))2. The

preliminary estimate df is an extra burden and typically requires sample splitting and brst stage
estimation. Here we show that such re-weighting is not required if one simply wants fast projected
MSE rates. Moreover, this alternative penalty has the property that as the mbdebmes very
accurate, thef(y;; h(xj)) $ 0and hence the penalty vanishes as the model becomes accurate. This
is a big qualitative difference of the two penalties and it is not clear that the penalty that rescales with
the moment enjoys the same theoretical guarantees in terms of projected MSE as the simpler second
moment penalty.

In the remainder of the section, we will mostly focus on the practical aspect of training neural
networks, such as what would be appropriate architectures for the test function space, based on the
intuition developed in the prior theoretical developments of the paper and what would be appropriate
optimization algorithms for solving the optimization problem.

H.1 MMD-GMM: A Neural Network Architecture for Adversarial GMM

Maximum Mean Discrepancy GMM Networks (MMD-GMM).  Our results for RKHS function
spaces, suggest that one class of test functions are functions that fall in an RKHS. Observe that
Lemma7 shows that, even whdnis an arbitrary function represented by a neural network, as long
asp(x | § is a function that belongs to an RKH& , with some kerneK , thenTh' Hy . Thus we

can choose test functions i .

In many neural network applications, we might have fi{at| § is not in an RKHS (or might have

very large RKHS norm), when we use the raw instrunertsz might be very high-dimensional

and structured (e.g. an image). However, it might be natural to assume that there is some latent
representatiog(z) of the instrument, such thatp(x | z) = 0(x | g(z)) and such thad(x | § is in

an RKHS.

Thus we will generalize our RKHS approach to augment the adversary with the ability to simul-
taneously learn the representatmn (represented as a neural network with weighjsand also
choose the best function in the RKHS of the implied kekgz, z") := K (gw(2), gw(z)). With

this generalization, we are still guaranteeing thét %hg) ' F , whenevep(x | § = 0(x | g(3)
andO(x | § isinHy .

Using the variational characterization of the best function in the RKHS presented in Eqialion
we get that the_optimization of the adversary can be rephrased as optimizing over test functions of the
formf (z) = % i":l #Kw(z,2), leading to an objective for the adversary of the form:

A C,

1%+ , o1t LT #
sup — (i e (i) Kw(zi, 2))# %) %# K (zi,z)) # %ﬁ B FJKW(Ziij)D
#,w i i j
which can be written as an average over triplets of samples:

1* 0+ + o
ﬁ 0/((yi X hg (Xi))KW(Zi 4] )#j %#i )ZKW(Zi v Zj ) + KW(Zi , Zk)KW(Zk, Z; ) #j
ik
Kernels applied to learned representations have been applied in the context of distribution learning
(see e.g. the work on MMD-GANIsi et al. [2017, Binkowski et al.[2018) and distribution testing
(see the recent work dfiu et al.[2020).

Unregularized MMD-GMM.  When we omit the, ,, regularization then the optimal solution for
# can be found in closed form (see Proposit®rand the MMD-GMM simplibes to:

. 1”
arg min sup — %(yi; hi (xi))Kw(zi,z) %y s hi (%)) + c)*&h, & (15)
! w i
This version (without Pxed kernel parameterswas also independently analyzed from the per-
spective of testing biMuandet et al[2020. However, the , , penalty is crucial for obtaining fast
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Figure 10: MMD-GMM architecture of adversaryOs test function.

rates (e.g. rates that adapt to the eigendecay in the case of RKHS spaces). On the other hand, the
unregularized MMD-GMM admits a much easier implementation as we do not need to deal with
then parameterg and in the case where we use bxed kernel parameters donOt even need
adversarial training.

Kernel Approximation Moreover, as we saw in the RKHS section, it can be benebcial from

a computational perspective to approximate the kernel function by sampling a set of training
points (either at random or more cleverly based on either leverage scores or k-means cluster-
ing) and _resstrict the space of functions to be supported only on this subset of the points, i.e.
f(z)= % =1 #iK (0w (z _),_gw(z)), wherez; is a set of_ representative samples and approximating

the RKHS norm penalty with ij1 s Kw(z; ,z )#; . This has the benept of only depending on an
|S|-dimensional vectot#, that the adversary needs to optimize over, as opposeditmensional.
Moreover, in practice, instead of constraining the centers to be of thedp(a) ), we could instead
consider arbitrary centecs in the space of the output gf, and consider test functions of the form:

f(z) = 1 ., #iK(c,0u(2)), wherec; are parameters that could also be trained via gradient
descent. The latter essentially corresponds to adding what is known as an RBF layer at the end of the
adversary neural net. This simplibed architecture seems the most appealing from a practical point
of view (as it does not require any pre-selection of representative samplasd is depicted in
Figurel1.

Multi-Kernel MMD-GMM.  The case of sparse linear representations portrays that it might be
important to test many different classes of functions, each potentially trained on a separate part of the
input space, since different instruments might be correlated with different treatments and many of

these treatments can be irrelevant.
*

1
sup  Eq[%yi;h(xi))fw, (2zs,)] %) & w, & %= fy,(zs,.)?

W1, W m t! [m] n i
whereS; are pre-debned subsets of the instrumentszgndorresponds to the sub-vector of instru-
ments. Each of these functiohg, corresponding to a neural net.

One can also combine the above approaches arfg,séts, ) = % i #i Kw, (Zs,j 1 Zs,), 1.e. allow
for the test function that takes as input the subset of the instrurBemdsbe in an RKHS of a learned
kernelw;. This leads to taking a supremum over a set of kernels in the MMD-GMM objective, where
each kernel calculates similarity based on a subset of the input instruments, i.e.:
A C,
1 x4 ) , 1 * * #t'
sup — Ayish (XK (zi,2))#y %) %# Ky (zi z)#y %= B —LK|(z,7)D
szt N2 n . ;on
whereK !, (z, z) is shorthand notation fd , (zs, i, zs, j ). The adveraryOs objective can also be
written ]a-.S choosing a distributign over thet kernels, leading to an adversary objective of:

* * *

1
3 Wyishi (xi))  pKy(ziz)# % 02Ky (ziz) + KLz, 20K (2, Z))
i,k t t
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Figure 11: Simplibed MMD-GMM architecture of adversaryOs test function with kernel bnal activa-
tion layer.

(@)

We can again reduce the complexity of the optimization problem by restricting to a subset of samples
to represent the test functions.

This combined method targets settings where different instruments are correlated with different latent
Otreatment factorsO, treatment factors are high-dimensional but only a small subset of them having
a large and additively separable effect on the outcome and the relationship between the treatment
factor and the instrument is non-linear. Thus it tackles several sources of high-dimensionality in the
instrumental variable regression problem.

H.2 Adversarial Training: Simultaneous Optimistic First-Order Stochastic Optimization

The optimization problem that we are facing is similar to the optimization problem that is encountered

in training Generative Adversarial Networks, i.e. we need to solve a non-convex, hon-concave
zero-sum game, where the strategy of each of the two players are the parameters of a neural net.
This is obviously a computationally intractable problem from a worst-case perspective. However,
typical instances are far from worst-case and there has been a surge of recent work proposing
iterative optimization algorithms inspired by the convex-concave zero-sum game theory (see, e.g. the
Optimistic Adam algorithm oDaskalakis et al[2017). For instance, one can expect that in practice

most early layers of a neural net will change very slowly or will not have a face transition in their
non-linearities. In that case, the main parameters that matter are the parameters of the bnal layers
of the two neural nets. However, the zero-sum game is convex-concave in these parameters. Hence,
assuming that the features constructed in the Pnal layer of the two neural nets, change slowly, then
one should expect convex-concave zero-sum game optimization theory to apply. Such arguments
have been recently exploited in the case of square loss minimization with deep over-parameterized
neural networks (see e.gllen-Zhu et al.[2018, Du et al.[2018, Soltanolkotabi et al[2019). Itis

highly plausible and an interesting question for future research, whether such guarantees extend to
the minimax problem that we are facing here. For instance, recent wadi et al.[2019, provides

an instance of a minimax objective, related to training Wasserstein GANs, where stochastic iterative
optimization of neural nets provably converges to an optimal solution.

In our implementation and experiments we used the optimistic Adam algorithm as was also proposed
in Bennett et al[2019. Other algorithms that could prove useful for our problem are the extra-
gradient or stochastic extra-gradient algorithm (see élgieh et al.[2019, Mishchenko et al.
[2019).

| Random Forests via a Reduction Approach

In this section we deal with the problem of training random forests that solve the non-parametric IV
problem. In particular, we aim to develop a learning procedure that learns a hypdttieatsolves

the Conditional Momen(l), that is represented as an ensemble of regression trees. Prior work on
random forests for causal inference problems has primarily focused on learning forests that capture
the heterogeneity of the treatment effect of a treatment, but did not account for non-linear relationships
between the treatment and the outcome variable. We will provide a theoretical foundation of the
proposed method by taking a reductions approach to the minimax problem debned by our estimator.

For simplicity, throughout this section we will assume that the hypothesis spheesl F are
bounded and have bound critical radius and will make no further norm constraints. Thus the estimator
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Figure 12: Estimated function based on our minimax estimator with neural networks as a function of
the relevant treatment. The function was a two layer neural net witfdOhidden units. In the brst
Pgure an two-layer neural net was used as a test funfctiom the second and third, we used the
MMD-GMM test functions with a low rank approximation. In the second we used test functions of
the form:f4(z) = iS=1 #K((c,z), with ¢; a Pxed grid of test points if#63, 3]° andK is the rbf

kernel with parameter = .2, i.e. K (z,2) = exp(%. & %z &). In the third we learned the kernel,

i.e. we used test functions of the form, » (z) = iszl # K (ci,0w(2)) andgw (z) = relu(Az + b)

(all the parametera, b, #,c,. where trained). The networks were trained via the simultaneous
Optimistic Adam algorithm. The data generating process Wgix) = |x[0]] andx = .6z+ .4u+)

andy = ho(x)+ u+ (andz# N(0,2l,),u# N(0,2) and(,) # N(O,.1).

-4 2 [ 2 4

(a) Weak Instruments
(p=2,n =4000)

Figure 13: Estimated function based on our minimax estimator with neural networks as a function of
the relevant treatment. The setup is the same as in Fiditeut we now made the instrument very
weak. The data generating process wagx) = |x[0]] {x[0] > O} andx = .05z + .95u + ) and

y = ho(x)+ u+ (andz# N(0,2lp),u# N(0,2)and(,) # N(O,.1).
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proposed in Theorerh'’ takes the simple form of:

A = argmin supEq [%yi; h(x))f (z:)] %Enlf (zi)?]
hiH  fIF

Since the statistical properties of random forests is an active area of investigation, we will solely focus
on the optimization problem and leave the statistical properties (e.g. bounding the critical radius or
bias of Random Forest methods) to future work. Our goal is to reduce the aforementioned optimization
problem to classibcation and regression oracles over arbitrary hypothesis spaces. Subsequently in
practice we can use random forests as oracles.

Reducing the Optimization to Regression and Classibcation OraclesTo achieve this reduction

we will make the assumption that the sp&celebnes a convex image set on the samples, i.e. the set
A= {(f(z1),...,f(zy)): f 'F} isaconvex set. This can potentially be violated for tree based
methods, but in practice will be alleviated when training a forest with a large set of trees.

We will show that we can reduce the problem to a regression oracle over the functiorFspadea
classibcation oracle over the function spBcaNe will assume that we have a regression oracle that
solves the square loss problem oferfor any set of labels and featureg,, ux., it returns

. 1 *Nn
Oracle: (zn, Usn) =argmin —  (u; %f (2:))°
fIE -

Moreover, we will assume that we have a classibcation oracle that solves the weighted binary
classibcation problem ové:. for any set of sample weightg,.,,, binary labels/;., in {0, 1} and
featuresxy:n:

*n

1
Oracle; (X1:n, V1:n, W1:n) = @arg max - w; Pr

whoy Vi =z
hH 2

]
zi) Bernoulli.
i=1
Observe that the objective in the equation above is equivalent to a classibcation accuracy objective,
assuming thalh outputs values ifol, 1] and it corresponds to an expected accuracy objective if one
interpretg(h(x) + 1) / 2 as the probability of label conditional onx. Having access to these oracles
we can then show the following computational result:

Theorem4. Consider the algorithm where far=1,...,T: let
.t 1 ¥t ° + :
ub = 5 Y %m*:l h« (Xi) fy = Oracles zy.n, Ul
vi = 1{f((z) > O}, w! = |[f(z)] h; = Oracley +x1;n,vt1:n,wt1:n’

Then the ensemble hypothedis: Ti ) th1 he, is aw—approximate solution to the minimax
problem in Equatior{6).

In practice, we will consider a random forest regression method as the oraclé ewer a binary
decision tree classibcation method as the oraclélfor

Moreover, we observe that if the hypothesis spbicean be expressed as linear span of base
hypothesis, i.eH = { ,wb : b ' B}, then observe that because the best-response problem
of the learner is linear in the output of the hypothesis, it sufbces to optimize only over the space
of base hypothesis. Then the algorithm will return a linear span, supportédase hypothesis

that solves the minimax problem over the whole linear span. This improvement can also lead to
statistical rate improvements. For instance, if the base hypotBeisia VC class with VC dimension

d (e.g. a binary decision tree with small depth, see é/grsour and McAlleste200Q), then the
algorithm returns a convex combinationdfbase hypothesis, which has VC dimension at ndokt

[Shalev-Shwartz and Ben-Dayi?2014. Thus the entropy integral ¢ is of the order of Td'ﬂw

# $
By setting! = "2/U,p = 2! 4L2+27U/B " using an% norm in both function spaces and taking
U,B)* . Observe that we can also take= 1, since$Th$ !$ h$ foranyT.
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If we further have that the entropy integrallfis at most/ (F ), then we get a bnal rate of the order
of:

2_
T dlog(n) log(T)
n T

+/(F)+

Setting,T = O(nY#), one can achieve rates of the ordenéf/* + / (F).

In practice, we will leverage the above observation and train a single binary classibcation tree at each
period of the algorithm, as o@racle, . In the end the Pnal prediction will be the prediction of the
random forest represented by the ensemble oftliees trained at each period. We refer to this
algorithm as Random Forest IV (RFIV).
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J Experimental Analysis

We consider the following data generating processesfor 1 andn, * 1

y = ho(x[0]) + e+ ), ) # N(0,.1)
x=.z[0]+(1%.)e+ ., z # N(0,21,,),e# N(0,2),. # N(0,.1)

While, whenny = n, > 1, then we consider the following modibed treatment equation:
x=.z2+(1%.)e+ .,

We consider several ranges of the number of samplesumber of treatments,, number of
instruments, and instrument strengthand the following functional forms fdmo:

1. abs:ho(x) = ||
2. 2dpoly: ho(x) = %1.5x + .9x?
3. sigmoid:hg(X) = 5=
4. sin: hg(x) = sin( x)
5. frequentsinhg(x) = sin(3 x)
6. abssqrtho(x) =  [X|
7. step:hp(x) =1{x< 0} +2.51{x * O}
8. 3dpoly:ho(x) = %1.5x + .9x% + x3
9. linear: ho(x) = X
10. randpw: piece wise linear function drawn at random
11. absposhp(x) = x1{x * 0}
12. sqrpos:hp(x) = x21{x * 0}
13. band:ho(x) = 1{%.75( x ( .75
14. invband:ho(x) =1 %1{%.75( x ( .75}
15. steplinearho(x) =21{x * 0} % x
16. pwlinear:hg(x) = (x +1)1{x (% 1} +(x %1)1{x>=1}
We consider as classic benchmarks 2SLS with a polynomial features of &@8E£S) and a regu-

larized version of 2SLS where ElasticNetCV is used in both stages (Reg2SLS). We have implemented
several of the algorithms described in the paper:

1. NystromRKHS: The method described in Appenliwith the Nystrom approximation
described in Appendik.3. We usedLO0Nystrom samples for the approximation.

2. Convex|V: The variant of the method described in Apper@ig with both lipscthiz and
convexity constraints (lipschitz bound bf= 2).

3. TVIV: The variant of the method described in Appen@xl without a lipschitz constraint
and only total variation constraint.

4. LipTVIV: The variant of the method described in Appen@x1 with lipscthiz constraint
and total variation constraint (lipscthiz boundlof 2)

5. RFIV: The method described in Appendixwhere a Random Forest Regressor is used as
an oracle for the adversary (wittD trees, max depth, bootstrap sub-sampling enabled,
and minimum leaf size 040) and Random Forest Classiber (wihrees, max depth,
minimum leaf size o0 and bootstrap subsampling disabled) was used as an oracle for the
learner. The optimization was run fér= 200 iterations.

6. SpLin: The method described in Appendi2 with the specibc optimization method
described in Propositioh3.

7. StSpLin: A stochastic gradient descent variant of SpLin, where a mini-battb0famples
is used at every step to calculate the co-variance matrices.
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8. AGMM: The method described in Equati¢td). A two-layer neural net witl00hidden
units at each layer and leaky ReLU units was used for both the learner and the adversary
architecture. Optimization was done via the Optimistic Adam.

9. KLayerFixed: The variant of the method described in Appemtlik where an RBF layer is
attached at the end of the adversaryOs architecture with bxed centers, i.e. testing functions of
the form:f (z) = j"gel"‘esz (G, gw (2))# , with Neeners= 100. The centers; are placed
in a100dimensional feature space and the functigns a two-layer neural net withOO
hidden units in each layer.

10. KLayerTrained: The same as KLayerFixed, but the centers of the RBF layer are trained.

11. CentroidMMD: The version of the MMMD-GMM in Appendik.1, where we select a
subset of the data points to use as centers in the Kernel approximation, i.e. testing functions
of the form: f (z) = ['57“*K(gu(Z , 9 (2))# . Z are chosen as the centroids of a
KMeans clustering andcenters= 100. gy is the same architecture as in KLayerFixed.

12. KLossMMD: The method described in Equati¢ib), where nd , , penalty is imposed on
the adversary test functiog,, is the same architecture as in KLayerFixed.

In addition to these regimes, we consider high-dimensional experiments with images, following the
scenarios proposed Bennett et al[2019 where either the instrumeator treatmenk or both are
images from the MNIST dataset consisting of grayscale imag28 bf28 pixels. We compare the
performance of our approaches to thaBeinett et al[2019, using their code. A full description of

the DGP is given in Appendi.1

Results. The main bndings are: i) for small number of treatments, the RKHS method with a
Nystrom approximation (NystromRKHS), outperforms all methods (Fidureith only exception

being functions that are highly non-smooth or non-continuous, in which case the methods that are
based on shape constraints (ConvexlV, TVIV, LipTVIV) are better, ii) for moderate number of
instruments and treatments, Random Forest IV (RFIV) signibcantly outperforms most methods, with
second best being neural networks (AGMM, KLayerTrained) (Fi@)rei) the estimator for sparse
linear hypotheses can handle an ultra-high dimensional regime (RByuvg neural network methods
(AGMM, KLayerTrained) outperform the state of the art in prior woBepnett et al.2019 for tasks

that involve images (Figurd). The bgures below present the average MSE adi@@sxperiments

(10 experiments for Figurd) and two times the standard error of the average MSE. Note that for
non-parametric IV there was no prior Random Forest (RF) algorithm, as we outline in the Random
Forest section. We present the prst algorithm for this setting. Prior Random Forest algorithms for
IV setup only work when one makes the assumption of linearity w.r.t. to treatment and estimates
heterogeneity with respect to exogenous features (such as the 1V forg¢agéf and Athey2019).

NystromRKHS 2SLS Reg2SLS Convex|V TVIV LipTVIV RFIV
abs 0.045+ 0.010 | 0.100+ 0.035 | 1.733+ 2.981 | 0.054+ 0.005 | 0.089+ 0.005 | 0.047+ 0.004 | 0.084+ 0.007
2dpoly 0.121+ 0.014 | 0.036+ 0.022 | 9.068+ 16.071 | 0.060+ 0.007 | 0.090+ 0.009 | 0.069+ 0.009 | 0.379+ 0.022
sigmoid 0.016+ 0.003 | 0.071+ 0.037 | 0.429+ 0.244 | 0.029+ 0.005 | 0.067+ 0.004 | 0.034+ 0.003 | 0.044+ 0.006
sin 0.023+ 0.003 | 0.090+ 0.042 | 0.801+ 0.420 | 0.055+ 0.005 | 0.074+ 0.004 | 0.036+ 0.003 | 0.057+ 0.007
frequentsin || 0.129+ 0.005 | 0.193+ 0.040 | 0.145+ 0.017 | 0.143%+ 0.008 | 0.115+ 0.005 | 0.106+ 0.005 | 0.126+ 0.010
abssqrt 0.033+ 0.004 | 0.099+ 0.039 | 0.117+ 0.046 | 0.045+ 0.007 | 0.096+ 0.006 | 0.047+ 0.004 | 0.064+ 0.008

step 0.035+ 0.003 0.103+ 0.043 0.497+ 0.276 0.054+ 0.005 | 0.073+ 0.004 | 0.044+ 0.003 | 0.056+ 0.007
3dpoly 0.220+ 0.037 | 0.004+ 0.003 0.066+ 0.014 0.396+ 0.051 | 0.138+ 0.028 | 0.190+ 0.036 | 0.687+ 0.069
linear 0.019+ 0.003 | 0.038+ 0.021 0.355+ 0.189 | 0.017+ 0.005 | 0.042+ 0.002 | 0.027+ 0.002 | 0.048+ 0.005

randpw 0.067+ 0.012 | 0.092+ 0.024 | 3.810+ 5.878 | 0.162+ 0.032 | 0.073+ 0.009 | 0.046+ 0.006 | 0.121+ 0.015
abspos 0.022+ 0.003 | 0.060+ 0.027 | 0.299+ 0.157 | 0.022+ 0.004 | 0.062+ 0.004 | 0.033+ 0.003 | 0.055% 0.006
sqrpos 0.064+ 0.013 | 0.026+ 0.015 0.490+ 0.494 | 0.030+ 0.006 | 0.034+ 0.003 | 0.033+ 0.005 | 0.181+ 0.013

band 0.059+ 0.003 | 0.125+ 0.051 | 0.085+ 0.017 | 0.086+ 0.008 | 0.102+ 0.006 | 0.059+ 0.004 | 0.071+ 0.008
invband 0.056+ 0.003 | 0.130+ 0.041 | 0.138+ 0.051 | 0.075+ 0.008 | 0.102+ 0.006 | 0.059+ 0.004 | 0.073% 0.008
steplinear 0.141+ 0.009 | 0.231+ 0.085 | 0.203+ 0.063 | 0.138+ 0.008 | 0.156+ 0.009 | 0.100+ 0.006 | 0.141+ 0.011
pwlinear 0.032+ 0.004 | 0.051+ 0.024 | 0.058+ 0.025 | 0.037+ 0.006 | 0.061+ 0.003 | 0.035+ 0.003 | 0.068+ 0.006

Figure 14:n =300,n, =1,n, =1,. = .6
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NystromRKHS 2SLS Reg2SLS ConvexIV TVIV LipTVIV RFIV
abs 0.010+ 0.001 0.025+ 0.001 | 0.025+ 0.002 | 0.031+ 0.001 | 0.031+ 0.001 | 0.021+ 0.001 0.026+ 0.002
2dpoly 0.022+ 0.005 | 0.002+ 0.000 | 0.043+ 0.039 | 0.052+ 0.004 | 0.034+ 0.004 | 0.037+ 0.004 | 0.286+ 0.013
sigmoid || 0.005+ 0.001 | 0.007+ 0.001 | 0.021+ 0.017 | 0.011* 0.000 | 0.018+ 0.001 | 0.008+ 0.001 | 0.015+ 0.001
sin 0.005+ 0.001 | 0.013+ 0.002 | 0.033+ 0.025 | 0.035+ 0.001 | 0.020+ 0.001 | 0.009+ 0.001 | 0.017+ 0.001
frequentsin 0.118+ 0.001 0.117+ 0.001 | 0.115+ 0.001 | 0.116+ 0.001 | 0.089+ 0.002 | 0.105+ 0.002 | 0.087+ 0.004
abssqrt 0.011+ 0.001 0.018+ 0.001 | 0.018+ 0.001 | 0.020+ 0.001 | 0.028+ 0.001 | 0.016+ 0.001 0.022+ 0.002
step 0.022+ 0.001 | 0.029+ 0.001 | 0.043+ 0.017 | 0.034+ 0.001 | 0.026% 0.001 | 0.020+ 0.001 | 0.026+ 0.002
3dpoly 0.028+ 0.012 | 0.000+ 0.000 | 0.010+ 0.003 | 0.325+ 0.026 | 0.086x 0.019 | 0.121% 0.020 | 0.375x 0.036
linear 0.004+ 0.001 | 0.002+ 0.000 | 0.022+ 0.022 | 0.002+ 0.000 | 0.013+ 0.001 | 0.007+ 0.001 | 0.012+ 0.001
randpw 0.031+ 0.006 0.057+ 0.010 | 0.131+ 0.111 | 0.150+ 0.032 | 0.032+ 0.004 | 0.029+ 0.004 0.054+ 0.010
abspos 0.006+ 0.001 | 0.007+ 0.001 | 0.015+ 0.009 | 0.005+ 0.000 | 0.016+ 0.001 | 0.008+ 0.001 | 0.016+ 0.001
sqrpos 0.011+ 0.003 | 0.004+ 0.000 | 0.010+ 0.006 | 0.011+ 0.002 | 0.011* 0.001 | 0.012+ 0.002 | 0.091* 0.007
band 0.031+ 0.001 | 0.046+ 0.001 | 0.046+ 0.001 | 0.059+ 0.001 | 0.039+ 0.002 | 0.031+ 0.002 | 0.032+ 0.002
invband || 0.031+ 0.001 | 0.046+ 0.001 | 0.046+ 0.001 | 0.049+ 0.001 | 0.039+ 0.002 | 0.031* 0.001 | 0.032+ 0.002
steplinear 0.066+ 0.002 0.085+ 0.003 | 0.089+ 0.005 | 0.104+ 0.001 | 0.074+ 0.002 | 0.064+ 0.002 0.066+ 0.003
pwlinear || 0.007+ 0.001 | 0.009+ 0.000 | 0.012+ 0.001 | 0.017+ 0.001 | 0.016%+ 0.001 | 0.009+ 0.001 | 0.016+ 0.001
Figure 15:n =2000,n, =1,n, =1,. = .6
NystromRKHS 2SLS Reg2SLS ConvexIV TVIV LipTVIV RFIV
abs 0.006% 0.001 | 0.027% 0.001 | 0.027+ 0.001 | 0.024% 0.000 | 0.016% 0.001 | 0.012% 0.001 | 0.017% 0.001
2dpoly 0.009+ 0.002 | 0.001+ 0.000 0.016+ 0.007 | 0.036+ 0.003 | 0.018+ 0.002 | 0.022+ 0.003 0.151+ 0.010
sigmoid 0.004+ 0.000 0.007+ 0.000 | 0.017+ 0.005 | 0.013+ 0.000 | 0.011+ 0.001 | 0.007+ 0.000 0.012+ 0.001
sin 0.003+ 0.000 | 0.023+ 0.002 | 0.033+ 0.006 | 0.055+ 0.001 | 0.013+ 0.001 | 0.009+ 0.001 | 0.014+ 0.001
frequentsin || 0.114+ 0.001 | 0.114+ 0.001 | 0.113+ 0.001 | 0.114+ 0.001 | 0.048+ 0.001 | 0.051% 0.001 | 0.024+ 0.001
abssqrt || 0.008+ 0.000 | 0.017+ 0.001 | 0.017+ 0.001 | 0.017+ 0.000 | 0.015+ 0.001 | 0.011% 0.001 | 0.015+ 0.001
step 0.021+ 0.000 0.031+ 0.001 | 0.039+ 0.004 | 0.038+ 0.000 | 0.015+ 0.001 | 0.012+ 0.001 0.018+ 0.001
3dpoly 0.030+ 0.006 | 0.000+ 0.000 | 0.001+ 0.000 | 0.344+ 0.025 | 0.081* 0.015 | 0.114+ 0.016 | 0.366+ 0.031
linear 0.003+ 0.000 | 0.001* 0.000 | 0.016+ 0.008 | 0.002+ 0.000 | 0.009+ 0.000 | 0.008+ 0.000 | 0.010+ 0.001
randpw 0.021+ 0.004 | 0.055+ 0.009 | 0.069+ 0.010 | 0.157+ 0.032 | 0.015% 0.002 | 0.013+ 0.002 | 0.028+ 0.004
abspos 0.004+ 0.000 0.007+ 0.000 | 0.013+ 0.003 | 0.003+ 0.000 0.010+ 0.001 | 0.007+ 0.000 0.013+ 0.001
sqrpos 0.008+ 0.002 | 0.004+ 0.000 0.008+ 0.003 | 0.025+ 0.003 | 0.013+ 0.002 | 0.018+ 0.002 0.109+ 0.008
band 0.026+ 0.001 | 0.044+ 0.001 | 0.044+ 0.001 | 0.056+ 0.001 | 0.018+ 0.001 | 0.014+ 0.001 | 0.020+ 0.001
invband 0.026+ 0.001 | 0.044+ 0.001 | 0.044+ 0.001 | 0.046+ 0.001 | 0.018+ 0.001 | 0.015+ 0.001 | 0.020+ 0.001
steplinear || 0.042+ 0.001 | 0.064+ 0.001 | 0.066+ 0.002 | 0.079+ 0.001 | 0.036+ 0.001 | 0.032+ 0.001 | 0.032+ 0.001
pwlinear 0.005+ 0.000 0.010+ 0.000 | 0.013+ 0.002 | 0.019+ 0.000 | 0.011+ 0.001 | 0.008+ 0.001 0.014+ 0.001
Figure 16:n =2000,n, =1,ny, =1,. = .8
NystromRKHS 2SLS Reg2SLS RFIV
abs 0.026% 0.010 | 0.025% 0.001 | 0.054+ 0.007 | 0.023% 0.001
2dpoly 0.033+ 0.006 | 0.002+ 0.000 | 0.361* 0.059 | 0.292+ 0.012
sigmoid 0.015+ 0.006 | 0.006+ 0.000 | 0.096+ 0.016 | 0.014+ 0.001
sin 0.019+ 0.007 | 0.012+ 0.001 0.142+ 0.024 | 0.016+ 0.001
frequentsin || 0.131* 0.007 | 0.117+ 0.001 | 0.116+ 0.003 | 0.069+ 0.003
abssqrt || 0.027+ 0.010 | 0.018+ 0.001 | 0.026+ 0.004 | 0.019+ 0.001
step 0.036+ 0.006 | 0.028+ 0.001 | 0.116+ 0.017 | 0.021+ 0.001
3dpoly 0.018+ 0.008 | 0.000+ 0.000 0.021+ 0.003 | 0.416+ 0.041
linear 0.015+ 0.005 | 0.002+ 0.000 0.120+ 0.019 | 0.012+ 0.001
randpw || 0.047+ 0.010 | 0.057+ 0.011 | 0.448+ 0.185 | 0.050+ 0.009
abspos || 0.019+ 0.007 | 0.007+ 0.001 | 0.060+ 0.010 | 0.014+ 0.001
sqrpos 0.025+ 0.005 | 0.004+ 0.001 | 0.065x 0.010 | 0.092+ 0.007
band 0.056+ 0.012 0.046+ 0.001 | 0.053+ 0.003 | 0.027+ 0.002
invband 0.051+ 0.012 0.046+ 0.001 | 0.052+ 0.004 | 0.027+ 0.002
steplinear || 0.087+ 0.006 | 0.084+ 0.001 | 0.103+ 0.005 | 0.059+ 0.002
pwlinear || 0.023+ 0.008 | 0.010+ 0.001 | 0.026+ 0.004 | 0.014+ 0.001
Figure 17:n =2000,n, =5,n, =1,. = .6
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NystromRKHS 2SLS Reg2SLS RFIV
abs 0.027+ 0.011 0.035+ 0.002 | 0.107+ 0.016 | 0.021+ 0.001
2dpoly 0.050+ 0.019 | 0.006+ 0.000 | 0.545+ 0.080 | 0.282+ 0.014
sigmoid 0.017+ 0.009 | 0.014+ 0.001 | 0.115+ 0.023 | 0.013+ 0.001
sin 0.023+ 0.009 | 0.020+ 0.001 | 0.181% 0.045 | 0.017+ 0.001
frequentsin 0.136+ 0.012 0.126+ 0.001 | 0.117+ 0.003 | 0.065+ 0.003
abssqrt 0.026+ 0.008 0.030+ 0.002 | 0.038+ 0.006 | 0.018+ 0.002
step 0.035¢ 0.008 | 0.036+ 0.001 | 0.135+ 0.025 | 0.021+ 0.002
3dpoly 0.022+ 0.018 | 0.001+ 0.000 | 0.035+ 0.005 | 0.402+ 0.045
linear 0.022+ 0.008 | 0.007+ 0.001 | 0.123+ 0.020 | 0.011* 0.001
randpw 0.047+ 0.009 0.061+ 0.010 | 0.457+ 0.165 | 0.051+ 0.011
abspos || 0.022+ 0.008 | 0.015+ 0.001 | 0.082+ 0.015 | 0.013+ 0.001
sqrpos 0.042+ 0.017 | 0.008+ 0.001 | 0.129+ 0.020 | 0.086+ 0.006
band 0.056+ 0.013 | 0.056+ 0.001 | 0.062+ 0.007 | 0.027+ 0.002
invband || 0.052+ 0.012 | 0.058+ 0.002 | 0.060+ 0.006 | 0.026+ 0.002
steplinear 0.102+ 0.013 0.097+ 0.002 | 0.099+ 0.005 | 0.059+ 0.003
pwlinear || 0.031+ 0.008 | 0.017+ 0.002 | 0.033+ 0.006 | 0.014+ 0.001
Figure 18:n =2000,n, =10,n, =1,. = .6
NystromRKHS 2SLS Reg2SLS RFIV
abs 0.051% 0.002 | 0.262 0.076 | 0.031* 0.002 | 0.038% 0.001
2dpoly 0.226+ 0.012 0.106+ 0.033 | 0.105+ 0.027 0.316+ 0.013
sigmoid 0.025+ 0.002 0.198+ 0.060 0.056+ 0.002 | 0.015+ 0.001
sin 0.035+ 0.002 | 0.222+ 0.066 | 0.077+ 0.006 | 0.022+ 0.001
frequentsin || 0.140+ 0.002 | 0.386+ 0.084 | 0.114+ 0.001 | 0.108+ 0.002
abssqrt || 0.037+ 0.002 | 0.288+ 0.087 | 0.025+ 0.001 | 0.025+ 0.001
step 0.045+ 0.002 0.234+ 0.064 0.076+ 0.002 | 0.025+ 0.001
3dpoly 0.308+ 0.030 | 0.009+ 0.003 | 0.027+ 0.004 | 0.414+ 0.034
linear 0.040+ 0.002 | 0.124+ 0.039 | 0.058+ 0.006 | 0.014+ 0.001
randpw 0.131* 0.015 | 0.266+ 0.163 | 0.161+ 0.028 | 0.077+ 0.011
abspos 0.034+ 0.002 0.185+ 0.057 0.043+ 0.002 | 0.017+ 0.001
sqrpos 0.111+ 0.008 0.088+ 0.028 | 0.029+ 0.002 0.097+ 0.006
band 0.060+ 0.002 | 0.327+ 0.085 | 0.055+ 0.001 | 0.038+ 0.001
invband || 0.060+ 0.002 | 0.311% 0.089 | 0.054+ 0.001 | 0.039+ 0.001
steplinear || 0.161% 0.004 | 0.457+ 0.115 | 0.100+ 0.003 | 0.090+ 0.002
pwlinear 0.052+ 0.003 0.187+ 0.058 | 0.017+ 0.001 0.018+ 0.001
Figure 19:n =2000,n, =5,ny =5,. = .6
NystromRKHS 2sLS Reg2SLS RFIV
abs 0.143= 0.005 | 10050.672 13267.141| 0.122+ 0.011 | 0.049+ 0.001
2dpoly 0.595+ 0.025 | 5890.128+ 8261.553 | 4.510+ 1.245 | 0.346+ 0.014
sigmoid 0.045+ 0.003 | 11712.144 16799.716| 0.091+ 0.005 | 0.017+ 0.001
sin 0.058+ 0.003 | 13769.428 20805.861| 0.114+ 0.006 | 0.029+ 0.001
frequentsin 0.136+ 0.004 | 12928.74% 19554.361| 0.144+ 0.004 | 0.120+ 0.002
abssqrt || 0.062+ 0.004 | 12764.70% 17195.564 | 0.079+ 0.005 | 0.034+ 0.001
step 0.064+ 0.003 | 12187.342+ 17814.756| 0.109+ 0.004 | 0.027+ 0.001
3dpoly 0.648+ 0.039 432.572+ 596.731 0.061+ 0.005 0.444+ 0.029
linear 0.080+ 0.002 6964.376- 9566.774 0.107+ 0.006 | 0.016+ 0.001
randpw 0.272+ 0.029 | 1882.000+ 1998.862 | 0.682+ 0.539 | 0.093+ 0.013
abspos || 0.067+ 0.003 | 8841523 11921.282 | 0.095+ 0.005 | 0.020+ 0.001
sqrpos 0.243+ 0.010 | 4250.312+ 5449.534 | 0.126+ 0.014 | 0.105+ 0.006
band 0.078+ 0.004 | 20401.368 29655.000| 0.090+ 0.004 | 0.049+ 0.002
invband 0.079+ 0.004 | 11210.31% 14271.847| 0.090+ 0.005 | 0.048+ 0.002
steplinear 0.212+ 0.005 | 22217.18% 33274.806| 0.141+ 0.005 | 0.110+ 0.002
pwlinear || 0.075+ 0.003 | 9280.655 12159.776 | 0.041* 0.004 | 0.021+ 0.001

Figure 20:n =2000,n, =10,ny, =10,. = .6
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AGMM KLayerFixed KLayerTrained | CentroidMMD KLossMMD
abs 0.062+ 0.003 | 0.190+ 0.006 | 0.127+ 0.007 | 0.114+ 0.007 | 0.193+ 0.007
2dpoly 0.099+ 0.006 | 0.971+ 0.040 | 0.240+ 0.014 | 0.204+ 0.022 | 0.467+ 0.023
sigmoid 0.040+ 0.001 | 0.063+ 0.002 | 0.024+ 0.001 | 0.058+ 0.003 | 0.043+ 0.003
sin 0.074+ 0.002 | 0.076+ 0.002 | 0.057+ 0.002 | 0.098+ 0.003 | 0.083+ 0.004
frequentsin || 0.158+ 0.002 | 0.120+ 0.002 0.128+ 0.002 | 0.181+ 0.004 | 0.160+ 0.007
abssqrt 0.060+ 0.003 | 0.058+ 0.004 0.060+ 0.003 | 0.093+ 0.004 | 0.090+ 0.007

step 0.066+ 0.002 | 0.076+ 0.002 | 0.050+ 0.001 | 0.088+ 0.003 | 0.069+ 0.003
3dpoly 0.426+ 0.027 | 0.716+ 0.037 | 0.491+ 0.029 | 0.496x 0.030 | 0.526+ 0.032
linear 0.020+ 0.001 | 0.142+ 0.003 | 0.013+ 0.001 | 0.029+ 0.002 | 0.027+ 0.001

randpw 0.127+ 0.020 | 0.449+ 0.051 | 0.165+ 0.024 | 0.169+ 0.025 | 0.218+ 0.030
abspos 0.034+ 0.002 0.090+ 0.003 | 0.039+ 0.002 | 0.057+ 0.003 | 0.060+ 0.003
sqrpos 0.059+ 0.003 | 0.347+ 0.013 | 0.131+ 0.007 | 0.113+ 0.009 | 0.178+ 0.009

band 0.088+ 0.003 | 0.068+ 0.002 0.074+ 0.003 | 0.117+ 0.004 | 0.130+ 0.037
invband 0.088+ 0.003 | 0.073+ 0.005 0.077+ 0.003 | 0.114+ 0.004 | 0.120+ 0.026
steplinear 0.176+ 0.003 | 0.197+ 0.004 | 0.133+ 0.003 | 0.218+ 0.005 | 0.170+ 0.010
pwlinear 0.049+ 0.001 | 0.074+ 0.002 | 0.033+ 0.001 | 0.063+ 0.002 | 0.049+ 0.002

Figure 21:n = 2000, n, = 10,n, =10,. = .6

p= || 1000 | 10000 | 100000 | 1000000
SpLin || 0.020x 0.003 | 0.021 0.003 - -
StSpLin || 0.020+ 0.002 | 0.023+ 0.002 | 0.033+ 0.002 | 0.050+ 0.004

Figure 22:n =400, n, = ny := p,. = .6, ho(x[0]) = x[0]

|| DeepGMM Bennettetal[2019) | AGMM | KLayerTrained |
MNIST, 0.12+ 0.07 0.04+ 0.03 0.05+ 0.02
MNISTx 0.34+ 0.21 0.24+ 0.08 0.36+ 0.20
MNISTy, 0.26+ 0.16 0.21+ 0.07 0.26+ 0.11

Figure 23: MSE on the high-dimensional DGPs

J.1 Experiments with Image Data

In this section, we describe the experimental setup for our experiments with high-dimensional data
using the MNIST dataset. We replicate the data-generating proc&enoktt et al[2019. We
present a full description here for completeness.

The Data-Generating Process We begin by describing a low-dimensional DGP which will debne
a mapping fox or z or both to be MNIST images. The data-generating process is:
y= @(x*")+ e+)
Z'° # Uniform([%3, 3])
XMW= ZW 4+ e+
e#N (0,1),),. #N (0,0.2).
Let4(x) = round(min(max(1.5x +5,0),9)). 4 is a transformation function that maps inputs to an
integer between 0 and 9. LBandomIimaggl) be a function which selects a random MNIST image
from the class of images corresponding to diyiThe three high-dimensional scenarios are:
MNIST; : x = x',z = RandomIimagg}(z\°"))
MNISTx : x = RandomImaggt(x'™")),z = z'°%
MNISTxz :x = Randomimaggt(x'™")), z = Randomimaggt(z?")).

We use the functiogy(x) = [X| to compare withBennett et al[2019 but in general, the other
functional forms described above can also be used. SimiBetmett et al[2019 we normalize the
data so thay has zero mean and unit standard deviation.

We evaluate the performance of our AGMM and KLayerTrained estimators on these 3 data-generating
processes with 20,000 train samples and 2,000 test samples and compare their performance to that
achieved when we evaluaBennett et al[20190s code (performance is measured by the average
mean squared error of the predictions on test data).
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Setup We describe more details about our experimental setup for the MNIST experiments here. We
run 10 Monte-Carlo runs of each experiment and report the average MSE and the standard deviation
in the MSE achieved.

Architectures We use a 4-layer convolutional architecture in all cases where the input to the
network is an image. This consists of 2 convolutional layers with a 3x3 kernel followed by two fully
connected layers with 9216 and 512 hidden units respectively. A ReLU activation is applied after
each layer. Along with that, a max-pooling operation is applied after the brst two convolutional layers
and a dropout operation (with dropout probability 0.1) is applied before each fully connected layer.
When the instrument or treatment is low-dimensional we use a 2 layer fully connected neural network
with 200 neurons in the hidden layer along with the dropout function as before. All networks use
ReLU as the activation function.

Early Stopping We utilize the early stopping procedure proposeBémnett et al[2019 which

works as follows. In addition to the 20,000 training samples, 10,000 samples are used for preparing a
set of candidate adversary functions prior to training. During training at each epoch, the maximum
error incurred by the learner against the candidates in this pre-computed list is recorded. The early
stopping selects the model whose maximum error as computer above is the smallest.

Hyper-Parameters We use a batch size of 100 samples, and run for 200 epochs where an epoch is
debned as one full pass over the train set. We have as hyper-parameters learning rates for the learner
and adversary networks, the regularization terms for the weights of the learner and the adversary,
and a regularization term on the norm of the output of the adversary network. FRINI®&T
experiment, we saw best results when the weight penalizations on both the learner and the adversary
were set to very small values as compared to the other two experiments.
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K Proofs from Section 3 and Appendix C

K.1 Preliminary Lemmas
Lemma 15. Letf, be any test function that satisp&$;, % T(h- %h)& ( (and let
I(( h,f):= E[%y; h(x)) f (2)].

Then:
1

& hé&

(( h,fn) %!( he,fn)) * &T(h%h)& %2(,

Proof. Letf, = T(h- %h) and observe that by the tower law of expectations:
E[(h- %h)(x)Tr(2)] _ EIf,(2) fr(2)]
&f h&g & th
However, observe that by the Cauchy-Schwarz inequality we have:
Elfn(Z)fn(Z2)]1= Elfn(Z)%1+ E[fh(Z)Ef{{(Z) %fh(Z))] * &Fn& % [Elfn(Z)(f1(Z) %fn(Z)]

a2 (N 901 e f1) =

*

&fn& % E[fn(Z)Z El(f,(Z) %fn(Z))?2]
&T18& % & n&&F \, %fh&
&Tn& % (& n&

*

*

Thus we have: 1

&n&
Finally, by a triangle inequality,
&n& * & f & % &y %fn& * &f( & %(n.
Hence, we can conclude that:
1
& hé&

(1C hfn) %I hefh)) * & Fr& %(n

(( h,Tr) %I he,fr)) * &F 1 & %2(, = & (h %h-)& %2(,

K.2 Proof of Theorem1

Proof. For convenience let:
I( h,f):= E[%y; h(x)) f(2)]= E[T(ho %h)(z)f (z)] (by conditional moment restriction)
1 *n
ba(hif)= — %yi; h(xi)) f (i)
i=1
Moreover, for our choice of as described in the statement of the theorem, let:

% 5 &
Hg = 0/h'H :&n& (B
Foi= f'F & & (U
Moreover, let: |
LU E)= 1 a(hf) % &f@éJf)%&‘&%,n
. '2 U )
'(hf)=1( hf)%& §&g§+)78;&§

Thus our estimate can be written as:

A :=argmin sup! ,(h,f)+ p&h&y
h'H fliF
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Relating empirical and population regularization. As a preliminary observation, we have that
by Theorem 14.1 oiVainwright[2019, w.p. 1 %-:

If'F au :E@:&ﬁ,z%&&gE( %&&§+)2

for our choice of) == ), + ¢ % where),, upper bounds the critical radius By and
Cy Cy are universal constants. Moreover, for dnywith & &,2: * 3U, we can consider the function

f 3U/& & , which also belongs t& 3y, sinceF is star-convex. Thus we can apply the above
lemma to this re-scaled function and multiply both sidegb§ / (3U), leading to:

/f'F s.t.&f&é * SU:%J&‘;J%&&%E( %&854_)2%
Thus overall, we have:

= >
If'F :%‘8&2%&8%% %gt&gﬂzmax L% (16)
Thus we have that w.[. %-: )
! = >
If'F :&f&%+%&&gn*&f&§+B & & %)? max L%
) )U = 1 >
*&f8§+)—2&f&§%max U,é&‘&é
. gg;gg+)ﬂzg;gé%u (17)

Upper bounding centered empirical sup-loss. We now argue that the centered empirical sup-loss:

sup e (! n(A,f)%! ,(h-,f)) is small. By the debnition di:
X . <

sup! (R, f) ( sup! (h,f)+ p & & % &&, (18)

flIF flIF

By Lemma 7 ofFoster and Syrgkan[2019, the fact that(y; h- (x))f (z) is 2-Lipschitz Yvith respect
tof (2) (sincey ' [%l,1]and&h-& ' [%l,1]) and by our choice of = ), + ¢ %
where),, is an upper bound on the critical radiusFofy , w.p. 1%-:
If'F sy :|! n(he,f)%!( he,f)|( 36)& & +36)2
2

2__ __
Thus, if& & *  3U, we can apply the lattes inequality for the functibn 3U/ & & , which falls
in F3y, and then multiply both sides &f & / 3U to get:

= >
[f'F | n(he,f)%!( he,f)]( 36)& & +36)2max 1,% (29)
By Equations {7) and (19), we have that w.pl %2-: )
U
& &,

sup! ,(h-,f)= sup ! .(h,f)%& & & + =
fIF fIF | ) .
2
( sup !( he,f)+36)%+ %&&F +36)&8 & %& & & +
fIF
' ‘ ) )
2
( sup !( he,f)+36)%+ %&f& +36) 8 & %& g&f&,%Jr
fliF
( sup! 72, f)+36)%2+ &U
flIF
' ) ' )

36)2 o0 &2 o o &Y o o
+ sup @&(&F A)Eé&f&F +?H:p 36) & & /oi)—z&f&2

fIF
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Moreover, observe that for any no&na &and any constangs, b > 0:

+ , , a?
sup a&f & %b& & ( —
fIF 4b

Thus if we assume tha& * )2/U , we have:

2 362 )4 2
fs'up )2—&1‘&%77 84:)( 4U&(324)
fS!LFJp 36)&89%5)—2&1‘&2 ( 28U ( 648

Thus we have:
sup! . (he,f) ( sup! 7 2(h.,f)+ &U+ O()?)
fIF fIF

Moreover: . ' )
sup! (A, f)= sup ! (R, f)%! n(he,f)+! (h,f)%& & & + )Bz&r&;n
fIF fIF
' ‘ )
* sup ! o(R,f)%! ,(h,f)%2& & & + )%&f&%n
fIF
' ‘ )
+fir!1g Po(he,f)+ & & & + )7&‘&2
U )

= sup ! a(AF)%! n(h,f)%28 & & + & &, %sup! ,(h,f)
fIF flF

~

Combining this with Equationl) yields: )
; <

SE&, (25wt (D) o % g

sup ! (R, f)%! o(h,f)%2& & & +
flIF

~

( 00%+ &U+2sup! ” 2(h,f)
fIF
; . <
+ U & & % &8

Lower bounding centered empirical sup-loss. For anyh, let

frn:= arginf & %T(h %h)&.

|
flIF Lz"h#h!"a

and observe that by our assumption, for &riyH : &1, % T(h- %h)& ( ',

Suppose thadf 3& * ) and letr = f‘f:. - [0,1/2]. Then observe thatsindg 'F [ pgn, -,

andF is star-convex, we also have thiéit, "' F |- p#p, -, - Thus we can lower bound the supremum
by its evaluation atf
o)

sup ! n(A,f)%! o(h,f) %28 & & + & &, * r( n(féi,fﬁ)O/o! n(he,fg))
fIF

~—

)
%28r? H&F + )7 ﬁ&g,n

Moreover, sincg, upper bounds the critical radius Bky , & 4& ( L&A %h- & and by Equa-
tion (16): ,

2 2 U 2 ) 2 U 2
r 81,;,&:+)—2&fﬁ&2n (&fﬁgt+)7 &fﬁ&zn
)
&g
(&fﬁ&:+)7r 28y & + )% + )21 30

( ng&n %h. &, + %+ %( 2L2&h %h- & + U
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Thus we get:
U )

sup ! o(RF)%! o(he,f) %28 & & + & &, * r(l o(Rfy) %! o(h,fy))
fIF

~

%4&L2&h % h- &, % 28U

Observe that:
*Nn
a(f0) %1 (e, fh)= T (e (x)) 96h(x) T (he %h)(2)
i=1

I( hfr) %! h-,fn) = E[(h-(xi) %h(xi)) frn(z)]

(————
By Lemma 7 ofFoster and Syrgkan[2019, and by our choice of := ), + ¢ %, where
)n upper bounds the critical radius &f we have that w.pl %-: / h, such that %h- 'H g
|t n(h, 1) %! o (he,h)) %(( h,Tr) %! he fr)l (18 E[(h-(X) %h(X))2f,(Z)?] + 18)2
(189 Elfn(2)7]+18)
= 18)& & +18)2 (20)

where in the second inequality we used the factti%ah- has range i1, 1], when&h%h- &; ( B.

If h%h- has& %h-&, * B, we can apply the latter fgh %h-) B/ & %h- &, and multiply
both sides byh %h- &, /B :

% he % h-
00 10) 961 o (e, 96 1 F0) 961 1, Fu)] (19 & BT E 1528 %00 &
Thus we have that foral ' H :

= >
1" n(h,fr) %! n(he,h)) %(( h,fh) %! he,f1)] ( +18)&rhgg+18)2’ max 1,%

Applying the latter bound foh := A and multiplying byr := % ' [0,1/ 2], yields:
T showh &
r(t n(A,f5) %! n(h,f5)) * r(i( B, fg) %!( ho,fg)) %182 max 1,°T"&'2*

Moreover, observe that by Lemm& and the fact tha&f 5 % T (h- %ﬁ)&g ( 'n,we have:

)

r(l( A, fg) %!( he,fg)) * & (he %HR)& %)

Thus we have: ' )

sup ! n(BLf)%! n(he.f)%28 && + Sa&, * )
flF

)2 n E&T(h" %h)&z %)l n

T ghwhe&y
%27)2 max 1,°T"&E'
%4&L2&h % h- &, % 28U

Combining upper and lower bound. Combining the upper and lower bound on the centered
population sup-loss we get that wp% 3-: either& 3 & ( ) or:

)

E&T(ﬁ%hu)&g( 002%+ ) o+ &U)+2sup! ” ?(h,f)
fIF

+27)?

5 orp ) ; o S
%M&Lzm%hu&a tuoeh & % &g
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We now control the last part. Sinée* )?2/U , the latter is upper bounded by:

) : < ) <
& %MLZ SR %h. & + | &h-& % A& ( 28 2?7U+4|_2 A& + & &,
: <

+ U & & % &
+ L

Sincep * 2& 2% +412", the latter is upper bounded by:

o ) )

2& %+4L2 +u & &

+ 1
Thusaslongag * 2& 2% +4L2" and&* )2/U, we have:
) .. _ow ) )
5eeLT(ﬁO/oh--)&_)( 002+ ) n+&U)+2sup! " ?(h-,f)+ 2& ?+4L2 +u & &
fliF

Dividing over by) and treatind-, U, B as constants, we get:

&T(R%h-)& ( O() + 'n + & & (&) + W) )) + SUIOI " 2(he 1)

) |

Thus eithei&f 3 & () or the latter inequality holds. However, in the case wlEq& ( ), we have by
a triangle inequality that&T (A %h-)& ( ) + ' . Thus in any case the latter inequality holds.

Upper bounding population sup-loss at minimum. Letfo = T(ho %h-) and observe that:

veag ( supE[fo(z)f(z)l%W&@@

sup! " 2(h.1) = sup Elfo(@)f (1% S8 & + 2)2

fIF

)
Then by the Cauchy-Schwarz inequality and si&ce )2/U :

&U & o0&, &fo&?
2&f&g( fs!gp&o&&&"/i)—z&&z( 2&u) (

SUPE[fo(2) f (2)] % &
flF )

Concluding. Concluding we get that w.[1. % 3-:
&T (h» %ho)&

&T(R%h-)& ( O() + 'n + 8h-& (&) + W) )) + )

By a triangle inequality:
&T (A %ho)& ( & T(R%h-)& + &T (h- %ho)&

(00 + ' n+&n& (&) + W)))+

&T(W;’/mo)% + &T (h %ho)&

K.3 Proof of Theorem 2

Proof. By the depnition ofi;
<

0( sup! n(B.F) ( sup! n(ho.f)+ & &hon % &
f f

[
LetF{, = {f 'F i : & & ( U} and)n, =max’, 2R(F|)+ co 2%%") for some universal

constantsyg, ¢;. By Theorem 26.5 and 26.9 &halev-Shwartz and Ben-David014, and sinceF[J
is a symmetric class arglip,,y xix |y %ho(X)| ( 2, w.p.1%-:

F 41! n(ho, ) %!( ho,f)] ( )n
Since!( hg,f) =0 forall f, we have that, w.pl %-:

&A&; (& No&y + o 1&
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(—
LetBn-: = (&no& + )n: /&)2. Thenif we let(,-: =max; R(Hg,,, aF)+ ¢ 28Cl)
for some universal constantg, c; .

Ih'H g F"F U1 a(n£) %! ) ( Dnr
By a union bound over thé function classes composirtg, we have that w.pl % 2-:

sup ! n(ho,f) ( sup !( ho,f)+ )na = )Inwua
fIF |y fFIF u

and B .
sup ! n(R,f)* sup !( R,f)%(nq
fiIF ¢ fiIF ¢

Since, by assumption, for ary' H g, % ' spa (Fu), we have% =

P owifi,withp<, ,&w& ( / andf;'F y. Thus we have:

* 1 3
, 1*P i} 1 .
sup (Af)* © wil(Rf)= 71 A w
fIF | / - / i
1 1 .. N
I &T (ho %ﬁ)&z( (ho %))
1 1 .
= 77ET h O/H 2
T o oo (o %A@
= /}&T(ho%ﬁ)gg

Combining all the above we have:
<<

&T (ho %R)& ( / , (o * )njid + & &ho& % &,

Moreover, since functions il andF are bounded if%l, 1], we have that the functioh &f is
1-Lipschitz with respect to the vector of functiofis, f ). Thus we can apply a vector version of the
contraction inequalitpMaurer[2016 to get that:

+

R(Hg,;, aR)( 2 R(Hg,,, )+ R(F})

n$,z

Finally, we have that sincd is star-convex:
R(HBn,$,Z ) ( . Bn""z R(Hl)

Leading the bPnal bound of:
1 2 3

; . <
()& (| 2(808u +)n: ) R(HY) +2 mMaXR(F))+ 00 DY)y g anog, o dh,
1=
Since&ho&y ( R and&* ), , we get the result. O

K.4 Proof of Theorem 6

The proof is identical to that of Theoreinwith small modibcations. Hence we solely mention these
modibcations and omit the full proof.

The only part that we change is instead of the set of Equaf@)swe instead vievl{(y; h(x)) f,(z)
as a function of the vector valued functigr, z) + (h(x),fn(z)). Then we note that since
h,f take values if%l, 1] andy ' [%l, 1], we note that this functio2-Lipschitz with respect
to this vector. Tben we can apply Lemma 7Fafster and Syrgkanig019, and by our choice
of ) = )+ o 94" ) where), upper bounds the critical radius sfa(Hg % h-) and
sta(T(Hg %h-)), we have thatw.pl%-:/h'H g:

(! n(h,fn) %! n(h, 1)) %(( h,fr) %! he fr))| ( 36) (&h %h-& + & n&) +18)°
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Subsequently, we can follow identical steps to conclude thatlWp3-, either&f 3& () or:
1 3

a@onne (0 ) ) T g @) ) &T(h)/hw&%

Subsequently, by the measure of ill-posedness we have:
8A%h- & ( +&T (R %h-)&
Moreover, observe that whefi;& * ) * 3, then we have by a triangle inequality that:
&T(h%h)& *&f & %' n * 2y
and: .
& & * &T(N%h )& %' o * S&T(h%h-)&
Thus we get that:

84 %h- & ( 8T (h%h-)&
&h& &y &

Thus overall we have that eith& 3 & ( ) or:

( 2+

&7 (h- %ho)&2”
)
gh- %hos2))
)

where the last inequality follows by that fact that JensenOs inequali't'y impli&q at% ho) & (
&h- %ho&. Moreover, if8f 3& (), then by a triangle inequality th&F (R%h-)& ( )+ ' », which,
subsquently implies by invoking the bound on the ill-posedness measuréihabh& (+O)+"'n).

Thus in any case the bound in Equati@1) holds. Choosingy- := arginf ,,,; . & %ho&, yields
the result.

8A%N & (O + +)+ '+ & & (&) + W) )+

(O + +)+'n+8h& (&) + W) )+ (21)

L Proofs from Section4 and Appendix E

L.1 Proof of Proposition 9

Proof. Since& & n depends ofi only through the valuet(z,), ..., f (z,), and the maximization
overf in (11) is the penalized problem

1 *N
sup = %(yis o)) T (2) %&( & &, + & &)
' i=1
for some choice o& * 0, the generalized representer theoremSuf{Slkopf et al.2001, Thm. 1]
implies that an optimal solution of the constrained probleniit) {akes the form
*n
f (Z): !iK(Ziaz)
i=1
for some weight vector” ' R". Now consider a function
*n
f(z) = , iK(z,2)
i=1
forany, ' R". We have§f & =, *K,, ,f(z)= & K, ,and

*n *n

1 1
&f&%,n:ﬁ f(zi)zzﬁ 1+Kne|e|+Kn, :ﬁ,+K§,.
i=1 i=1
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Thus the penalized problem is equivalent to the Pnite dimensional maximization problem:
L} U )
sup % Kn, %& 5 —SKnp+1 Ki,
, I RN n)

by taking the brst order condition, the latter has a closed form optimizer of:

I )#1
1 U
© T g pzfetlh %
and optimal value of:
' ) #1 ' ) #1
1 ) 1 U
— % Ky n)2Kn+| % = — 0 K2 n)an+| K Y294,

where in the last equality we used a classic matrix inverse identity for kernel maftices. O

L.2 Proof of Proposition 10
Proof. By Propositiord,

2 1 .
A =argmin @%‘; M%, + p&h&L . =argmin % M%, + 4 & p&h&k (22)
hiH hiH

where%, = ( %"/C(yi ; h(xi)))iL, . Since the objective o) depends only oh only through the
valuesh(xy), ..., h(xn), and the problem, the generalized representer theore8cbE[kopf et al.
2001, Thm. 1] implies that an optimal solution of the proble®2)takes the form

Ne)= L Ke ()
i=1

for some weight vector” ' R". Now consider a function

h(z) = iKH(zi,2)
i=1

forany, ' R". We havegh& =, "Kpn,,h(z)= & Ky, ,and% = y %Ky, . The
problem @2) is therefore equivalent to

rT"F'{’!‘ 1+KH,nMKH,na %2y+MKH,n1 +4&“1+KH,H1'

By [Boyd and Vandenbergh2004 Ex. 4.22], this problem is solved by:

. =(KenMKyn+4&uKy n) Ky anMy

O

18The fact that for any matriX : X (X®X + 11 )¥1 = XX $(X® X + Il ), and tha , = K;'?

andK &' ? is symmetric.

1/2
Kn
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L.3 Proof of Lemma 1l

Proof. Under these assumptions we have:

Fa C2|
* *
&Th& = af Vma %2 aaEE(X) |2l () 2]+ EFB  aEle (012D &
i( msj j>m
*
* af Vmay %2 |ai 3 | [E[E[e (x) | ZIE[g (x) | Z]]I
i(,m<j
* a Vma %2 |ai aj |C #m
. m<j* 6 s
Y m& & %2 ol a?
i(m j>m

*
* +m&al&%%2C+m' &m+1 B EN
&
* & & %24 &me B a?
i(m
* 4,88y & %2CH, &m+1 Bda &

Thus if& h& ( ), then by solving the above quadratic inequality and using the factahato)? (
2a’ + 217, we have for alim:

4 2
8ay & ( +—+4c2&m+1B
m
Moreover, observe that by the RKHS norm bound:
*

sh&= o (&a&+&nB

ira

Thus we can bound:

2
F0) = min g ( min -+ @S+ 1) & B

“Th'2( &
O
M  Proofs from Section5 and Appendix F
M.1 Proof of Corollary 3
Proof. LetH = {I",x":" ' RY} and&& = & &. Moreover, suppose thhp is s-sparse. Then

ifh' Hg , then:

n,$,%
Yoo [& + 808 * & 08y = &0+ 28 = &'o+ 258 + &250& * & "8 Y &s& + &25:&

Thus:
2

828 ( 28258 + )n; 1& ( 22 S&s& + )n: 1& ( 22 S&& + )n 1& ( 2 E2+V2+ )n' &

Moreover, observe that:

. 2
&T(h%ho)& = E[12,E[x | 2]?]= 2'V2

Thus we have:

T(h%hy)  *° _ 2
— = 2——FE[xi |z
ah%ho& _ “ave 17
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Thus we can write-("#ho) _ 5q" ipzl wifi, withf; 'F ( and:

T(h#ho) 2
2 _
828 S n 1
W& =2—— (2 —+22b -
& 2+V2( . & & (h%hg)&

( —
. T(h#ho) - Snoe 1
ThUS W Span (FU) for/ - 2 (§ + "/ W

Moreover, observe that by the triangle inequality:
2

&ho& % &8y = & 08 % &8y (& "0 %08 = 828 (2 22+V2+ ), /&

Moreover, by standard results on the Rademacher complexity of linear function classes
(sFe e.g. Lemma 26.11 oS[laIev—Shwa{tz and Ben-Davi@014), we haveR(Hg) (

B 2P9ZP) max,x && andR(Fy) ( U 292D may,, && forFy = {z +! #,2":
#' RP,&#& ( U}. Thus invoking Theorerg:

2 )y 1 2
TR %h)& ( 2 S+l 1
0 . & &T(h%ho)&

3

4 2(B +1) 'Ogr(fp) ) + & S&T(h%ho)&

The right hand side is upper bounded by the sum of the f??llowing four terms:

5 1 2
Q=2 ° a@+n XL,
. )1 2 3
— 1 log(2p)

Q= e @hwhgg, EFD Tt
Qs = 28>&T (h %ho)&

2 _
Q4 = )n,' E

(
If & (h %ho)& * ~ £)n: and setting ( 5, yields:
2 1 2 3
1 . log(2
Q( 8y = 2B+1 WL,

Qs ( Z&T(h%ho)&

Thus bringingQs on the left-hand-side and dividing 13/ 4, we have:
=2 2_>1 2 3

s 1 . log(2p)
“ig g 208+ o t1n

& (N%h0)& ( 3(Q1+ Qo+ Qo) = 5 max

The result for the case whesup,,, && ( RandFy = {z + ! #,2" : &#& ( U}, follows
along the exact same lines, but invoking the Lemma 26.18bélev-Shwartz and Ben-Dayigi014,
instead of Lemma 26.11, in order to get tRetFy) ( “&. O

M.2 Proof of Propositions13and 14

Proposition 16. Consider an online linear optimization algorithm over a convex strategy space
and consider the OFTRL algorithm withlastrongly convex regularizer with respect to some norm
& & &n spaces:
A C
* 1
fe=zargminf*B 1. +1,D + ZR(f)
frs (1
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Let& & &denote the dual norm & & &ndR = sup;, s R(f) %infs, s R(f). Thenforanyf " ' S:

*T *T *T

" R 1
(fe %f )"l ( —+° &t%!t#l&'%f & ¢ %f 1y 1 &
t=1 t=1 t=1

Proof. The proof follows by observing that Proposition 73grgkanis et alf2015 holds verbatim
for any convex strategy spa&eand not necessarily the simplex. O

Proposition 17. Consider a minimax objectivenin,,; 1 maxy: w ! (", w). Suppose that ,W are
convex sets and thaf", w) is convex in" for everyw and concave iff for anyw. Let& 4 &

and& a & be arbitrary norms in the corresponding spaces. Moreover, suppose that the following
Lipschitzness properties are satisbed:

[ #ww W& (M w) % (w0 & ( L&w %w &y
fTw' W, & W (W) %, ! (" W)&y . (L& %" E&w

where& 4 & - and& 4 & - correspond to the dual norms &fa &, & & & . Consider the algorithm
where at each iteration each plrﬁler updates their strategy baseéj on:

*

" = argmin "t B we) + (" w)D o+ .}Rmin (")
N (1 .
* 1
Wisr = argmaxw' B e we) + L w1 (M Wi )P % “Rimax (W)
w! W

*(t

such thatR i, is 1-strongly convex in the sét with respect to norn& & & andRpax is 1-strongly
convex in the stV with respect to norn& & & and with any step-siZe ( ﬁ. Then the parameters
D= Ti thl "y andw = % thl w; correspond to an{%-approximate equilibrium and hendgis
a

4+RT’ -approximate solution to the minimax objective, whigrss dePned as:
- >

R+ = max SupRmin (") % inf Rmin ("), sup Rmax (W) % inf Rmax (W)
1 H w! W wl W

Proof. The proposition is essentially a re-statement of Theorem Zyafkanis et al[2013 (which

in turn is an adaptation of Lemma 4 Bakhlin and Sridharaf2013), specialized to the case of the
OFTRL algorithm and to the case of a two-player convex-concave zero-sum game, which implies
that the if the sum of regrets of players is at mgshen the pair of average solutions corresponds

to an(-equilibrium (see e.gFreund and Schapifd999 and Lemma 4 oRakhlin and Sridharan
[2013). O

Proof of Proposition 13: !;-ball adversary LetRg (x) = izfl xi log(x;). For the spacé :=

{0' R?®:0* 0,80& ( B}, the entropic regularizer ié-strongly convex with respect to the

norm and hence we can i, (0) = B Rg (0). Similarly, for the spac&V := {w' R? :w*

0,&w& =1}, the entropic regularizer is-strongly convex with respect to the norm and thus we

can seRmax (W) = Rg (w). For this choice of regularizers, the update rules can be easily veribed to
have a closed form solution provided in Propositid) by writing the Lagrangian of each OFTRL
optimization problem and invoking strong duality. Further, we can verify the lipschitzness conditions.
Since the dual of thé; normis thelg norm,. y!(0,w) = E,[vu® Jw + - and thus:

& y1(0,W) % . y1(0,W)& = &En[vu™ J(Ww%W)& (& En[vu’1& &W %W &
& w!(0,W) % . 4! (0, W)& = &En[uv*](0%0)8& (& En[vu*]8 &0%0&

Thus we havd. = &, [uv' ]& . Finally, observe that:
supB REg (0) %)ilnlf BRe(0)= B?log(B 8 1)+ B log(2p)
)it H

sup Re (w) % inf Rg(w)= log(2p)
w! W w! W
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Thus we can takR- = B2?log(B 8 1)+ (B +1)log(2p). Thus if we set = W then we
have that afteT iterations, 2= 8* %@ is an((T)-approximate solution to the minimax problem,
with

4B?log(B 8 1) + (B + 1)log(2

Combining all the above with Propositidr? yields the proof of Propositioh3.

Proof of Proposition 14: !,-ball adversary For the case wheW = {# ' RP : && ( U},

then we have that the squared norm regulaigsx (#) = %8#8% is 1-strongly convex with respect

to the!, normand we canusga & = & a & The choice oR,, is the same as in the case of
an!, adversary, as detailed in the previous paragraph. For this choice of regularizers, the update
rules can be easily veribed to have a closed form solution provided in Propdifibg writing

the Lagrangian of each OFTRL optimization problem and invoking strong duality. Moreover, the
Lipschitzness conditions become:

& )1(0,#) % . !1(0,#)& = &En[vZ'](# %#)& (& En[vz']& &% %# &
& #1(0,#) % .(#!(0',#)&2 = &, [zv* ]go %0)8& (& En[zv* 8¢ 80 %0 &

where&€A&;, » = max; j A% and8A& s = i max; AZ . Thus we can take
L @]
M 6 * 6 o P
L = max N max Enlviz ]2 + mjax Enlziv ]2Q
j i
6 .
( maxEn[zVi > = &En[2V' 18,
i

i
Finally, we also have that:
: 1
#S!UVF\? Rmax (#) %#|!n\1;v Rmax (#) ( EUZ

Thus we can tak&®- = B2log(B 8 1) + B log(2p) + 2U2. Thus if we set = W
then we have that aftdr iterations, 2= 8* %@" is an((T)-approximate solution to the minimax
problem, with
4B?log(B 8 1) + B log(2p) + U?%/2

T .
Combining all the above with Propositidr7 yields the proof of Propositioh4.

((T) = 16&En[zv" |&.e

N Proofs from Section7 and Appendix |

N.1 Proof of Theorem4

Observe that we can view the minimax problem as the solution to a convex-concave zero-sum game,
where the strategy of each player is a vector imadimensional space, subject to complex constraints
imposed by the corresponding hypothesis. In particulailet {(f (z1),...,f(zx)): f 'F} and
B = {(h(X1),...,h(zy)) : h*'H} . Then the minimax problem can be phrased as:

* *

1 1
i ) . 04 92) = i 2 g ) .
min max — | ((yi %h) a %a’) max min — | (af %(y; %h)a)

Moreover, we will denote with(a, b) := % ) ((a? %(yi %h) a), which is a loss that is concave

(in fact linear) inband convex ira. Moreover, our assumption dn implies thatA is a convex set.

Then the algorithm described in the statement of the theorem corresponds to solving this zero-sum
game via the following iterative algorithm: at every period 1,..., T, the adversary chooses a
vectora; based on the the follow the leader (FTL) algorithm, i.e.:
*# 1
a =argmin —— I(a,b)
al A

t%1,
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and the learner choosbsby best-responding to the current test function, i.e.:
b =argmax!(a,b)
b! B

The equivalent stems from the following two observations: First, for the adversary we can re-write
the FTL algorithm by completing the square as:

1* *# 1
_ : 2, ) .
ar = argmin — a~ % % a
! %!A n . t%l*zl(I oy o) 2)
1* 1 1 1 3 3
= ar%lmAinﬁ a2 % Yi%ior  beoa
H i *=1
1* 1 11 ] 1 332
— H 2
= argmin — a - vy %
A A T

which then is equivalent to the oracle call described in the statement of the theorem. Second for the
learner we have:

by

argmax ! (a, b)
bl B
1 *
= argmax — b ajit
bl B .
*

1 .
= argmax —  b|ay |sign (ap)

bl B i
1 *
= ar%rréax 0 |ait |EZ) Bernoul( °L2 )[(2 z; % 1) sign (ai )]

1* ; ] . <
= argmax — lai | Pr %)[(2 Zi %1) = sign (ai )] %Prz) Bemoum(b%l)[(Z Zi %1) = sign (ai )]

ol B z) Bernoulli(

[
1 * ; ' <
= ar%!n;ax 0 N 2Prz) Bemou”Kbi%l)[(z Z %1) = sign (ai)] %1

*

= argmax T [ IPr) g (22 %1) = sign (@)
2

b B | z) Bernoull( | "
= L’ _ sign(ap)+1
= argmax - |3 IPT,) germouibzty 205 ——5

*

1
argmax — lai; [Pr
b! B

z) Bermoull( 231-) [zi = 1{ax > O}]
i
which is exactly the oracle call described in the statement of the theorem.

Thus it remains to show that the vecfbr 1 ) tT:l by is a solution to the minimax problem, which

would imply that the corresponding ensemble hypothﬁs’;s% th1 h; is also a solution to the
empirical minimax problem.

To achieve this it sufPces to show that the FTL algorithm is a no-regret algorithm for the adversary.
Then we can invoke classic results on solving zero-sum games via no-regret dyrfamicsd and
Schapire1999. Observe that the learner obviously has zero regret as it best-responds at each period.
Thus if we show that the FTL algorithm h&@T )-regret afte periods, thefis an((T)-approximate
solution to the minimax problem, invoking the results Bf¢dund and Schapir&999.

Hence, we now focus on the online learning problem that the adversary is facing and show that FTL

is a no-regret algorithm with regret ret€r ) = ‘”"‘?r&. We will begin by invoking Lemma 2.1 of
[Shalev-Shwartz and Sing&007), which states that the regret of the FTL algorithm is bounded by:

*T

((ar, n) %! (a1, b))
=1

t=

(M1
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Thus it remains to bound the RHS.

Observe that the loss functidg b) is %-strongly convex with respect tt&a &norm on the spaca,
sincea®. 2,!(a,ba= %8&&5. Moreover, observe that the loss functiqid b) is aIso*“ﬁ—Lispchitz
with respect to th& & &norm on the spacA, since

Cal@b= (23 %(y: %h))

and therefore: 6

x x

1 1 1 4
&al@b&= 5 (vi%h%2a)2= 2= - (v %h%2a)?( 2
[ [
In the last inequality we used the fdgt|, |h(xi)|, |f (z)] ( 1.
Since!; is %-strongly convex, we have thht = ) £=1 1(4b) is %‘ strongly convex. Since;+1 is
the minimizer ofL; and the seA is a convex set, we have by strong convexity and the prst order
condition that:

t t
Li(a) * Li(ager )+ 'ag %ages,. ale(aer )"+ ﬁ&at %a1 8 * Li(ag1)+ ﬁ&at Yooy &
Moreover, sincey is a minimizer ofLx ; and invoking the brst order condition, in a similar way as
above, we have: )
Liza(e1) * Lega(ar) + ﬁgat % a1 &

Adding the two inequalities and re-arranging we get:
2t
n

l(ar, ) %! (as1 . 1) * = 8a Yo &

Invoking the lipschitzness df:
4 2t
2—8a %au1 & * 1(a,h) %! (s, B) ¥ & % &

Thus we have: 22 o
&ay Yoar+1 & ( =

Moreover, by lipschitzness {4 b), we have:
4 8
Ha, ) %!(a1, ) ( 2?&&[ Yar+1 & ( n

Thus we get:
T 8(log(T) + 1)

1
t T

(M2 1

t=1
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