
A Appendix

A.1 Proofs for Theorems

Theorem 2.1. The objective function in Equation 1 is non-normal, non-negative, non-monotone,

submodular, and the constraints of the optimization problem are matroids.

Proof. In order to prove that the objective function in Eqn. 1 is non-normal, non-negative, non-
monotone, and submodular, we need to prove the following:

• any one of the terms in the objective is non-normal

• all the terms in the objective are non-negative

• any one of the terms in the objective is non-monotone

• all the terms in the objective are submodular

Non-normality Let us consider the term f1(R). If f1 is normal, then f1(;) = 0.

It can be seen from the definition of f1 that f1(;) = U1 because incorrectrecourse(;) = 0 by
definition. This also implies that f1(;) 6= 0. Therefore f1 is non-normal and consequently the entire
objective is non-normal.

Non-negativity The functions f1, f3, f4 are non-negative because first term in each of these is an
upper bound on the second term. Therefore, each of these will always have a value � 0. In the case of
f2 which encapsulates the cover metric which is the number of instances which satisfy some recourse
rule in the explanation. This metric can never be negative by definition. Since all the functions are
non-negative, the objective itself is non-negative.

Non-monotonicity Let us choose the term f1(R). Let us consider two explanations (two level
recourse sets) R1 and R2 such that R1 ✓ R2. If f1 is monotonic then, f1(R1)  f1(R2). Let us see
if this condition holds:

Based on the definition of incorrectrecourse metric, it is easy to note that

incorrectrecourse(R1)  incorrectrecourse(R2)

This is because B has at least as many rules as that of A. This implies the following:

�incorrectrecourse(R1) � �incorrectrecourse(R2)

U1 � incorrectrecourse(R1) � U1 � incorrectrecourse(R2)

f1(R1) � f1(R2)

This shows that f1 is non-monotone and therefore the entire objective is non-monotone.

Submodularity Let us go over each of the terms in the objective and show that each one of those
is submodular.

Let us consider two explanations (two level recourse sets) R1 and R2 such that R1 ✓ R2. A
function f is considered to be submodular if f(R1 [e) � f(R1) � f(R2 [e) � f(R2) where
e = (q, c, c0) /2 R2.

By definition of incorrectrecourse, each time a triple (q, c, c0) is added to some explanation R, the
value of incorrectrecourse is simply incremented by the number of data points for which this triple
assigns recourse incorrectly. This implies that this metric is modular which in turn means f1 is also
modular and thereby submodular i.e.,

f1(R1 [e)� f1(R1) = f1(R2 [e)� f1(R2)

f2 is the cover metric which denotes the number of instances that satisfy some rule in the explanation.
This is clearly a diminishing returns function i.e., more additional instances in the data are covered

13

when we add a new rule to a smaller two level recourse set compared to a larger one. Therefore, f2 is
submodular.

featurecost and featurechange are both additive in that each time a triple (q, c, c0) is added to some
explanation R, the value of these metrics is incremented either by the sum of costs of corresponding
features which need to be changed (featurecost) or the sum of changes in magnitudes of the features
(featurechange). This implies that these metrics are modular which in turn means f3 and f4 are
modular and thereby submodular.

Constraints: A constraint is a matroid if it has the following properties: 1) ; satisfies the constraint 2)
if 2 two level recourse sets R1 and R2 satisfy the constraint and |R1| < |R2|, then adding an element
e = (q, c, c0) s.t. e 2 R2, e /2 R1 to R1 should result in a set that also satisfies the constraint. It can
be seen that these two conditions hold for all our constraints. For instance, if a two level recourse set
R2 has  ✏1 rules (i.e., size(R2)  ✏1) and another two level recourse set R1 has fewer rules than
R2, then the set resulting from adding any element of R2 to the smaller set R1 will still satisfy the
constraint on size. Similarly, the constraints on maxwidth and numrsets satisfy the aforementioned
properties too.

Before we prove Theorem 2.2, we will first discuss how several previously proposed methods which
provide recourses for affected individuals (i.e., instance level recourses) can be unified into one basic
algorithm.

Unifying Prior Work

The algorithm below unifies multiple prior instance-level recourse finding techniques namely Wachter
et al. [39], Ustun et al. [36], Karimi et al. [12]. All the aforementioned techniques employ a
generalized optimization procedure that searches for a minimum cost recourse for every affected
individual by constantly polling the classifier B with different candidate recourses until a valid
recourse is found [7]. The search for valid recourses is guided by the find function, which generates
candidates with progressively higher costs (with the definition of cost varying by technique). For
example, Wachter et al. [39] use ADAM to optimize their cost function, �(B(x0)�B(x))2+d(x0, x)
- where d represents a distance metric (e.g., L1 norm), to repeatedly generate candidates for x0

increasingly farther away from x, until one of them finally flips the classifier prediction. Similarly,
Karimi et al. [12] use boolean SAT solvers to exhaustively generate candidate modifications x0, while
Ustun et al. [36] use integer programming to generate candidate modifications that are monotonically
non-decreasing in cost, thus providing the theoretical guarantee of finding minimum cost recourse for
linear models.

Algorithm 1 Generalised Recourse Generation Procedure
1: Input: binary black-box classifier B, dataset X , single data point x, iterator find to repeatedly

generate candidate modifications to x
2: Result: minimal feature-vector modifications �x needed for B(x+�x) to be different from

B(x), or ; if no recourse exists
3: output = B(x)
4: �x = ;
5: x0 = x+�x . x0 is the candidate counterfactual for x with modification �x
6: while B(x0) = output do
7: �x = find(B, x, x0,X) . find returns ; if it cannot find any candidate �x
8: if �x = ; then
9: return ; . No recourse found

10: end if
11: x0 = x+�x
12: end while
13: return �x

Theorem 2.2 If all features take on values from a finite set, then the optimization problem in

Eqn.1 can be reduced to the objectives employed by prior approaches which provide instance level

counterfactuals for individual recourse.

14

Proof. To prove this theorem, we will first describe how instance level counterfactuals for indivual
recourses can be generated using our framework AReS. Then, we show how this is equivalent to the
objectives outlined in Wachter et al. [39], Ustun et al. [36], Karimi et al. [12].

Generating instance level counterfactuals for individual recourses using AReS: If a conjunction
q ^ c consists of the entire feature-vector of a particular data-point x 2 Xaff, then the triple (q, c, c0)
represents a single instance level counterfactual. This is how AReS can be used to output individual
recourses.

Subsuming other objective functions: The objective optimized by Wachter et al. is �(B(x0) �
B(x))2 + d(x0, x). This can be equivalently expressed in our notation from Table 1 as
�(incorrectrecourse(R)) + featurechange(R), where the first term captures how closely the
prediction resulting from the prescribed recourse matches the desired prediction, and the sec-
ond term represents the distance between the counterfactual and the original data point x 2
Xaff. The aforementioned two expressions are equivalent because our setting consists only of
binary classifiers with 0/1 outputs. In this case, our definition of incorrectrecourse(R) =
⌃M

i=1|{x|x 2 Xaff, x satisfies qi ^ ci, B(substitute(x, ci, c0i)) 6= 1}| is identical to incorrectre-
course(R) = ⌃M

i=1(B(x) � B(x + �ci)))2. Similarly, featurechange(R) from our notation is
the same as d(x0, x). As described in algorithm 1, all recourse search techniques use the notion
captured by incorrectrecourse(R) and some form of distance metric or cost function, captured by
featurechange(R) or the customizable featurecost(R) in AReS.

Let the (finite) set of all possible feature vectors be denoted by Xall. Note that Xall ◆ X , and
setting RL = Xall in AReS would allow the recourse search to be over the entire domain of the
data. Setting size(R) = 1 and SD = {x} further mandates that the final recourse set consists
of only one triple (q, c, c0), which contains the recourse desired for the feature-vector x. Further,
since most instance level recourse generation techniques do not have additional interpretability
constraints [39, 36, 27, 12, 20, 25] such as the maxwidth(R) and numrsets(R) terms in AReS,
we set ✏2 = ✏3 = 1. Finally, setting �2 = �3 = 0 leaves us with �1f1(R) + �4f4(R) as our
objective function, which represents the exact same optimization as that of Wachter et al. [39].
Similar configurations (e.g. setting �4 = 0 instead of �3 = 0, and defining cost of each feature in
terms of percentile shift in feature values) will yield the objective functions used by other recourse
generation techniques (e.g. Ustun et al.’s Actionable Recourse).

Theorem 2.3 If the underlying model provides recourse to all individuals, then upper bound on the

proportion of individuals in Xaff for whom AReS outputs an incorrect recourse is (1 � ⇢), where

⇢  1 is the approximation ratio of the algorithm used to optimize Eqn 1.

Proof. Let ⌃4
i=1�ifi(R⌦) = ⌦ represent the maximum possible value of the objective function

defined in Eqn. 1. Let ⌃4
i=1�ifi(R0) = ⌦0 represent the objective value for the two level recourse

set which provides correct recourse to a single arbitrary data point x (i.e., incorrectrecourse0 = 0)
which is obtained by setting ✏1 = 1 and �2 = �3 = �4 = 0. Therefore, ⌦ � ⌦0 and ⌃4

i=1�ifi(R) =
⌦AReS � ⇢⌦ due to the approximation ratio (⇢  1) of the algorithm used to optimize Eqn. 1.

4X

i=1

�ifi(R
⌦) = ⌦ (2)

4X

i=1

�ifi(R) � ⇢⌦ (3)

subtracting (3) from (2), we get
4X

i=1

�i(fi(R
⌦)� fi(R))  ⌦� ⇢⌦ (4)

15

Algorithms Datasets
COMPAS Credit Bail

Recourse Mean Recourse Mean Recourse Mean
Accuracy FCost Accuracy Fcost Accuracy Fcost

DNN-5

AR-LIME 99.67% 2.93 0% NA 84.49% 2.59
AR-KMeans 65.89% 6.07 47.06% 1.68 92.25% 7.31

FACE 88.28% 5.43 68.31% 2.25 83.31% 5.64
AReS 98.72% 1.92 83.02% 1.03 96.18% 1.88

GBT

AR-LIME 21.57% 5.21 8.00% 3.44 69.17% 2.40
AR-KMeans 60.08% 5.34 22.33% 3.40 93.03% 7.14

FACE 55.87% 5.42 24.38% 3.41 77.82% 5.63
AReS 76.17% 3.88 58.32% 1.67 97.84% 1.18

SVM
AR 100% 1.25 100% 7.84 100% 7.93

FACE 95.63% 1.43 93.10% 5.77 88.12% 7.02
AReS 99.64 0.88 100% 2.45 100% 4.35

Table 3: Evaluating Recourse Accuracy and Mean FCost of recourses output by AReS and other
baselines on COMPAS (left), Credit (middle), and Bail (right) datasets; DNN-5: 5 Layer Deep Neural
Network, GBT: Gradient Boosted Trees, SVM: Support Vector Machine. Higher values of recourse
accuracy are desired; lower values of mean fcost are desired.

Optimizing only for recourse correctness of a single arbitrary instance i.e., setting ✏1 = 1 and
�2 = �3 = �4 = 0, we have ⌦ ! ⌦0. Therefore, Eqn. (4) can be written as:

�1(f1(R
0)� f1(R))  ⌦0(1� ⇢)

(U1 � incorrectrecourse(R0))� (U1 � incorrectrecourse(R))  ⌦0(1� ⇢)

�1

incorrectrecourse(R)  0 +
⌦0 ⇥ (1� ⇢)

�1

incorrectrecourse(R)  0 +
�1(U1 � 0)⇥ (1� ⇢)

�1

Using the definition of U1 from Section 2.3,
incorrectrecourse(R)

|Xaff|
 ✏1|Xaff|⇥ (1� ⇢)

|Xaff|
incorrectrecourse(R)

|Xaff|
 (1� ⇢)

This establishes that the upper bound on the proportion of individuals in Xaff for whom AReS outputs
an incorrect recourse is (1� ⇢).

A.2 Experimental Evaluation

A.2.1 Parameter Tuning

We set the parameters �1 · · ·�4 as follows. First, we set aside 5% of the dataset as a validation set to
tune these parameters. We first initialize the value of each �i to 100. We then carry out a coordinate
descent style approach where we decrement the values of each of these parameters while keeping
others constant until one of the following conditions is violated: 1) less than 95% of the instances in
the validation set are covered by the resulting explanation 2) more than 2% of the instances in the
validation set are covered by multiple rules in the explanation 3) the prescribed recourses result in
incorrect labels for more than 15% of the instances (for whom the black box assigned label 0) in the
validation set.

16

Figure 3: Analyzing the trade-Offs between interpretability and correctness of recourse: Size of the
Explanation vs. Recourse Accuracy for COMPAS (left), Credit (middle), and Bail (right) datasets

A.2.2 User Study

We manually constructed a two level recourse set (as our black box model) for the bail application.
We deliberately ensured that this black box was biased against individuals who are not Caucasian.
More specifically, we induced the following bias: individuals who are not Caucasian are required
to change twice the number of features to obtain a desired prediction compared to those who are
Caucasian. This two level recourse set (black box) is shown in Figure 4.

We then used our approach and 95% of the bail dataset to learn a two level recourse set explanation
(remaining 5% of the data is used for tuning �1 · · ·�4 parameters). We also set all feature costs to 1.
We found that our approach was able to exactly recover the underlying model and thereby obtain a
recourse accuracy of 100%. We used AR-LIME as a comparison point in our user study. Note that
while our method outputs global summaries of recourses, AR-LIME can only provide instance level
recourses. However, since there is no prior work which provides global summaries of recourses like
we do, we use AR-LIME and average its instance level recourses as discussed in Ustun et al. [36].
More specifically, we first run AR-LIME to obtain individual recourses and then for each possible
subgroup of interest, we will average the recourses over all individuals within that subgroup (as
suggested in Ustun et al. [36]). We found that such an averaging was actually resulting in incorrect
summaries which are misleading. This in turn reflected in the user responses of our user study.

If Race =Caucasian:

If Married =No and Property =No and Has Job =No, then Married =No and Property =No and Has Job =Yes

If Drugs =Yes and School =No and Pays Rent =No , then Drugs =No and School =No and Pays Rent =No

If Race 6= Caucasian:

If Married =No and Property =No and Has Job =No, then Married =No and Property =Yes and Has Job =Yes

If Drugs =Yes and School =No and Pays Rent =No , then Drugs =No and School =No and Pays Rent =Yes

Figure 4: Biased black box classifier that we constructed. Red colored feature-value pairs represent
the changes that need to be made to obtain desired predictions. Note that individuals who are not
Caucasian will need to change two of their feature values (e.g., Property and Has Job; Drugs and
Pays Rent) to obtain the desired outcome. On the other hand, Caucasians only need to change one
feature (e.g., Has Job; Drugs). Our framework AReS was able to recover the same exact model.

17

If Female =No and Foreign Worker =No:

If Missed Payments =Yes and Critical Loans =Yes, then Missed Payments =Yes and Critical Loans =No

If Unemployed =Yes and Critical Loans =Yes and Has Guarantor =No,

then Unemployed =Yes and Critical Loans =No and Has Guarantor =Yes

If Female =No and Foreign Worker =Yes:

If Skilled Job =No and Years at Job  1, then Skilled Job =Yes and Years at Job � 4

If Unemployed =Yes and Has Guarantor =No and Has CoAppplicant =No,

then Unemployed =No and Has Guarantor =Yes and Has CoAppplicant =Yes

If Female =Yes:

If Married =No and Owns House =No, then Married =Yes and Owns House =Yes

If Unemployed =No and Has Guarantor =Yes and Has CoAppplicant =No,

then Unemployed =No and Has Guarantor =Yes and Has CoAppplicant =Yes

Figure 5: Recourse summary generated by our framework AReS for a 3-layer DNN (black box) on
credit scoring application. Red colored feature-value pairs represent the changes that need to be made
to obtain desired predictions.

18

